1
|
Shi JL, Lin CS, Gong MH, Cai ZQ. The emerging roles and mechanisms of FAM83H‑AS1 in cancer: Pathophysiology and therapeutic implications (Review). Oncol Lett 2025; 29:270. [PMID: 40235683 PMCID: PMC11998063 DOI: 10.3892/ol.2025.15016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/21/2025] [Indexed: 04/17/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are key regulators of gene expression at transcriptional and post-transcriptional levels and serve roles in tumour progression, cancer diagnosis and prognosis. Among these, family with sequence similarity 83 member H-antisense RNA 1 (FAM83H-AS1) is an oncogenic lncRNA with elevated expression in several malignancies. FAM83H-AS1 promotes cancer cell proliferation, inhibits apoptosis, enhances migration and contributes to chemoresistance through interactions with microRNA (miR)-136-5p, miR-545-3p, miR-15a miR-10a-5p and signalling pathways such as Wnt/β-catenin and Notch receptor. FAM83H-AS1 may be a promising biomarker for cancer diagnosis and prognosis. The present review summarises the expression, mechanism and potential clinical application of FAM83H-AS1 in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Jin-Long Shi
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Chen-Shi Lin
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Ming-Hui Gong
- Intensive Care Unit, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Zhi-Qiang Cai
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
2
|
Lin Y, Zhao W, Pu R, Lv Z, Xie H, Li Y, Zhang Z. Long non‑coding RNAs as diagnostic and prognostic biomarkers for colorectal cancer (Review). Oncol Lett 2024; 28:486. [PMID: 39185489 PMCID: PMC11342420 DOI: 10.3892/ol.2024.14619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the 3rd most common cancer globally and is the 2nd leading cause of cancer-related death. Owing to the lack of specific early symptoms and the limitations of existing early diagnostic methods, most patients with CRC are diagnosed at advanced stages. To overcome these challenges, researchers have increasingly focused on molecular biomarkers, with particular interest in long non-coding RNAs (lncRNAs). These non-protein-coding RNAs, which exceed 200 nucleotides in length, play critical roles in the development and progression of CRC. The stability and detectability of lncRNAs in the circulatory system make them promising candidate biomarkers. The analysis of circulating lncRNAs in peripheral blood represents a potential option for minimally invasive diagnostic tests based on liquid biopsy samples. The present review aimed to evaluate the efficacy of lncRNAs with altered expression levels in peripheral blood as diagnostic markers for CRC. Additionally, the clinical significance of lncRNAs as prognostic markers for this disease were summarized.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Ruonan Pu
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Ying Li
- Department of Ultrasonography, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| |
Collapse
|
3
|
Liu D, Shen M, Liu Z, Chen D, Pan Y, Zhang L, Xu X. SP1-induced circ_0017552 modulates colon cancer cell proliferation and apoptosis via up-regulation of NET1. Cancer Genet 2024; 286-287:1-10. [PMID: 38810361 DOI: 10.1016/j.cancergen.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/31/2024]
Abstract
Colon cancer (CC) is a common malignancy over the world and its morbidity and mortality significantly went up in China in recent years. Molecular functions in cancers have gradually been the pivot subject in cancer research. Neuroepithelial cell transforming 1 (NET1) was reported to contribute to prostate cancer and gastric cancer. Our study figured out that NET1 was overexpressed in CC cells. Then, loss-of-function assays revealed that NET1 facilitated CC cell proliferation and repressed CC cell apoptosis. Next, miR-338-3p was confirmed to target NET1. After that, we verified that circ_0017552 which originates from NET1 could positively modulate NET1 expression. Besides, circ_0017552 was a sponge of miR-338-3p. Rescue assays' results demonstrated that circ_0017552 could regulate CC cell proliferation and apoptosis through up-regulation of NET1. A transcription factor named Sp1 (SP1) was found to be present in circ_0017552. SP1 induced transcription of circ_0017552 to facilitate CC cell proliferation and inhibit CC cell apoptosis. In a word, SP1-induced circ_0017552 regulated CC cell proliferation and apoptosis through miR-338-3p/NET1 axis.
