1
|
Zhao Y, Liu N, Zhang J, Zhao L. PCSK9i promoting the transformation of AS plaques into a stable plaque by targeting the miR-186-5p/Wipf2 and miR-375-3p/Pdk1/Yap1 in ApoE-/- mice. Front Med (Lausanne) 2024; 11:1284199. [PMID: 38596793 PMCID: PMC11002805 DOI: 10.3389/fmed.2024.1284199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/13/2024] [Indexed: 04/11/2024] Open
Abstract
Background Atherosclerosis (AS) is a multifaceted disease characterized by disruptions in lipid metabolism, vascular inflammation, and the involvement of diverse cellular constituents. Recent investigations have progressively underscored the role of microRNA (miR) dysregulation in cardiovascular diseases, notably AS. Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) can effectively reduce circulating levels of low-density lipoprotein cholesterol (LDL-C) and lipoprotein (a) [Lp (a)], potentially fostering a more enduring phenotype for AS plaques. However, the underlying mechanisms by which PCSK9i enhances plaque stability remain unclear. In this study, we used microarray and bioinformatics techniques to analyze the regulatory impacts on gene expression pertinent to AS, thereby unveiling potential mechanisms underlying the plaque-stabilizing attributes of PCSK9i. Methods ApoE-/- mice were randomly allocated into control, AS, PCSK9i, and Atorvastatin groups. The AS model was induced through a high-fat diet (HFD), succeeded by interventions: the PCSK9i group was subjected to subcutaneous SBC-115076 injections (8 mg/kg, twice weekly), and the Atorvastatin group received daily oral Atorvastatin (10 mg/kg) while on the HFD. Subsequent to the intervention phase, serum analysis, histological assessment using hematoxylin and eosin (H&E) and Oil Red O staining, microarray-centered miRNA analysis utilizing predictions from TargetScan and miRTarBase, and analyses using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were executed to illuminate potential pathways. Real-time fluorescence quantitative PCR (RT-qPCR) was employed to quantify the expression levels of target genes. Results In comparison to the control group, the AS group displayed a significant elevation in blood lipid levels. Both PCSK9i and Atorvastatin effectively attenuated blood lipid levels, with PCSK9i exhibiting a more pronounced lipid-lowering impact, particularly concerning TG and LDL-C levels. Over the course of AS progression, the expression levels of mmu-miR-134, mmu-miR-141-5p, mmu-miR-17-3p, mmu-miR-195-3p, mmu-miR-210, mmu-miR-33-5p, mmu-miR-410, mmu-miR-411-5p, mmu-miR-499, mmu-miR-672-5p, mmu-miR-675-3p, and mmu-miR-301b underwent dynamic fluctuations. PCSK9i significantly down-regulated the expression of mmu-miR-186-5p, mmu-miR-222, mmu-miR-375-3p, and mmu-miR-494-3p. Further enrichment analysis disclosed that mmu-miR-186-5p, mmu-miR-222, mmu-miR-375-3p, and mmu-miR-494-3p were functionally enriched for cardiovascular smooth muscle cell proliferation, migration, and regulation. RT-qPCR results manifested that, in comparison to the AS group, PCSK9i significantly upregulated the expression of Wipf2, Pdk1, and Yap1 (p < 0.05). Conclusion Aberrant miRNA expression may play a pivotal role in AS progression in murine models of AS. The subcutaneous administration of PCSK9i exerted anti-atherosclerotic effects by targeting the miR-186-5p/Wipf2 and miR-375-3p/Pdk1/Yap1 axes, thereby promoting the transition of AS plaques into a more stable form.
