1
|
Synthesis of new 1,2,3-triazole linked benzimidazolidinone : single crystal X-ray structure, biological activities evaluation and molecular docking studies. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
2
|
Xinyi W, Shiqi X, Shishuo C, Yumin S, Jun W. 1,2,3-Triazole derivatives with anti-breast cancer potential. Curr Top Med Chem 2022; 22:1406-1425. [DOI: 10.2174/1568026622666220415225334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Breast cancer is one of the most prevalent malignant diseases and one of the main mortality causes among women across the world. Despite advances in chemotherapy, drug resistance remains major clinical concerns, creating an urgent need to explore novel anti-breast cancer drugs. 1,2,3-Triazole is a privileged moiety, and its derivatives could inhibit cancer cell proliferation, and induce the cell cycle arrest and apoptosis. Accordingly, 1,2,3-triazole derivatives possess profound activity against various cancers including breast cancer. This review summarizes the latest progresses related to the anti-breast cancer potential of 1,2,3-triazole derivatives, covering articles published from January 2017 to December 2021. The mechanisms of action and structure-activity relationships (SARs) are also discussed for further rational design of more effective candidates.
Collapse
Affiliation(s)
- Wu Xinyi
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Xia Shiqi
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Cheng Shishuo
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Shi Yumin
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Wang Jun
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| |
Collapse
|
3
|
Glanzmann N, Antinarelli LMR, da Costa Nunes IK, Pereira HMG, Coelho EAF, Coimbra ES, da Silva AD. Synthesis and biological activity of novel 4-aminoquinoline/1,2,3-triazole hybrids against Leishmania amazonensis. Biomed Pharmacother 2021; 141:111857. [PMID: 34323702 DOI: 10.1016/j.biopha.2021.111857] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023] Open
Abstract
Quinoline and 1,2,3-triazoles are well-known nitrogen-based heterocycles presenting diverse pharmacological properties, although their antileishmanial activity is still poorly exploited. As an effort to contribute with studies involving these interesting chemical groups, in the present study, a series of compounds derived from 4-aminoquinoline and 1,2,3-triazole were synthetized and biological studies using L. amazonensis species were performed. The results pointed that the derivative 4, a hybrid of 4-aminoquinoline/1,2,3-triazole exhibited the best antileishmanial action, with inhibitory concentration (IC50) values of ~1 µM against intramacrophage amastigotes of L. amazonensis , and being 16-fold more active to parasites than to the host cell. The mechanism of action of derivative 4 suggest a multi-target action on Leishmania parasites, since the treatment of L. amazonensis promastigotes caused mitochondrial membrane depolarization, accumulation of ROS products, plasma membrane permeabilization, increase in neutral lipids, exposure of phosphatidylserine to the cell surface, changes in the cell cycle and DNA fragmentation. The results suggest that the antileishmanial effect of this compound is primarily altering critical biochemical processes for the correct functioning of organelles and macromolecules of parasites, with consequent cell death by processes related to apoptosis-like and necrosis. No up-regulation of reactive oxygen and nitrogen intermediates was promoted by derivative 4 on L. amazonensis -infected macrophages, suggesting a mechanism of action independent from the activation of the host cell. In conclusion, data suggest that derivative 4 presents selective antileishmanial effect, which is associated with multi-target action, and can be considered for future studies for the treatment against disease.
Collapse
Affiliation(s)
- Nícolas Glanzmann
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais 36.036-900, Brazil
| | - Luciana Maria Ribeiro Antinarelli
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais 36.036-900, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30.130-100, Brazil
| | - Isabelle Karine da Costa Nunes
- Laboratório de Apoio ao Desenvolvimento Tecnológico, Polo de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária Ilha do Fundão, Rio de Janeiro 21.941-598, Brazil
| | - Henrique Marcelo Gualberto Pereira
- Laboratório de Apoio ao Desenvolvimento Tecnológico, Polo de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária Ilha do Fundão, Rio de Janeiro 21.941-598, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30.130-100, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Elaine Soares Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais 36.036-900, Brazil
| | - Adilson David da Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais 36.036-900, Brazil.
| |
Collapse
|
4
|
Begini F, Balaguez RA, Larroza A, Lopes EF, Lenardão EJ, Santi C, Alves D. Synthesis of 4-Arylselanyl-1 H-1,2,3-triazoles from Selenium-Containing Carbinols. Molecules 2021; 26:2224. [PMID: 33921473 PMCID: PMC8070154 DOI: 10.3390/molecules26082224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, we present a simple way to achieve 4-arylselanyl-1H-1,2,3-triazoles from selenium-containing carbinols in a one-pot strategy. The selenium-containing carbinols were used as starting materials to produce a range of selanyl-triazoles in moderate to good yields, including a quinoline and Zidovudine derivatives. One-pot protocols are crucial to the current concerns about waste production and solvent consumption, avoiding the isolation and purification steps of the reactive terminal selanylalkynes. We could also isolate an interesting and unprecedented by-product with one alkynylselenium moiety connected to the triazole.