Collapse
Affiliation(s)
- Daocheng Liu
- Department of Anorectal Surgery, The First People's Hospital of Linping District, Hangzhou 311199, Zhejiang Province, PR China
| | - Minmin Shen
- Department of Anorectal Surgery, The First People's Hospital of Linping District, Hangzhou 311199, Zhejiang Province, PR China
| | - Zhaohui Liu
- Department of Anorectal Surgery, The First People's Hospital of Linping District, Hangzhou 311199, Zhejiang Province, PR China
| | - Dong Chen
- Department of Anorectal Surgery, The First People's Hospital of Linping District, Hangzhou 311199, Zhejiang Province, PR China
| | - Yuan Pan
- Department of Anorectal Surgery, The First People's Hospital of Linping District, Hangzhou 311199, Zhejiang Province, PR China
| | - Lei Zhang
- Department of Anorectal Surgery, The First People's Hospital of Linping District, Hangzhou 311199, Zhejiang Province, PR China
| | - Xiaoping Xu
- Department of Anorectal Surgery, The First People's Hospital of Linping District, Hangzhou 311199, Zhejiang Province, PR China.
| |
Collapse
|
4
|
Liu N, Zhang C, Zhang L. WTAP-Involved the m6A Modification of lncRNA FAM83H-AS1 Accelerates the Development of Gastric Cancer. Mol Biotechnol 2024; 66:1883-1893. [PMID: 37477820 DOI: 10.1007/s12033-023-00810-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/28/2023] [Indexed: 07/22/2023]
Abstract
The long noncoding RNA FAM83H-antisense RNA 1 (FAM83H-AS1) is involved in gastric cancer (GC) development. This study determined whether FAM83H-AS1 was regulated by N6-methyladenosine (m6A) modifications in GC. Real-time quantitative polymerase chain reaction was performed to determine the expression levels of FAM83H-AS1 and Wilms' tumor 1 associated protein (WTAP). The protein content of WTAP was evaluated using western blotting. To assess the m6A alterations in FAM83H-AS1, methylated RNA immunoprecipitation was performed to identify interactions between WTAP and FAM83H-AS1. Functionally, the proliferation, migration, and invasion of GC cells were measured using a Cell Counting Kit-8 and transwell assays, respectively. High expression levels of FAM83H-AS1 and WTAP were detected in GC samples and there was a positive correlation between them. In addition, WTAP mediates FAM83H-AS1 expression in an m6A-dependent manner. Further investigations indicated that WTAP silencing reversed the cancer-promoting role of FAM83H-AS1 overexpression in GC cell migration, proliferation, and invasion. Our results suggest that WTAP-mediated FAM83H-AS1 promotes GC development via m6A modification. Our findings provide new biomarkers for GC diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Nian Liu
- Department of Gastrointestinal Surgery, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Hongkong Rd. No. 168, Jianghan District, Wuhan, 430015, Hubei, China
| | - Chao Zhang
- Department of Gastrointestinal Surgery, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Hongkong Rd. No. 168, Jianghan District, Wuhan, 430015, Hubei, China
| | - Liang Zhang
- Department of Gastrointestinal Surgery, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Hongkong Rd. No. 168, Jianghan District, Wuhan, 430015, Hubei, China.
| |
Collapse
|
5
|
Lin Y, Zhao W, Lv Z, Xie H, Li Y, Zhang Z. The functions and mechanisms of long non-coding RNA in colorectal cancer. Front Oncol 2024; 14:1419972. [PMID: 39026978 PMCID: PMC11254705 DOI: 10.3389/fonc.2024.1419972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
CRC poses a significant challenge in the global health domain, with a high number of deaths attributed to this disease annually. If CRC is detected only in its advanced stages, the difficulty of treatment increases significantly. Therefore, biomarkers for the early detection of CRC play a crucial role in improving patient outcomes and increasing survival rates. The development of a reliable biomarker for early detection of CRC is particularly important for timely diagnosis and treatment. However, current methods for CRC detection, such as endoscopic examination, blood, and stool tests, have certain limitations and often only detect cases in the late stages. To overcome these constraints, researchers have turned their attention to molecular biomarkers, which are considered a promising approach to improving CRC detection. Non-invasive methods using biomarkers such as mRNA, circulating cell-free DNA, microRNA, LncRNA, and proteins can provide more reliable diagnostic information. These biomarkers can be found in blood, tissue, stool, and volatile organic compounds. Identifying molecular biomarkers with high sensitivity and specificity for the early and safe, economic, and easily measurable detection of CRC remains a significant challenge for researchers.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Ying Li
