1
|
Cheng C, Wang Q, Huang Y, Xue Q, Wang Y, Wu P, Liao F, Miao C. Gandouling inhibits hepatic fibrosis in Wilson's disease through Wnt-1/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116445. [PMID: 37015279 DOI: 10.1016/j.jep.2023.116445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGIC SIGNIFICANCE Wilson's disease (WD) hepatic fibrosis is the result of chronic liver injury induced by Cu2+ deposition in the liver. Gandouling (GDL) is a hospital preparation of the First Affiliated Hospital of Anhui University of Chinese Medicine. Previous studies have found that GDL can play an anti-inflammatory, anti-oxidation, and promote Cu2+ excretion, which has a clear anti-WD effect. AIM OF THE STUDY We found that Wnt-1 was significantly up-regulated in the liver tissue of toxic-milk (TX) mouse in the WD gene mutant model, and the monomer components of GDL could combine well with Wnt-1. Therefore, in this work, we used RT-qPCR, Western blot, immunofluorescence, network pharmacology, molecular docking, and related methods to study the effects of GDL on hepatic stellate cell (HSC) activation and Wnt-1/β-catenin pathway in TX mice to clarify the effect of GDL on WD hepatic fibrosis. RESULTS GDL could alleviate hepatic fibrosis, improve liver function, and inhibit the activation of HSC in TX mice. Network pharmacology predicted that the Wnt-1/β-catenin was the target of GDL, and molecular dynamics further revealed that GDL has a good binding ability with Wnt-1 and inhibits the Wnt/β-catenin signaling pathway through Wnt-1. Furthermore, we found that GDL blocked the Wnt-1/β-catenin signaling pathway in the liver of TX mice in vivo. In vitro, serum containing GDL blocked the Cu2+ ion-induced Wnt-1/β-catenin signaling pathway in LX-2 cells. Therefore, GDL blocked the Wnt-1/β-catenin signaling pathway, inhibited HSC activation, and improved WD hepatic fibrosis by binding to Wnt-1. CONCLUSION GDL improves hepatic fibrosis in WD model mice by blocking the Wnt-1/β-catenin signaling pathway, and Wnt-1 may be a new target for the diagnosis and treatment of WD. This reveals a new mechanism of GDL against WD, and promotes the clinical promotion of GDL.
Collapse
Affiliation(s)
- Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Qiang Wang
- Department of Pharmaceutical Preparation, School of Life and Health Sciences, Anhui University of Science and Technology, China.
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Peng Wu
- Department of Anatomy, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Faxue Liao
- Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
2
|
New-Aaron M, Koganti SS, Ganesan M, Kanika S, Kumar V, Wang W, Makarov E, Kharbanda KK, Poluektova LY, Osna NA. Hepatocyte-Specific Triggering of Hepatic Stellate Cell Profibrotic Activation by Apoptotic Bodies: The Role of Hepatoma-Derived Growth Factor, HIV, and Ethanol. Int J Mol Sci 2023; 24:5346. [PMID: 36982417 PMCID: PMC10049507 DOI: 10.3390/ijms24065346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Liver disease is one of the leading comorbidities in HIV infection. The risk of liver fibrosis development is potentiated by alcohol abuse. In our previous studies, we reported that hepatocytes exposed to HIV and acetaldehyde undergo significant apoptosis, and the engulfment of apoptotic bodies (ABs) by hepatic stellate cells (HSC) potentiates their pro-fibrotic activation. However, in addition to hepatocytes, under the same conditions, ABs can be generated from liver-infiltrating immune cells. The goal of this study is to explore whether lymphocyte-derived ABs trigger HSC profibrotic activation as strongly as hepatocyte-derived ABs. ABs were generated from Huh7.5-CYP2E1 (RLW) cells and Jurkat cells treated with HIV+acetaldehyde and co-culture with HSC to induce their pro-fibrotic activation. ABs cargo was analyzed by proteomics. ABs generated from RLW, but not from Jurkat cells activated fibrogenic genes in HSC. This was driven by the expression of hepatocyte-specific proteins in ABs cargo. One of these proteins is Hepatocyte-Derived Growth Factor, for which suppression attenuates pro-fibrotic activation of HSC. In mice humanized with only immune cells but not human hepatocytes, infected with HIV and fed ethanol, liver fibrosis was not observed. We conclude that HIV+ABs of hepatocyte origin promote HSC activation, which potentially may lead to liver fibrosis progression.