Collapse
Affiliation(s)
- Yanlong Zhao
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ning Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jifeng Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Lei Zhao
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Kong J, Liu L, Song L, Zhao R, Feng Y. MicroRNA miR-34a-5p inhibition restrains oxidative stress injury of macrophages by targeting MDM4. Vascular 2022; 31:608-618. [PMID: 35226569 DOI: 10.1177/17085381211069447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Atherosclerosis is a chronic cardiovascular disease associated with oxidative stress damage, which is caused by excessive oxidation of low-density lipoprotein (ox-LDL). The role of microRNA miR-34a-5p on oxidative stress in ox-LDL-treated macrophages was investigated in this study. METHODS Flow cytometry was prepared for assessing THP1-derived macrophage apoptosis. The protein and expression levels of miR-34a-5p and MDM4 were examined by Western blot and RT-qPCR, respectively. We also measured the levels of total cholesterol (TC) and triglyceride to determine the lipid accumulation. Subsequently, the activities of superoxide dismutase, malondialdehyde, and reactive oxygen species revealed the level of oxidative stress injury after miR-34a-5p and MDM4 knockdown. RESULTS After ox-LDL treatment, cell apoptosis of macrophages increased in a dose-dependent and time-dependent manner. With the increase of ox-LDL treatment and the prolongation of treatment time, the expression level of miR-34a-5p was upregulated. Next, interfering with miR-34a-5p inhibited lipid accumulation and oxidative stress injury in ox-LDL-stimulated macrophages. MDM4 was a target gene of miR-34a-5p and was upregulated in ox-LDL-stimulated macrophages. With the increase of ox-LDL treatment and the prolongation of treatment time, the expression level of MDM4 was downregulated. Importantly, MDM4 knockdown partially counteracted the inhibitory effect of miR-34a-5p on oxidative stress injury. CONCLUSION MicroRNA miR-34a-5p knockdown suppressed oxidative stress injury via MDM4 in ox-LDL-treated macrophages.
Collapse
Affiliation(s)
- Juan Kong
- Department of Cardiology, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang 157000, Heilongjiang, China
| | - Lei Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Mudanjiang Medical CollegeMudanjiang 157000, Heilongjiang, China
| | - Laixin Song
- Department of Neurosurgery, Second Affiliated Hospital of Mudanjiang Medical University, Changsha 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Department of Neurosurgery, The Second Affiliated Hospital of Mudanjiang Medical College,, Mudanjiang 157000, Heilongjiang, China.,Department of Neurosurgery, Department of Surgery, Mudanjiang Huimin Hospital, Mudanjiang157006, Heilongjiang, China
| | - Ruifeng Zhao
- Department of Interventional Therapy, The Second Affiliated Hospital of Mudanjiang Medical College,Mudanjiang 157000, Heilongjiang, China
| | - Ying Feng
- Department of Neurology, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang 157000, Heilongjiang, China
| |
Collapse
|
3
|
Interfering TUG1 Attenuates Cerebrovascular Endothelial Apoptosis and Inflammatory injury After Cerebral Ischemia/Reperfusion via TUG1/miR-410/FOXO3 ceRNA Axis. Neurotox Res 2021; 40:1-13. [PMID: 34851489 DOI: 10.1007/s12640-021-00446-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022]
Abstract
Background Emerging studies illustrate that long non-coding RNA TUG1 (TUG1) participates in neuron death after ischemia. However, the role of TUG1 in cerebral ischemia/reperfusion (CI/R) injury through cerebrovascular pathology was undetermined yet. Methods Expression of TUG1, miRNA-410-3p (miR-410), and forkhead box O3 (FOXO3) was detected by RT-qPCR and western blot. Neural function, apoptosis, and inflammatory damage were assessed by triphenyltetrazolium chloride straining, modified neurological severity score, fluorescence-activated cell sorting method, and western blot. The relationship among TUG1, miR-410, and FOXO3 was identified by dual-luciferase reporter assay, RNA pull-down, and RNA immunoprecipitation. Results TUG1 was upregulated in middle cerebral artery occlusion/reperfusion (MCAO/R) mice and oxygen-glucose deprivation/reoxygenation (OGD/R)-induced mouse brain microvascular endothelial cells (BMECs) in a certain of time-dependent manner. Blockage of TUG1 decreased infarct volume and increased neurological score in MCAO/R mice, accompanied with elevated Bcl-2 expression and declined expression of IL-1β, IL-6, TNF-α, Bax, and cleaved caspase 3. Abovementioned proteins were similarly expressed in OGD/R-induced BMECs with TUG1 knockdown, paralleled with diminished apoptosis rate. Either, miR-410 overexpression and FOXO3 interference could suppress OGD/R-induced inflammatory and apoptotic responses. Of note, TUG1 and FOXO3 are competing endogenous RNAs (ceRNAs) for miR-410 via target binding. Depleting miR-410 counteracted the role of TUG1 exhaustion, and reinforcing FOXO3 abated the effect of miR-410 overexpression. Conclusion Exhausting TUG1 could alleviate CI/R-induced inflammatory injury and apoptosis in brain tissues and BMECs via targeting miR-410/FOXO3 axis, suggesting an innovative perspective from cerebrovascular endothelial cells in the pathogenesis and treatment of CI/R.