- Ultrasonography Department, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| |
Collapse
|
6
|
Zhu G, Zhang H, Xia M, Liu Y, Li M. EH domain-containing protein 2 (EHD2): Overview, biological function, and therapeutic potential. Cell Biochem Funct 2024; 42:e4016. [PMID: 38613224 DOI: 10.1002/cbf.4016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
EH domain-containing protein 2 (EHD2) is a member of the EHD protein family and is mainly located in the plasma membrane, but can also be found in the cytoplasm and endosomes. EHD2 is also a nuclear-cytoplasmic shuttle protein. After entering the cell nuclear, EHD2 acts as a corepressor of transcription to inhibit gene transcription. EHD2 regulates a series of biological processes. As a key regulator of endocytic transport, EHD2 is involved in the formation and maintenance of endosomal tubules and vesicles, which are critical for the intracellular transport of proteins and other substances. The N-terminal of EHD2 is attached to the cell membrane, while its C-terminal binds to the actin-binding protein. After binding, EHD2 connects with the actin cytoskeleton, forming the curvature of the membrane and promoting cell endocytosis. EHD2 is also associated with membrane protein trafficking and receptor signaling, as well as in glucose metabolism and lipid metabolism. In this review, we highlight the recent advances in the function of EHD2 in various cellular processes and its potential implications in human diseases such as cancer and metabolic disease. We also discussed the prospects for the future of EHD2. EHD2 has a broad prospect as a therapeutic target for a variety of diseases. Further research is needed to explore its mechanism, which could pave the way for the development of targeted treatments.
Collapse
Affiliation(s)
- Guoqiang Zhu
- Department of Urology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Hu Zhang
- Department of Urology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Min Xia
- Hengyang Medical School, Institute of Clinical Medicine, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Hengyang Medical School, Cancer Research Institute, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yiqi Liu
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Mingyong Li
- Department of Urology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| |
Collapse
|
7
|
Zhuang JY, Huang ZN, Weng ZJ, Liu MM, Huang XQ, He D, Shao CK, Dong M. Expression and clinical significance of hypoxia-induced long non-coding RNA TCONS_I2_00001955 in breast cancer. Breast Cancer 2024; 31:317-328. [PMID: 38310620 DOI: 10.1007/s12282-023-01540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been found to play important roles in occurrence, development, and metastasis of various tumors. We aimed to screen long non-coding RNAs (lncRNAs) that promote invasion and metastasis of breast cancer cells under hypoxia, and investigate the relationship between lncRNA expression and clinicopathological features and prognosis in invasive breast cancer. METHODS LncRNA microarray was used to screen the differentially expressed lncRNAs in MCF7, MDA-MB-231, and SKBR3 breast cancer cell lines cultured under normoxia and hypoxia, respectively. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to verify the microarray results. CCK8 and Transwell experiments were performed to identify the lncRNA that promote proliferation, migration, and invasion of breast cancer cells. Expression of the lncRNA and HIF-1α in invasive breast cancer was detected by RNAscope and immunohistochemistry, respectively. Correlation between the lncRNA expression and baseline characteristics was analyzed. Prognostic value of the lncRNA was evaluated using univariate and multivariate Cox regression. RESULTS Expression of lncRNA TCONS_I2_00001955 in all the three breast cancer cells was increased under hypoxia. Overexpression of TCONS_I2_00001955 significantly enhanced proliferation, migration, and invasion of SKBR3 cells. Positive expression of TCONS_I2_00001955 was associated with recurrence, metastasis, and high expression of HIF-1α (P < 0.05), and it was an independent risk factor for poor disease-free survival of breast cancer. CONCLUSION Hypoxia-induced lncRNA TCONS_I2_00001955 was associated with aggressive feature and poor prognosis of breast cancer.