Collapse
Affiliation(s)
- Moses New-Aaron
- Department of Environmental Health, Occupational Health and Toxicology, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Siva Sankar Koganti
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Sharma Kanika
- Department of Genetics Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Vikas Kumar
- Department of Genetics Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Weimin Wang
- Department of Genetics Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Edward Makarov
- Department of Genetics Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Natalia A. Osna
- Department of Environmental Health, Occupational Health and Toxicology, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA
| |
Collapse
|
3
|
Mahlapuu M, Caputo M, Xia Y, Cansby E. GCKIII kinases in lipotoxicity: Roles in NAFLD and beyond. Hepatol Commun 2022; 6:2613-2622. [PMID: 35641240 PMCID: PMC9512487 DOI: 10.1002/hep4.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is defined by excessive accumulation of lipid droplets within hepatocytes. The STE20-type kinases comprising the germinal center kinase III (GCKIII) subfamily - MST3, MST4, and STK25 - decorate intrahepatocellular lipid droplets and have recently emerged as critical regulators of the initiation and progression of NAFLD. While significant advancement has been made toward deciphering the role of GCKIII kinases in hepatic fat accumulation (i.e., steatosis) as well as the aggravation of NAFLD into its severe form nonalcoholic steatohepatitis (NASH), much remains to be resolved. This review provides a brief overview of the recent studies in patient cohorts, cultured human cells, and mouse models, which have characterized the function of MST3, MST4, and STK25 in the regulation of hepatic lipid accretion, meta-inflammation, and associated cell damage in the context of NAFLD/NASH. We also highlight the conflicting data and emphasize future research directions that are needed to advance our understanding of GCKIII kinases as potential targets in the therapy of NAFLD and its comorbidities. Conclusions: Several lines of evidence suggest that GCKIII proteins govern the susceptibility to hepatic lipotoxicity and that pharmacological inhibition of these kinases could mitigate NAFLD development and aggravation. Comprehensive characterization of the molecular mode-of-action of MST3, MST4, and STK25 in hepatocytes as well as extrahepatic tissues is important, especially in relation to their impact on carcinogenesis, to fully understand the efficacy as well as safety of GCKIII antagonism.
Collapse
Affiliation(s)
- Margit Mahlapuu
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Mara Caputo
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Ying Xia
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
4
|
Shi J, Sun J, Liu L, Shan T, Meng H, Yang T, Wang S, Wei T, Chen B, Ma Y, Wang Q, Wang H, Liu J, Wang L. P16ink4a overexpression ameliorates cardiac remodeling of mouse following myocardial infarction via CDK4/pRb pathway. Biochem Biophys Res Commun 2022; 595:62-68. [PMID: 35093641 DOI: 10.1016/j.bbrc.2022.01.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND P16ink4a can accumulate in senescent cells and can be induced by different oncogenic stimulations. These functions make p16ink4a a biomarker of senescence and cancer. However, the exact role of p16ink4a remains unclear in cardiovascular disease. This study was aimed to investigate the role of p16ink4a in cardiac remodeling after myocardial infarction (MI). METHODS In vivo, gain and loss of function experiments using p16ink4a overexpression and knockdown adenovirus were induced to determine the effect of p16ink4a on cardiac structure and function after MI. The in vitro effects of p16ink4a were evaluated by overexpression and knockdown adenovirus of p16ink4a on isolated neonatal mouse cardiac myocytes (NMCMs) and neonatal mouse cardiac fibroblasts (NMCFs). RESULTS Expression level of p16ink4a was increased after MI and enriched in the infarction area. In vivo, overexpression of p16ink4a protected, while knockdown of p16ink4a worsened cardiac function. In vitro, p16ink4a did not influence the hypertrophy of NMCMs. Overexpression of p16ink4a inhibited the proliferation and migration of NMCFs and reduced the level of collagen I and α-SMA. Consistently, knockdown of p16ink4a in vitro displayed the opposite effects. Further mechanism studies revealed that p16ink4a affected the expression level of cyclin-dependent kinase 4 (CDK4) and phosphorylation of retinoblastoma (pRb), which could be a potential pathway in regulating cardiac remodeling after MI. CONCLUSION Overexpression of 16ink4a in cardiac fibroblasts can ameliorate cardiac dysfunction and attenuate pathological cardiac remodeling in mice after MI by regulating the p16ink4a/CDK4/pRb pathway.