Collapse
|
4
|
Kianmehr A, Qujeq D, Bagheri A, Mahrooz A. Oxidized LDL-regulated microRNAs for evaluating vascular endothelial function: molecular mechanisms and potential biomarker roles in atherosclerosis. Crit Rev Clin Lab Sci 2021; 59:40-53. [PMID: 34523391 DOI: 10.1080/10408363.2021.1974334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
As a simple monolayer, vascular endothelial cells can respond to physicochemical stimuli. In addition to promoting the formation of foam cells, oxidized low-density lipoprotein (ox-LDL) contributes to the atherosclerotic process through different mechanisms, including endothelial cell dysfunction. As conserved noncoding RNAs, microRNAs (miRNAs) naturally lie in different genomic positions and post-transcriptionally regulate the expression of many genes. They participate in integrated networks formed under stress to maintain cellular homeostasis, vascular inflammation, and metabolism. These small RNAs constitute therapeutic targets in different diseases, including atherosclerosis, and their role as biomarkers is crucial given their detectability even years before the emergence of diseases. This review was performed to investigate the role of ox-LDL-regulated miRNAs in atherosclerosis, their molecular mechanisms, and their application as biomarkers of vascular endothelial cell dysfunction.
Collapse
Affiliation(s)
- Anvarsadat Kianmehr
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abouzar Bagheri
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdolkarim Mahrooz
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Interfering microRNA-410 attenuates atherosclerosis via the HDAC1/KLF5/IKBα/NF-κB axis. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:646-657. [PMID: 33981482 PMCID: PMC8076652 DOI: 10.1016/j.omtn.2021.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/10/2021] [Indexed: 01/05/2023]
Abstract
MicroRNA (miR)-410 plays a potential role in the pathogenesis of atherosclerosis. The current study mainly focuses on the underlying mechanism of miR-410/histone deacetylase 1 (HDAC1)/KLF5/nuclear factor κB (NF-κB) inhibitor α (IKBα)/NF-κB axis in atherosclerosis. miR-410 expression was determined using quantitative real-time PCR in both mouse models of atherosclerosis and human umbilical endothelial cells (HUVECs) treated with oxidized low-density lipoprotein (ox-LDL). The study subsequently predicted regulators associated with miR-410 through bioinformatics, and their binding relation was further verified through dual luciferase reporter gene and RNA immunoprecipitation (RIP) assays, and how HDAC1 regulated KLF5 was tested through coimmunoprecipitation (coIP). In HUVECs, miR-410 and HDAC1 mRNA expression; HDAC1, KLF5, IKBα, p65, p-p65, VCAM-1, ICAM-1, and MCP-1 protein expression; and inflammatory cytokine expressions were detected using quantitative real-time PCR, western blot, and ELISA. The present study further tested cell functions by Cell Counting Kit-8 (CCK-8), flow cytometry, and the colony-formation assay. It was revealed that miR-410 could target HDAC1, whereas HDAC1 could target transcription factor KLF5, increasing IKBα expression, thus suppressing NF-κB in atherosclerosis. Furthermore, silencing miR-410 or overexpressing HDAC1 increased cell viability and suppressed apoptosis and an inflammatory reaction in HUVECs in atherosclerosis. Blocking miR-410 promotes HDAC1 expression and increases IKBα levels through KLF5 to suppress NF-κB, thus preventing development of atherosclerosis.
Collapse
|
6
|
Iop L. Toward the Effective Bioengineering of a Pathological Tissue for Cardiovascular Disease Modeling: Old Strategies and New Frontiers for Prevention, Diagnosis, and Therapy. Front Cardiovasc Med 2021; 7:591583. [PMID: 33748193 PMCID: PMC7969521 DOI: 10.3389/fcvm.2020.591583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases (CVDs) still represent the primary cause of mortality worldwide. Preclinical modeling by recapitulating human pathophysiology is fundamental to advance the comprehension of these diseases and propose effective strategies for their prevention, diagnosis, and treatment. In silico, in vivo, and in vitro models have been applied to dissect many cardiovascular pathologies. Computational and bioinformatic simulations allow developing algorithmic disease models considering all known variables and severity degrees of disease. In vivo studies based on small or large animals have a long tradition and largely contribute to the current treatment and management of CVDs. In vitro investigation with two-dimensional cell culture demonstrates its suitability to analyze the behavior of single, diseased cellular types. The introduction of induced pluripotent stem cell technology and the application of bioengineering principles raised the bar toward in vitro three-dimensional modeling by enabling the development of pathological tissue equivalents. This review article intends to describe the advantages and disadvantages of past and present modeling approaches applied to provide insights on some of the most relevant congenital and acquired CVDs, such as rhythm disturbances, bicuspid aortic valve, cardiac infections and autoimmunity, cardiovascular fibrosis, atherosclerosis, and calcific aortic valve stenosis.