Collapse
Affiliation(s)
- Jie-Yin Zhuang
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
- Department of Medical Oncology, The Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Ze-Nan Huang
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zi-Jin Weng
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Meng-Meng Liu
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiang-Qi Huang
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Dan He
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chun-Kui Shao
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Min Dong
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
8
|
Zhang M, Wu Y, Mou J, Yao Y, Wen P, Liu X, Shang S, Kang X, Tian J, Liu Y, Lv E, Wang L. The global landscape of immune-derived lncRNA signature in colorectal cancer. Heliyon 2024; 10:e25568. [PMID: 38420407 PMCID: PMC10900961 DOI: 10.1016/j.heliyon.2024.e25568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a highly heterogeneous cancer. This heterogeneity has an impact on the efficacy of immunotherapy. Long noncoding RNAs (lncRNAs) have been found to play regulatory functions in cancer immunity. However, the global landscape of immune-derived lncRNA signatures has not yet been explored in colorectal cancer. METHODS In this study, we applied DESeq2 to identify differentially expressed lncRNAs in colon cancer. Next, we performed an integrative analysis to globally identify immune-driven lncRNA markers in CRC, including immune-associated pathways, tumor immunogenomic features, tumor-infiltrating immune cells, immune checkpoints, microsatellite instability (MSI) and tumor mutation burden (TMB). RESULTS We also identified dysregulated lncRNAs, such as LINC01354 and LINC02257, and their clinical relevance in CRC. Our findings revealed that the differentially expressed lncRNAs were closely associated with immune pathways. In addition, we found that RP11-354P11.3 and RP11-545G3.1 had the highest association with the immunogenomic signature. As a result, these signatures could serve as markers to assess immunogenomic activity in CRC. Among the immune cells, resting mast cells and M0 macrophages had the highest association with lncRNAs in CRC. The AC006129.2 gene was significantly associated with several immune checkpoints, for example, programmed cell death protein 1 (PD-1) and B and T lymphocyte attenuator (BTLA). Therefore, the AC006129.2 gene could be targeted to regulate the condition of immune cells or immune checkpoints to enhance the efficacy of immunotherapy in CRC patients. Finally, we identified 15 immune-related lncRNA-generated open reading frames (ORFs) corresponding to 15 cancer immune epitopes. CONCLUSION In conclusion, we provided a genome-wide immune-driven lncRNA signature for CRC that might provide new insights into clinical applications and immunotherapy.
Collapse
Affiliation(s)
- Mengying Zhang
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yifei Wu
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingyi Mou
- Department of Clinical Medicine, School of 1st Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Yang Yao
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pengbo Wen
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Liu
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shipeng Shang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xingxing Kang
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaqi Tian
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Liu
- School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Enhui Lv
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Division of Microbiology and Immunology, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- School of Agriculture and Food Sustainability, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Jiang X, Lan Y, Zhang Y, Dong Y, Song T. LncRNA FAM83H-AS1 Contributes to the Radio-resistance and Proliferation in Liver Cancer through Stability FAM83H Protein. Recent Pat Anticancer Drug Discov 2024; 19:316-327. [PMID: 37132310 DOI: 10.2174/1574892818666230427164227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Liver cancer (LC) is one of China's most common malignant tumors, with a high mortality rate, ranking third leading cause of death after gastric and esophageal cancer. Recent patents propose the LncRNA FAM83H-AS1 has been verified to perform a crucial role in the progression of LC. LncRNA FAM83H-AS1 has been verified to perform a crucial role in the progression of LC. However, the concrete mechanism remains to be pending further investigation. OBJECTIVE This study aimed to explore the embedding mechanism of FAM83H-AS1 molecules in terms of radio sensitivity of LC and provide potentially effective therapeutic targets for LC therapy. METHODS Quantitative real-time PCR (qRT-PCR) was conducted to measure the transcription levels of genes. Proliferation was determined via CCK8 and colony formation assays. Western blot was carried out to detect the relative protein expression. A xenograft mouse model was constructed to investigate the effect of LncRNA FAM83H-AS1 on tumor growth and radio-sensitivity in vivo. RESULTS The levels of lncRNA FAM83H-AS1 were remarkably increased in LC. Knockdown of FAM83H-AS1 inhibited LC cell proliferation and colony survival fraction. Deletion of FAM83H-AS1 increased the sensitivity of LC cells to 4 Gy of X-ray radiation. In the xenograft model, radiotherapy combined with FAM83H-AS1 silencing significantly reduced tumor volume and weight. Overexpression of FAM83H reversed the effects of FAM83H-AS1 deletion on proliferation and colony survival fraction in LC cells. Moreover, the over-expressing of FAM83H also restored the tumor volume and weight reduction caused by the knockdown of FAM83H-AS1 or radiation in the xenograft model. CONCLUSION Knockdown of lncRNA FAM83H-AS1 inhibited LC growth and enhanced radiosensitivity in LC. It has the potential to be a promising target for LC therapy.