Collapse
Affiliation(s)
- Jianzhou Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiateng Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liu Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tiankai Shan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Haoyu Meng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tongtong Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Sibo Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tianwen Wei
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bingrui Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yao Ma
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qiming Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiabao Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
5
|
The mmu_circRNA_37492/hsa_circ_0012138 function as potential ceRNA to attenuate obstructive renal fibrosis. Cell Death Dis 2022; 13:207. [PMID: 35246505 PMCID: PMC8897503 DOI: 10.1038/s41419-022-04612-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/21/2022] [Accepted: 02/04/2022] [Indexed: 12/11/2022]
Abstract
Circular RNAs (circRNAs) are involved in the pathogenesis of certain renal diseases, however, the function and mechanism of them in renal fibrosis remains largely unknown. In the present study, RNA expression data in unilateral ureteral obstruction (UUO) kidneys was obtained from our previous circRNA Microarray and public Gene Expression Omnibus datasets to construct a ceRNA network. The effects of target circRNA as long as the homologous human circRNA on renal fibrosis was examined in vitro and in vivo. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was further performed among genes regulated by the human circRNA. We found that circRNA_37492, showing well connection degree in the ceRNA network, was abundant expression and high sequence conservation. We observed that the expression of circRNA_37492 was induced by the TGF-β1 or UUO in BUMPT cells and C57BL/6 mice, respectively. In vitro, cytoplasmic circRNA_37492 inhibited type I, III collagen and fibronectin deposition by sponging miR-7682-3p and then upregulated its downstream target Fgb. In vivo, overexpression of circRNA_37492 attenuated fibrotic lesions in the kidneys of UUO mice via targeting miR-7682-3p/Fgb axis. Furthermore, hsa_circ_0012138, homologous with circRNA_37492, may potentially target miR-651-5p/FGB axis in human renal fibrosis. Not only that, GO and KEGG enrichment revealed that hsa_circ_0012138-regulated genes were previously demonstrated to related to the fibrosis. In conclusion, we for the first time demonstrated that circRNA_37492 attenuated renal fibrosis via targeting miR-7682-3p/Fgb axis, and the homologous hsa_circRNA_0012138 was speculated as a possible ceRNA to regulate multiple gene expressions and involve in human renal fibrosis, suggesting that circRNA_37492/hsa_circ_0012138 may serve as potent therapy target for obstructive renal fibrosis disease.
Collapse
|
6
|
A Comprehensive Review of Natural Products against Liver Fibrosis: Flavonoids, Quinones, Lignans, Phenols, and Acids. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7171498. [PMID: 33082829 PMCID: PMC7556091 DOI: 10.1155/2020/7171498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022]
Abstract
Liver fibrosis resulting from continuous long-term hepatic damage represents a heavy burden worldwide. Liver fibrosis is recognized as a complicated pathogenic mechanism with extracellular matrix (ECM) accumulation and hepatic stellate cell (HSC) activation. A series of drugs demonstrate significant antifibrotic activity in vitro and in vivo. No specific agents with ideally clinical efficacy for liver fibrosis treatment have been developed. In this review, we summarized the antifibrotic effects and molecular mechanisms of 29 kinds of common natural products. The mechanism of these compounds is correlated with anti-inflammatory, antiapoptotic, and antifibrotic activities. Moreover, parenchymal hepatic cell survival, HSC deactivation, and ECM degradation by interfering with multiple targets and signaling pathways are also involved in the antifibrotic effects of these compounds. However, there remain two bottlenecks for clinical breakthroughs. The low bioavailability of natural products should be improved, and the combined application of two or more compounds should be investigated for more prominent pharmacological effects. In summary, exploration on natural products against liver fibrosis is becoming increasingly extensive. Therefore, natural products are potential resources for the development of agents to treat liver fibrosis.
Collapse
|
7
|
Lhuissier E, Aury-Landas J, Allas L, Boittin M, Boumediene K, Baugé C. Antiproliferative effect of the histone demethylase inhibitor GSK-J4 in chondrosarcomas. IUBMB Life 2019; 71:1711-1719. [PMID: 31241814 DOI: 10.1002/iub.2110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 12/22/2022]
Abstract
Chondrosarcoma (CS) is the second most common malignant bone sarcoma. Its treatment remains an issue, because this tumor is radio- and chemo-resistant. In the present study, we investigated the antitumoral potential of GSK-J4, a small molecule described as an inhibitor of histone demethylases UTX and JMJD3 (KDM6A and KDM6B), alone or in combination with cisplatin in CSs. Human CS-derived cell lines were treated with GSK-J4 in the presence or not of cisplatin. Survival curves were established and cell proliferation and cycle were evaluated by flow cytometry using dividing cell tracking technique utilizing carboxyfluorescein succinimidyl ester labeling, or DNA staining by propidium iodide. Apoptosis and senescence were also investigated. GSK-J4 decreased proliferation of CS cells. Additionally, it induced apoptosis in CH2879 and JJ012 cells, but not in SW1353 CSs. In addition, its association with cisplatin decreased cell proliferation more than drugs alone, whereas it did not increase apoptosis compared to cisplatin alone. Interestingly, GSK-J4 alone as well as in association with cisplatin did not affect chondrocyte survival or proliferation. In conclusion, this study suggests that demethylase inhibitors may be useful in improving therapy for CS in reducing its proliferation.
Collapse
Affiliation(s)
- Eva Lhuissier
- Normandie Univ, UNICAEN, EA7451 BioConnecT, Caen, France
| | | | - Lyess Allas
- Normandie Univ, UNICAEN, EA7451 BioConnecT, Caen, France
| | | | | | | |
Collapse
|