Collapse
Affiliation(s)
- Laura Iop
- Department of Cardiac Thoracic Vascular Sciences, and Public Health, University of Padua Medical School, Padua, Italy
| |
Collapse
|
7
|
Liang H, Suo H, Wang Z, Feng W. Progress in the treatment of osteoarthritis with umbilical cord stem cells. Hum Cell 2020; 33:470-475. [PMID: 32447573 PMCID: PMC7324414 DOI: 10.1007/s13577-020-00377-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/14/2020] [Indexed: 01/12/2023]
Abstract
Osteoarthritis is a chronic degenerative joint disease with an incidence of 81% among people aged over 65 years in China. Osteoarthritis significantly decreases the quality of life of patients, causing physical and psychological damage and posing a serious economic burden. Clinical treatments for osteoarthritis include drug and surgical treatments. Drug treatment can successfully alleviate pain but not satisfactorily reverse joint damage, while surgical intervention is typically used to treat end-stage disease. Stem cells are multi-potential progenitor cells with self-renewal and multi-lineage differentiation abilities, and can differentiate into many kinds of cells, including chondrocytes. Umbilical cord stem cells, also known as Wharton’s jelly mesenchymal stem cells (WJ-MSCs), have become the first choice for cartilage regeneration engineering owing to their availability and convenience of collection. This article reviews the biological characterization of WJ-MSCs in recent years, their advantages compared with other stem cells, and their application in the treatment of osteoarthritis in animal experiments and clinical trials.
Collapse
Affiliation(s)
- Hanguang Liang
- Department of Bone and Joint, The First Hospital of Jilin University, 72 Xinmin Street, Changchun, 130021, Jilin, China
| | - Haiqiang Suo
- Department of Bone and Joint, The First Hospital of Jilin University, 72 Xinmin Street, Changchun, 130021, Jilin, China
| | - Zhiwei Wang
- Department of Bone and Joint, The First Hospital of Jilin University, 72 Xinmin Street, Changchun, 130021, Jilin, China
| | - Wei Feng
- Department of Bone and Joint, The First Hospital of Jilin University, 72 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
8
|
Hu Y, Xu R, He Y, Zhao Z, Mao X, Lin L, Hu J. Downregulation of microRNA‑106a‑5p alleviates ox‑LDL‑mediated endothelial cell injury by targeting STAT3. Mol Med Rep 2020; 22:783-791. [PMID: 32626987 PMCID: PMC7339537 DOI: 10.3892/mmr.2020.11147] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
The apoptosis of endothelial cells (ECs) induced by oxidized low-density lipoprotein (ox-LDL) is an important contributing factor in the pathogenesis of atherosclerosis. It has been reported that microRNA (miR)-106a-5p is overexpressed in atherosclerotic plaques and involved in angiogenesis. However, its role and underlying mechanisms in ox-LDL induced EC apoptosis remain to be fully understood. In the present study the expression of miR-106a-5p in human umbilical vein ECs (HUVECs) stimulated with ox-LDL was investigated using reverse transcription-quantitative PCR analysis. Cell viability and apoptosis were assessed by MTT assay and flow cytometry, respectively. Caspase-3 activity and reactive oxygen species (ROS) levels were determined by commercial kits. The interaction between miR-106a-5p and signal transducer and activator of transcription 3 (STAT3) mRNA was examined by luciferase reporter assay. It was found that ox-LDL treatment significantly increased the levels of miR-106a-5p in a dose-dependent manner in HUVECs. Moreover, these results demonstrated that ox-LDL treatment inhibited cell viability, promoted cell apoptosis, increased caspase-3 activity and ROS levels, whereas inhibition of miR-106a-5p reversed the effects of ox-LDL on HUVECs. In addition, it was shown that STAT3 is a direct target of miR-106a-5p in HUVECs, and silencing of STAT3 impaired the protective effects of miR-106a-5p inhibition on cell apoptosis and oxidative injury induced by ox-LDL. Collectively, these results indicated that miR-106a-5p participated in ox-LDL-stimulated apoptosis and oxidative injury in HUVECs by regulating STAT3. Thus, suggesting that miR-106a-5p/STAT3 may serve as a novel therapeutic target for atherosclerosis in the future.