Collapse
Affiliation(s)
- Francesca Begini
- Group of Catalysis, Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences University of Perugia Via del Liceo 1, 06123 Perugia, Italy; (F.B.); (C.S.)
| | - Renata A. Balaguez
- LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, Brazil; (R.A.B.); (A.L.); (E.F.L.); (E.J.L.)
| | - Allya Larroza
- LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, Brazil; (R.A.B.); (A.L.); (E.F.L.); (E.J.L.)
| | - Eric F. Lopes
- LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, Brazil; (R.A.B.); (A.L.); (E.F.L.); (E.J.L.)
| | - Eder João Lenardão
- LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, Brazil; (R.A.B.); (A.L.); (E.F.L.); (E.J.L.)
| | - Claudio Santi
- Group of Catalysis, Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences University of Perugia Via del Liceo 1, 06123 Perugia, Italy; (F.B.); (C.S.)
| | - Diego Alves
- LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, Brazil; (R.A.B.); (A.L.); (E.F.L.); (E.J.L.)
| |
Collapse
|
5
|
Ramírez H, Fernandez E, Rodrigues J, Mayora S, Martínez G, Celis C, De Sanctis JB, Mijares M, Charris J. Synthesis and antimalarial and anticancer evaluation of 7-chlorquinoline-4-thiazoleacetic derivatives containing aryl hydrazide moieties. Arch Pharm (Weinheim) 2021; 354:e2100002. [PMID: 33660349 DOI: 10.1002/ardp.202100002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/23/2022]
Abstract
Twelve 7-chloroquinoline derivatives were designed and synthesized using the principle of molecular hybridization through the coupling of 2-[2-(7-chloroquinolin-4-ylthio)-4-methylthiazol-5-yl]acetic acid 1 with various benzoyl hydrazines 2a-l. The synthetic compounds were tested as antimalarials. Some of them showed an efficient in vitro activity as inhibitors of β-hematin formation and an in vivo activity in a murine model, resulting in compounds 8 and 9 as the most active ones with IC50 values of 0.65 ± 0.09 and 0.64 ± 0.16 µM, respectively. The effects of the compounds on the cell viability, cell cycle, and apoptosis induction of A549 and MCF-7 cancer cell lines were also examined. Our data showed that compounds 6 and 12 were the most active agents, decreasing the cell viability of MCF-7 cells with IC50 values of 15.41 and 12.99 µM, respectively. None of the compounds analyzed significantly affected the viability of peripheral blood mononuclear cells. Also, significant induction of apoptosis was observed when both cancer cell lines were incubated with compounds 6 and 12. In MCF-7 cells, treatment with these compounds led to cell cycle arrest in the G0/G1 phase. The results obtained suggest that these structures may be useful in developing new therapies for malaria and cancer treatment.
Collapse
Affiliation(s)
- Hegira Ramírez
- Organic Synthesis Laboratory, Faculty of Pharmacy, Central University of Venezuela, Caracas, Venezuela.,Facultad de Medicina, Universidad de Las Américas, Quito, Ecuador
| | | | - Juan Rodrigues
- Departamento de Tecnología de Procesos Biológicos y Bioquímicos, División de Ciencias Biológicas, Universidad Simón Bolívar, Caracas, Venezuela
| | - Soriuska Mayora
- Biotechnology Unit, Faculty of Pharmacy, Central University of Venezuela, Caracas, Venezuela.,Institute of Immunology, Faculty of Medicine, Central University of Venezuela, Caracas, Venezuela
| | - Gricelis Martínez
- Institute of Immunology, Faculty of Medicine, Central University of Venezuela, Caracas, Venezuela
| | - Carmen Celis
- Biotechnology Unit, Faculty of Pharmacy, Central University of Venezuela, Caracas, Venezuela
| | - Juan B De Sanctis
- Institute of Immunology, Faculty of Medicine, Central University of Venezuela, Caracas, Venezuela.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Michael Mijares
- Biotechnology Unit, Faculty of Pharmacy, Central University of Venezuela, Caracas, Venezuela.,Institute of Immunology, Faculty of Medicine, Central University of Venezuela, Caracas, Venezuela
| | - Jaime Charris
- Organic Synthesis Laboratory, Faculty of Pharmacy, Central University of Venezuela, Caracas, Venezuela
| |
Collapse
|
6
|