Collapse
Affiliation(s)
- Xiaocong Jiang
- Department of Radiotherapy Oncology, Huizhou Municipal Central Hospital, Huizhou, 516001, Guangdong, China
| | - Yuhong Lan
- Department of Radiotherapy Oncology, Huizhou Municipal Central Hospital, Huizhou, 516001, Guangdong, China
| | - Yingchun Zhang
- Department of Hepatology, The Sixth People's Hospital of Qingdao, Qingdao, 266033, Shandong, China
| | - Yuhong Dong
- Department of Hepatology, The Sixth People's Hospital of Qingdao, Qingdao, 266033, Shandong, China
| | - Ting Song
- Department of Hepatology, The Sixth People's Hospital of Qingdao, Qingdao, 266033, Shandong, China
| |
Collapse
|
10
|
Tang H, Dou Y, Meng Y, Lu Q, Liang L. AC125611.3 promotes the progression of colon cancer by recruiting DKC1 to stabilize CTNNB1. Arab J Gastroenterol 2023; 24:155-162. [PMID: 37684150 DOI: 10.1016/j.ajg.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/09/2022] [Accepted: 10/30/2022] [Indexed: 09/10/2023]
Abstract
BACKGROUND AND STUDY AIMS Previous studies have suggested that lncRNAs impact cancer progression. The lncRNA AC125611.3 (also referred to as RP11-161H23.5) is highly expressed in colon cancer but rarely studied; understanding its regulation may provide novel insights on treating colon cancer. MATERIALS AND METHODS qRT-PCR was performed to quantify RNAs. CCK-8 and EdU assays were performed to assess cell proliferation. Western blot analysis was used to detect levels of proteins related to cell apoptosis and EMT. Wound healing assay and Transwell invasion assay were conducted to evaluate cell migratory and invasive capabilities, respectively. Luciferase reporter assay, RIP assay, and pull-down assay were used to verify RNA-RNA and RNA-protein interactions. RESULTS AC125611.3 was highly overexpressed in colon cancer cells. AC125611.3 depletion curbed cell proliferative, invasive, migratory, and EMT processes while enhancing apoptosis. Furthermore, AC125611.3 activated the Wnt signaling pathway in colon cancer cells by regulating catenin beta-1 (CTNNB1). Moreover, AC125611.3 recruited dyskeratosis congenita 1 (DKC1) to stabilize CTNNB1. CONCLUSION AC125611.3 recruits DKC1 to stabilize CTNNB1 and activate Wnt signaling, thereby promoting the progression of colon cancer.
Collapse
Affiliation(s)
- Hanqing Tang
- School of Basic Medicine, Youjiang Medical University for Nationalities, No. 98 Chengxiang Road, Youjiang District, Baise 533000, Guangxi, China.
| | - Yuyu Dou
- School of Basic Medicine, Youjiang Medical University for Nationalities, No. 98 Chengxiang Road, Youjiang District, Baise 533000, Guangxi, China
| | - Yiliang Meng
- Department of Tumor, People's Hospital of Baise, Chengxiang Road, Youjiang District, Baise 533000, Guangxi, China
| | - Qinglan Lu
- Department of Tumor, People's Hospital of Baise, Chengxiang Road, Youjiang District, Baise 533000, Guangxi, China
| | - Lingling Liang
- School of Basic Medicine, Youjiang Medical University for Nationalities, No. 98 Chengxiang Road, Youjiang District, Baise 533000, Guangxi, China
| |
Collapse
|
11
|
Qu A, Wang Q, Chang Q, Liu J, Yang Y, Zhang X, Zhang Y, Zhang X, Wang H, Zhang Y. Prognostic and predictive value of a lncRNA signature in patients with stage II colon cancer. Sci Rep 2023; 13:1350. [PMID: 36693876 PMCID: PMC9873786 DOI: 10.1038/s41598-022-25852-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/06/2022] [Indexed: 01/26/2023] Open
Abstract
The current staging method is inadequate to identify high-risk recurrence patients with stage II colon cancer (CC). Using a systematic and comprehensive-biomarker discovery and validation method, we aimed to construct a lncRNA-based signature to improve the prognostic prediction of stage II CC. We identified 1,377 differently expressed lncRNAs by analyzing 16 paired stage II CC tumor tissue and adjacent normal mucosal tissue from the TCGA dataset. Subsequently, using a univariable and step multivariable Cox regression model, we trained an 11-lncRNA signature in the training cohort (n = 141), which could divide patients into high-risk and low-risk groups (AUC at 3 years = 0.801, 95% CI: 0.724-0.877; AUC at 5 years = 0.801, 95% CI: 0.718-0.885). Significantly, patients in the high-risk group had poorer recurrence-free survival (RFS) compared with the low-risk group (log-rank test, P < 0.001 in the training cohort). This lncRNA-based signature was further confirmed in the validation cohort (P < 0.001). Multivariate Cox regression