Collapse
Affiliation(s)
- Ying Hu
- Department of Geriatrics, The Central Hospital of Xuhui District, Shanghai 200031, P.R. China
| | - Rong Xu
- Department of Geriatrics, The Central Hospital of Xuhui District, Shanghai 200031, P.R. China
| | - Yue He
- Department of Cardiology, The Central Hospital of Xuhui District, Shanghai 200031, P.R. China
| | - Zhibo Zhao
- Department of Cardiology, The Central Hospital of Xuhui District, Shanghai 200031, P.R. China
| | - Xudong Mao
- Department of Geriatrics, The Central Hospital of Xuhui District, Shanghai 200031, P.R. China
| | - Ling Lin
- Department of Geriatrics, The Central Hospital of Xuhui District, Shanghai 200031, P.R. China
| | - Jun Hu
- Department of Geriatrics, The Central Hospital of Xuhui District, Shanghai 200031, P.R. China
| |
Collapse
|
9
|
Yin Y, Ding L, Hou Y, Jiang H, Zhang J, Dai Z, Zhang G. Upregulating MicroRNA-410 or Downregulating Wnt-11 Increases Osteoblasts and Reduces Osteoclasts to Alleviate Osteonecrosis of the Femoral Head. NANOSCALE RESEARCH LETTERS 2019; 14:383. [PMID: 31853663 PMCID: PMC6920280 DOI: 10.1186/s11671-019-3221-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Little is known regarding the functional role of microRNA-410 (miR-410) in osteonecrosis of the femoral head (ONFH); hence, the aim of the present study was to investigate miR-410 targeting Wnt-11 to modulate the osteogenic and osteoclastic mechanism in the prevention of ONFH. METHODS Fifteen ONFH samples and 15 normal samples were gathered. The pathological changes of the femoral head, osteoblasts, and osteoclasts in the clinical samples were observed. The rat model of ONFH was injected with agomir-miR-410, Wnt-11-siRNA, or oe-Wnt-11. MiR-410; Wnt-11; osteoblast-related factors alkaline phosphatase (ALP), bone gamma-carboxyglutamate protein (BGLAP), and Collα1 expression; and osteoclast-related factors acid phosphatase 5 (ACP5), cathepsin K (CTSK), and MMP9, as well as Bcl-2 and Bax expression, were tested by RT-qPCR and western blot analysis. The osteogenic function index ALP and OCN together with osteoclast function index NTX-1 and CTX-1 in serum was tested by ELISA. RESULTS MiR-410, ALP, BGLAP, and Collα1 degraded as well as Wnt-11, ACP5, CTSK, and MMP9 enhanced in ONFH tissues of the clinical samples. Upregulated miR-410 and downregulated Wnt-11 enhanced bone mineral density (BMD) and BV/TV of rats, heightened the BMD level of the femoral shaft, femoral head, and spinal column, and also raised the serum calcium and phosphorus levels of rats, while restrained apoptosis of osteocytes, elevated OCN, ALP, BGLAP, and Collα1 expression and declined ACP5, CTSK, NTX-1, CTX-1, and MMP9 expression in rats. CONCLUSION This study suggested that upregulating miR-410 or downregulating Wnt-11 increases osteoblasts and reduces osteoclasts to alleviate the occurrence of ONFH. Thus, miR-410 may serve as a potential target for the treatment of ONFH.
