1
|
ZENG X, XU X, KONG J, RONG C, SHE J, GUO W, SHI L, ZHAO D. Effect of Puerarin on EBI after SAH. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.45021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2025]
Affiliation(s)
- Xiangwu ZENG
- The Second People's Hospital of Zhangye City, China
| | - Xiuzhen XU
- The Second People's Hospital of Zhangye City, China
| | | | - Congxue RONG
- The Second People's Hospital of Zhangye City, China
| | - Jianhu SHE
- The Second People's Hospital of Zhangye City, China
| | - Wanliang GUO
- The Second People's Hospital of Zhangye City, China
| | - Lijuan SHI
- The Second People's Hospital of Zhangye City, China
| | - Dianfan ZHAO
- The Second People's Hospital of Zhangye City, China
| |
Collapse
|
2
|
Yu H, Wu Z, Wang X, Gao C, Liu R, Kang F, Dai M. Protective effects of combined treatment with mild hypothermia and edaravone against cerebral ischemia/reperfusion injury via oxidative stress and Nrf2 pathway regulation. Int J Oncol 2020; 57:500-508. [PMID: 32626935 PMCID: PMC7307586 DOI: 10.3892/ijo.2020.5077] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Mild hypothermia (MH) and edaravone (EDA) exert neuroprotective effects against cerebral ischemia/reperfusion (I/R) injury through activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. However, whether MH and EDA exert synergistic effects against cerebral I/R injury remains unknown. The aim of the present study was to investigate the effects and mechanism of action of MH in combination with EDA in cerebral I/R injury. A rat cerebral I/R injury model was constructed by middle cerebral artery occlusion (MCAO) followed by reperfusion, and the mice were treated by MH, EDA or the inhibitor of the Nrf2 signaling pathway brusatol (Bru). It was observed that mice treated by MCAO had higher neurological deficit scores and oxidative stress levels, and low spatial learning and memory capacity; moreover, the CA1 region of the hippocampi of the mice exhibited reduced neuronal density and viability, and reduced mitochondrial dysfunction. However, MH in combination with EDA reversed the effects of MCAO, which were blocked by Bru injection. The levels of glutathione (GSH), GSH peroxidase, catalase and superoxide dismutase in rat ischemic hemisphere tissues were reduced by Bru. Western blotting demonstrated that the combined treatment with MH and EDA promoted the nuclear localization of Nrf2, and increased the levels of NAD(P)H quinone oxidoreductase and heme oxygenase (HO)-1. In conclusion, MH combined with EDA exerted synergistic neuroprotective effects against cerebral I/R injury involving changes in the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Hang Yu
- Department of Critical Care Medicine, Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Zhidian Wu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Xiaozhi Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Chang Gao
- Department of Pathophysiology, Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Run Liu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Fuxin Kang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Mingming Dai
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
3
|
Cerebral Ischemic Postconditioning Plays a Neuroprotective Role through Regulation of Central and Peripheral Glutamate. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6316059. [PMID: 30112410 PMCID: PMC6077516 DOI: 10.1155/2018/6316059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/12/2018] [Indexed: 01/30/2023]
Abstract
Following cerebral ischemia/reperfusion (I/R) injury, a series of pathophysiological processes are stimulated in both the central nervous system (CNS) and the periphery, including, but not limited to, the peripheral immune and endocrine systems and underregulation of the neuroendocrine-immune network. Glutamate (Glu) is an important excitatory neurotransmitter in the CNS; its excitotoxicity following cerebral ischemia has been a focus of study for several decades. In addition, as a novel immunoregulator, Glu also regulates immune activity in both the CNS and periphery and may connect the CNS and periphery through regulation of the neuroendocrine-immune network. Ischemic postconditioning (IPostC) is powerful and activates various endogenous neuroprotective mechanisms following cerebral I/R, but only a few studies have focused on the mechanisms associated with Glu to date. Given that Glu plays an important and complex pathophysiological role, the understanding of Glu-related mechanisms of IPostC is an interesting area of research, which we review here.
Collapse
|
4
|
Yang GS, Zhou XY, An XF, Liu XJ, Zhang YJ, Yu D. Mild hypothermia inhibits the Notch 3 and Notch 4 activation and seizure after stroke in the rat model. Pathol Res Pract 2018; 214:1008-1016. [PMID: 29754932 DOI: 10.1016/j.prp.2018.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/20/2018] [Accepted: 05/01/2018] [Indexed: 12/18/2022]
Abstract
Ischemic brain injury is an important cause for seizure. Mild hypothermia of the brain or the whole body is an effective way to remit the post-stroke seizure. Our previous study revealed an implication of Notch 1 and 2 in the post-stroke seizure. This study further investigated the involvement of Notch 3 and 4 in post-stroke seizure and the effect of mild hypothermia on these two factors. A global cerebral ischemia (GCI) model was conducted in Sprague Dawley rats. Seizure activity was evaluated by the frequency of seizure attacks, seizure severity scores, and seizure discharges. Seizures were frequently occurred in the first and the second 24 h after GCI, however active whole-body cooling (mild hypothermia) and DAPT (Notch inhibitor) injection into the hippocampus, alone or in combination, alleviated seizure activity after GCI. Immunohistochemistry and Western blot assays revealed the up-regulation of Notch intracellular domain (NICD) 3 and 4 in the cerebral cortex and hippocampus following GCI, but mild hypothermia and DAPT inhibited the up-regulation of NICD 3 and 4. NF-κB, PPARα, PPARγ, cyclin D1, Sox2 and Pax6 are associated with the pathogenesis of diverse type of seizures. GCI induced NF-κB, cyclin D1, and Pax6 activity, but suppressed PPARγ. These effects of GCI were abolished by both mild hypothermia and DAPT treatment. This indicated the implication of Notch signaling in the effects of GCI. Collectively, mild hypothermia inhibits Notch 3 and Notch 4 activation and seizure after stroke in the rat model. This study adds to the further understanding of the pathogenesis of post-stroke seizures and the protective mechanism of mild hypothermia.
Collapse
Affiliation(s)
- Guo-Shuai Yang
- Department of Neurology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China.
| | - Xiao-Yan Zhou
- Department of Neurology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China
| | - Xue-Fang An
- Department of Neurology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China
| | - Xuan-Jun Liu
- Department of Neurology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China
| | - Yan-Jun Zhang
- Department of Neurology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China
| | - Dan Yu
- Department of Neurology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China
| |
Collapse
|