and stratified survival analyses showed that the prognostic value of this signature was independent of other clinicopathological risk factors (CEA, T stage, and chemotherapy). Time-dependent receiver operating characteristic (ROC) analysis demonstrated that this signature had better prognostic ability than any other clinical risk factors or single lncRNAs (all P < 0.05). A nomogram was constructed for clinical use, which integrated both the lncRNA-based signature and clinical risk factors (CEA and T stage) and performed well in the calibration plots. Altogether, our lncRNA-based signature was an independent prognostic factor and possessed a stronger predictive power compared with the currently used clinicopathological risk factors when predicting the recurrence of patients with stage II CC. Collectively, this lncRNA-based signature might facilitate individualized treatment decisions and postoperative counseling, ultimately contributing to improved survival.
Collapse
Affiliation(s)
- Ailin Qu
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Wenhua Xi Road, Jinan, 250012, Shandong Province, People's Republic of China
| | - Qian Wang
- Department of Gastroenterology, Central Hospital, Shandong First Medical University, Jinan, 250011, Shandong Province, People's Republic of China
| | - Qing Chang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Wenhua Xi Road, Jinan, 250012, Shandong Province, People's Republic of China
| | - Jingkang Liu
- Department of Gynecology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Yongmei Yang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Wenhua Xi Road, Jinan, 250012, Shandong Province, People's Republic of China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Wenhua Xi Road, Jinan, 250012, Shandong Province, People's Republic of China
| | - Yanli Zhang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan, 250031, Shandong Province, People's Republic of China
| | - Xiaoshi Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Wenhua Xi Road, Jinan, 250012, Shandong Province, People's Republic of China
| | - Hongchun Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Wenhua Xi Road, Jinan, 250012, Shandong Province, People's Republic of China.
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Wenhua Xi Road, Jinan, 250012, Shandong Province, People's Republic of China.
| |
Collapse
|
12
|
Emam O, Wasfey EF, Hamdy NM. Notch-associated lncRNAs profiling circuiting epigenetic modification in colorectal cancer. Cancer Cell Int 2022; 22:316. [PMID: 36229883 PMCID: PMC9558410 DOI: 10.1186/s12935-022-02736-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most prevalent digestive cancers, ranking the 2nd cause of cancer-related fatality worldwide. The worldwide burden of CRC is predicted to rise by 60% by 2030. Environmental factors drive, first, inflammation and hence, cancer incidence increase. Main The Notch-signaling system is an evolutionarily conserved cascade, has role in the biological normal developmental processes as well as malignancies. Long non-coding RNAs (LncRNAs) have become major contributors in the advancement of cancer by serving as signal pathways regulators. They can control gene expression through post-translational changes, interactions with micro-RNAs or down-stream effector proteins. Recent emerging evidence has emphasized the role of lncRNAs in controlling Notch-signaling activity, regulating development of several cancers including CRC. Conclusion Notch-associated lncRNAs might be useful prognostic biomarkers or promising potential therapeutic targets for CRC treatment. Therefore, here-in we will focus on the role of “Notch-associated lncRNAs in CRC” highlighting “the impact of Notch-associated lncRNAs as player for cancer induction and/or progression.” Graphical Abstract ![]()
Collapse
Affiliation(s)
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
13
|