Collapse
Affiliation(s)
- Yukun Yin
- Department of Traditional Chinese Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lixiang Ding
- Department of Spine, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China.
| | - Yu Hou
- Department of Spine, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China
| | - Haoran Jiang
- Department of Spine, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China
| | - Ji Zhang
- Department of Spine, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China
| | - Zhong Dai
- Department of General medicine, Huanxing Cancer Hospital, Chaoyang District, Beijing, 100005, People's Republic of China
| | - Genai Zhang
- Department of Spine, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China.
| |
Collapse
|
10
|
Grzywa TM, Klicka K, Rak B, Mehlich D, Garbicz F, Zieliński G, Maksymowicz M, Sajjad E, Włodarski PK. Lineage-dependent role of miR-410-3p as oncomiR in gonadotroph and corticotroph pituitary adenomas or tumor suppressor miR in somatotroph adenomas via MAPK, PTEN/AKT, and STAT3 signaling pathways. Endocrine 2019; 65:646-655. [PMID: 31165412 PMCID: PMC6717603 DOI: 10.1007/s12020-019-01960-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/16/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE miR-410-3p plays opposite roles in different cancers and may act as an oncomiR or tumor suppressor miR. The purpose of this study was to assess the role of miR-410-3p in somatotroph, gonadotroph, and corticotroph pituitary adenomas. METHODS Tissue samples were obtained from 75 patients with pituitary adenoma. miR-410-3p expression was assessed using qRT-PCR performed on RNA isolated from fresh frozen samples. In vitro experiments were performed on cell lines derived from somatotroph (GH3), gonadotroph (RC-4B/C), and corticotroph (AtT-20) pituitary tumors. Cells were transfected with synthetic mimic of miR-410-3p or non-targeting scrambled-miR control. Subsequently, proliferation assays and transwell invasion assays were performed. The expression of cyclin D1, E1, and B1 in cells after transfection was determined using qRT-PCR. The activation of MAPK, PTEN/AKT and STAT3 signaling pathways were assessed using western blot. RESULTS We have found that the level of expression of miR-410-3p differs in particular types of pituitary adenomas. miR-410-3p significantly upregulates proliferation and invasiveness of RC-4B/C and AtT-20 cells, while inhibiting GH3 cells. We observed that the levels of cyclin B1 upon transfection with miR-410-3p mimic were increased in RC-4B/C and AtT-20, yet decreased in GH3 cells. We have shown that miR-410-3p promoted the activation of MAPK, PTEN/AKT, and STAT3 signaling pathways in RC-4B/C and AtT-20 cells, but suppressed their activity in GH3 cells. CONCLUSIONS miR-410-3p acts as an oncomiR in gonadotroph and corticotroph adenoma cells, while as a tumor suppressor miR in somatotroph adenoma cells.
Collapse
Affiliation(s)
- Tomasz M Grzywa
- Center for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland
- Center for Preclinical Research, The Department of Histology and Embryology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland
| | - Klaudia Klicka
- Center for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland
- Center for Preclinical Research, The Department of Histology and Embryology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland
| | - Beata Rak
- Center for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland.
- Center for Preclinical Research, The Department of Histology and Embryology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland.
- Postgraduate School of Molecular Medicine, Warsaw, Poland.
- The Department of Internal Diseases and Endocrinology, Public Central Teaching Hospital, Medical University of Warsaw, 1A Banacha Str., 02-097, Warsaw, Poland.
| | - Dawid Mehlich
- Center for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland
- Center for Preclinical Research, The Department of Histology and Embryology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, 2C Banacha Str., 02-097, Warsaw, Poland
| | - Filip Garbicz
- Center for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland
- Center for Preclinical Research, The Department of Histology and Embryology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Warsaw, Poland
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, 14 Indiry Gandhi Str., 02-776, Warsaw, Poland
| | - Grzegorz Zieliński
- The Department of Neurosurgery, Military Institute of Medicine, 128 Szaserów Str., 04-141, Warsaw, Poland
| | - Maria Maksymowicz
- The Department of Pathology and Laboratory Diagnostics, M. Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, 5 Roentgena Str., 02-781, Warsaw, Poland
| | - Emir Sajjad
- Center for Preclinical Research, The Department of Histology and Embryology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland
- The Department of Neurosurgery, Military Institute of Medicine, 128 Szaserów Str., 04-141, Warsaw, Poland
| | - Paweł K Włodarski
- Center for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland
- Center for Preclinical Research, The Department of Histology and Embryology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland
| |
Collapse
|
11
|
Wu CY, Zhou ZF, Wang B, Ke ZP, Ge ZC, Zhang XJ. MicroRNA-328 ameliorates oxidized low-density lipoprotein-induced endothelial cells injury through targeting HMGB1 in atherosclerosis. J Cell Biochem 2019; 120:1643-1650. [PMID: 30324654 DOI: 10.1002/jcb.27469] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/18/2018] [Indexed: 01/24/2023]
Abstract
Atherosclerosis has been recognized as a chronic inflammatory disease, which can harden the vessel wall and narrow the arteries. MicroRNAs exhibit crucial roles in various diseases including atherosclerosis. However, so far, the role of miR-328 in atherosclerosis remains barely explored. Therefore, our study concentrated on the potential role of miR-328 in vascular endothelial cell injury during atherosclerosis. In our current study, we observed that oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) apoptosis and inhibited cell viability dose-dependently and time-dependently. In addition, indicated dosage of ox-LDL obviously triggered HUVECs inflammation and oxidative stress process. Then, it was found that miR-328 in HUVECs was reduced by ox-LDL. HUVECs apoptosis was greatly repressed and cell survival was significantly upregulated by overexpression of miR-328. Furthermore, mimics of miR-328 rescued cell inflammation and oxidative stress process induced by ox-LDL. Oppositely, inhibitors of miR-328 strongly promoted ox-LDL-induced endothelial cells injury in HUVECs. By using bioinformatics analysis, high-mobility group box-1 (HMGB1) was predicted as a downstream target of miR-328. HMGB1 has been reported to be involved in atherosclerosis development. The correlation between miR-328 and HMGB1 was validated in our current study. Taken these together, it was implied that miR-328 ameliorated ox-LDL-induced endothelial cells injury through targeting HMGB1 in atherosclerosis.
Collapse
Affiliation(s)
- Chun-Yang Wu
- Department of Cardiology, Yancheng Hospital Affiliated to Southeast University School of Medicine, Yancheng, China
| | - Zhao-Feng Zhou
- Department of Cardiology, Yancheng Hospital Affiliated to Southeast University School of Medicine, Yancheng, China
| | - Bin Wang
- Department of Cardiology, Yancheng Hospital Affiliated to Southeast University School of Medicine, Yancheng, China
| | - Zun-Ping Ke
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Zhong-Chun Ge
- Department of Cardiology, People's Hospital of Xuyi, Xuyi, China
| | - Xian-Jin Zhang
- Department of Intensive Care Unit, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
12
|
Liu J, Huang GQ, Ke ZP. Silence of long intergenic noncoding RNA HOTAIR ameliorates oxidative stress and inflammation response in ox-LDL-treated human macrophages by upregulating miR-330-5p. J Cell Physiol 2018; 234:5134-5142. [PMID: 30187491 DOI: 10.1002/jcp.27317] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022]
Abstract
Evidence of the involvement of long noncoding RNAs (lncRNAs) in atherosclerosis is growing but still not well characterized. Here, we concentrated on the biological roles of lncRNA HOX transcription antisense RNA (HOTAIR) in atherosclerosis. In our study, we found that oxidized low-density lipoprotein (ox-LDL) induced human macrophages THP-1 cells apoptosis dose dependently and time dependently. Meanwhile, HOTAIR was significantly increased in THP-1 cells treated with ox-LDL. Then, HOTAIR was modulated by infection of LV-short hairpin RNA (shRNA) and LV-HOTAIR into THP-1 cells. As displayed, CD36, Oil Red O staining levels, total cholesterol, triglyceride levels and dil-ox-LDL uptake rate were greatly repressed by the silence of HOTAIR while triggered by overexpression of HOTAIR. Moreover, knockdown of HOTAIR suppressed reactive oxygen species, malondialdehyde levels, increased superoxide dismutase activity and cell apoptosis were also restrained. Reversely, overexpression of HOTAIR exhibited an opposite phenomenon. In addition, interleukin 6 (IL-6), IL-1β, cyclo-oxygenase 2, and tumor necrosis factor α protein levels were significantly depressed by LV-shRNA) of HOTAIR while increased by upregulation of HOTAIR in THP-1 cells. By carrying out bioinformatics analysis, miR-330-5p was predicted as a target of HOTAIR and the correlation between them was validated in our current study. MiR-330-5p was greatly decreased in THP-1 cells incubated with ox-LDL and overexpression of miR-330-5p was able to inhibit oxidative stress and inflammation process. Taken together, it was implied that HOTAIR contributed to atherosclerosis development by downregulating miR-330-5p in human macrophages.
Collapse
Affiliation(s)
- Jie Liu
- Department of Intensive Care Unit, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Guang-Qing Huang
- Department of Intensive Care Unit, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zun-Ping Ke
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|