Gomes CB, Balaguez RA, Larroza A, Smaniotto TA, Domingues M, Casaril AM, Silva MS, Rodrigues OED, Savegnago L, Alves D. Organocatalysis in the Synthesis of 1,2,3‐Triazoyl‐zidovudine Derivatives: Synthesis and Preliminary Antioxidant Activity. ChemistrySelect 2020. [DOI: 10.1002/slct.202003355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Carolina B. Gomes
- LASOL-CCQFA Universidade Federal de Pelotas - UFPel P.O. Box 354 96010-900 Pelotas RS Brazil
| | - Renata A. Balaguez
- LASOL-CCQFA Universidade Federal de Pelotas - UFPel P.O. Box 354 96010-900 Pelotas RS Brazil
| | - Allya Larroza
- LASOL-CCQFA Universidade Federal de Pelotas - UFPel P.O. Box 354 96010-900 Pelotas RS Brazil
| | - Thiago A. Smaniotto
- Programa de Pós-Graduação em Biotecnologia (PPGB) Universidade Federal de Pelotas - UFPel Pelotas RS Brazil
| | - Micaela Domingues
- Programa de Pós-Graduação em Biotecnologia (PPGB) Universidade Federal de Pelotas - UFPel Pelotas RS Brazil
| | - Angela M. Casaril
- Programa de Pós-Graduação em Biotecnologia (PPGB) Universidade Federal de Pelotas - UFPel Pelotas RS Brazil
| | - Márcio S. Silva
- LASOL-CCQFA Universidade Federal de Pelotas - UFPel P.O. Box 354 96010-900 Pelotas RS Brazil
| | - Oscar E. D. Rodrigues
- LabSelen-NanoBio - Departamento de Química Universidade Federal de Santa Maria UFSM 97115-900 Santa Maria RS Brazil
| | - Lucielli Savegnago
- Programa de Pós-Graduação em Biotecnologia (PPGB) Universidade Federal de Pelotas - UFPel Pelotas RS Brazil
| | - Diego Alves
- LASOL-CCQFA Universidade Federal de Pelotas - UFPel P.O. Box 354 96010-900 Pelotas RS Brazil
| |
Collapse
|
7
|
Costa GP, Bach MF, Moraes MC, Barcellos T, Lenardão EJ, Silva MS, Alves D. Sequential Organocatalytic Synthesis of [1,2,3]Triazolo[1,5‐
a
]quinolines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gabriel P. Costa
- LASOL – CCQFA – Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Mariana F. Bach
- LASOL – CCQFA – Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Maiara C. Moraes
- Laboratory of Biotechnology of Natural and Synthetic Products Universidade de Caxias do Sul Caxias do Sul, RS Brazil
| | - Thiago Barcellos
- Laboratory of Biotechnology of Natural and Synthetic Products Universidade de Caxias do Sul Caxias do Sul, RS Brazil
| | - Eder J. Lenardão
- LASOL – CCQFA – Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Márcio S. Silva
- LASOL – CCQFA – Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Diego Alves
- LASOL – CCQFA – Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| |
Collapse
|
8
|
Sonego MS, Segatto NV, Damé L, Fronza M, Gomes CB, Oliveira TL, Seixas FK, Savegnago L, Schachtschneider KM, Alves D, Collares T. 7-Chloroquinoline-1,2,3-triazoyl carboxamides induce cell cycle arrest and apoptosis in human bladder carcinoma cells. Invest New Drugs 2019; 38:1020-1030. [DOI: 10.1007/s10637-019-00861-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022]
|
9
|
Xu Z, Zhao SJ, Liu Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur J Med Chem 2019; 183:111700. [PMID: 31546197 DOI: 10.1016/j.ejmech.2019.111700] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Anticancer agents are critical for the cancer treatment, but side effects and the drug resistance associated with the currently used anticancer agents create an urgent need to explore novel drugs with low side effects and high efficacy. 1,2,3-Triazole is privileged building block in the discovery of new anticancer agents, and some of its derivatives have already been applied in clinics or under clinical trials for fighting against cancers. Hybrid molecules occupy an important position in cancer control, and hybridization of 1,2,3-triazole framework with other anticancer pharmacophores may provide valuable therapeutic intervention for the treatment of cancer, especially drug-resistant cancer. This review emphasizes the recent advances in 1,2,3-triazole-containing hybrids with anticancer potential, covering articles published between 2015 and 2019, and the structure-activity relationships, together with mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Zhi Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China.
| | - Shi-Jia Zhao
- Wuhan University of Science and Technology, Wuhan, PR China
| | - Yi Liu
- Wuhan University of Science and Technology, Wuhan, PR China.
| |
Collapse
|