Wang Z, Cao Z, Wang Z. Significance of long non-coding RNA IFNG-AS1 in the progression and clinical prognosis in colon adenocarcinoma. Bioengineered 2021; 12:11342-11350. [PMID: 34872454 PMCID: PMC8810008 DOI: 10.1080/21655979.2021.2003944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Colon adenocarcinoma originates from adenoma and triggers serious healthy burdensome. lncRNAs develop a crucial role in the progression of colorectal carcinoma. In this study, we aimed to investigate the clinical value and potential role of lncRNA interferon (IFN) gamma antisense RNA 1 (IFNG-AS1) in colon adenocarcinoma. This study enrolled 95 colorectal adenoma patients, 128 colorectal adenocarcinoma patients, and 88 healthy individuals. The serum, tissue IFNG-AS1 expression levels were explored by real-time quantitative reverse transcription-PCR (RT-qPCR) assay. The receiver operator characteristic curve and Kaplan-Meier method were used to assess the clinical significance of IFNG-AS1. The chi-square test was used to analyze the association between tissue IFNG-AS1 and clinical characteristics. Functional experiments were conducted to delve into the effects of IFNG-AS1 on cellular activities (cell viability/migration/invasion). The target miRNA of IFNG-AS1 was also explored. IFNG-AS1 expression in both serum and tissue samples was elevated in patients. Serum IFNG-AS1 could diagnose colon adenoma and adenocarcinoma patients from the healthy control. High tissue IFNG-AS1 was correlated with several clinical characteristics and a shorter overall survival time. Silence of IFNG-AS1 could be available for repressing cellular capacities via the sponge to miR-627-3p. IFNG-AS1 was rised in colon adenocarcinoma and it was relevant to tumor size, TNM stage, and poor prognosis of patients. Beyond that, downregulated expression of IFNG-AS1 may repress malignant progression of colon adenocarcinoma by regulating miR-627-3p. IFNG-AS1 might be a potential diagnosis or prognosis predictor for colon adenocarcinoma patients.
Collapse
Affiliation(s)
- Zhaoshun Wang
- Department of Anorectal Surgery, Weifang People's Hospital, Shandong, China
| | - Zhongzheng Cao
- Department of Anorectal Surgery, Weifang People's Hospital, Shandong, China
| | - Zhen Wang
- Department of Anorectal Surgery, Zibo First Hospital, Shandong, China
| |
Collapse
|
14
|
Dashti F, Mirazimi SMA, Rabiei N, Fathazam R, Rabiei N, Piroozmand H, Vosough M, Rahimian N, Hamblin MR, Mirzaei H. The role of non-coding RNAs in chemotherapy for gastrointestinal cancers. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:892-926. [PMID: 34760336 PMCID: PMC8551789 DOI: 10.1016/j.omtn.2021.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, hepatic, esophageal, and pancreatic tumors, are responsible for large numbers of deaths around the world. Chemotherapy is the most common approach used to treat advanced GI cancer. However, chemoresistance has emerged as a critical challenge that prevents successful tumor elimination, leading to metastasis and recurrence. Chemoresistance mechanisms are complex, and many factors and pathways are involved. Among these factors, non-coding RNAs (ncRNAs) are critical regulators of GI tumor development and subsequently can induce resistance to chemotherapy. This occurs because ncRNAs can target multiple signaling pathways, affect downstream genes, and modulate proliferation, apoptosis, tumor cell migration, and autophagy. ncRNAs can also induce cancer stem cell features and affect the epithelial-mesenchymal transition. Thus, ncRNAs could possibly act as new targets in chemotherapy combinations to treat GI cancer and to predict treatment response.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
15
|
Mo S, Pei Z, Dai L. Construction of a Signature Composed of 14 Immune Genes to Judge the Prognosis and Immune Infiltration of Colon Cancer. Genet Test Mol Biomarkers 2021; 25:163-178. [PMID: 33734891 DOI: 10.1089/gtmb.2020.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Colon cancer (CC) is an immunogenic tumor and immune-targeting disease. In this study, we analyzed differentially expressed genes (DEGs) from the expression profile data in CC of The Cancer Genome Atlas. Methods and Results: Using univariate and multivariate Cox regression analysis, an immune gene-risk model containing 14 immune genes was established. Four hundred seventeen CC samples were divided into high-risk and low-risk groups, and Kaplan-Meier analysis revealed that high-risk score predicted poor survival. Meanwhile, we found the model was an independent prognostic factor for CC. Weighted gene coexpression network analysis was used to identify key gene modules between high- and low-risk groups. The methods of CIBERSORT and single-sample Gene Set Enrichment Analysis were used to evaluate the correlation between immune cells and our model. Conclusion: Taken together, our study suggested that the immune gene-related risk model may be developed as a potential tool in the prognostic assessment of CC.
Collapse
Affiliation(s)
- Shaocong Mo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, PR China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Zhenle Pei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Leijie Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| |
Collapse
|
16
|
Yuan X, Huang Y, Guo M, Hu X, Li P. Long non-coding RNA FAM83H-AS1 acts as a potential oncogenic driver in human ovarian cancer. J Ovarian Res 2021; 14:6. [PMID: 33413565 PMCID: PMC7792319 DOI: 10.1186/s13048-020-00756-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Ovarian cancer (OC) is one of the most aggressive women cancers with increasing incidence and mortality rates worldwide. Long non-coding RNAs (lncRNAs) could as major players in OC process. Although FAM83H antisense RNA1 (FAM83H-AS1) is demonstrated play an important roles in a many cancers, the detailed function and mechanism has not been reported in OC. RESULTS We integrated multiple kinds of bioinformatics approaches and experiments validated method to evaluate functions of FAM83H-AS1 in OC. Some differential expressed lncRNAs were identified between OC and normal control tissues. FAM83H-AS1 was one of most differentially expressed lncRNAs and up-regulated in multiple cancer types. Specially, expression of FAM83H-AS1 was higher in OC and showed difference in diverse stages. High FAM83H-AS1 expression is associated with worse pan-cancer and OC outcomes. FAM83H-AS1-centric network including lncRNA-miRNA, lncRNA-protein and lncRNA-mRNA ceRNA network were constructed to infer the function and mechanism of FAM83H-AS1. There were two methylation sites including cg01399317 and cg20519035 located at FAM83H-AS1. The methylation level of cg01399317 was correlated with gene expression of FAM83H-AS1. The expression level of FAM83H-AS1 was correlated with infiltration level of immune cell including macrophage, neutrphil and dendritic cell in OC patients. Lastly, qRT-PCR showed that the expression of FAM83H-AS1 was higher in OC tissues than normal control tissues. CONCLUSION Collectively, these results indicated that FAM83H-AS1 may act as an oncogenic driver and it may be a potential therapy target in OC.
Collapse
Affiliation(s)
- Xiaolei Yuan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081 Hei Longjiang Province China
| | - Ying Huang
- Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081 Hei Longjiang Province China
| | - Man Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081 Hei Longjiang Province China
| | - Xiaowei Hu
- Medical ward 7, Cancer Hospital Affiliated to Harbin Medical University, 150 Haping Road, Nangang District, Harbin, 150081 Hei Longjiang Province China
| | - Peiling Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081 Hei Longjiang Province China
| |
Collapse
|
17
|
Wang Y, Yang L, Dong X, Yang X, Zhang X, Liu Z, Zhao X, Wen T. Overexpression of NNT-AS1 Activates TGF- β Signaling to Decrease Tumor CD4 Lymphocyte Infiltration in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8216541. [PMID: 33426064 PMCID: PMC7775131 DOI: 10.1155/2020/8216541] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Nicotinamide nucleotide transhydrogenase-antisense RNA1 (NNT-AS1) is a long noncoding RNA (lncRNA) that has been shown to be overexpressed in hepatocellular carcinoma (HCC). However, the molecular mechanism involving NNT-AS1 in HCC remains to be extensively investigated. The activation of TGF-β signaling inhibits tumor-infiltrating lymphocytes (TILs) and results in tumor immune evasion. We thus planned to explore the mechanism by which NNT-AS1 activates the TGF-β signaling pathway and inhibits TILs in HCC. High levels of NNT-AS1 were detected in HCC tissues by both RNAscope and real-time quantitative PCR (RT-qPCR) assays. The levels of proteins involved in TGF-β signaling and those of CD4 T lymphocytes were quantified by immunohistochemistry (IHC). HCC cell lines (HepG2 and Huh7) were used to explore the effects of NNT-AS1 on TGF-β signaling activation. In these analyses, RNAscope detection demonstrated that NNT-AS1 levels were significantly increased in HCC cancer tissues (P = 0.0001). In addition, the elevated NNT-AS1 levels in cancer tissue were further confirmed by RT-qPCR analysis of HCC cancer tissues (n = 64) and normal tissues (n = 26) (P = 0.0003). Importantly, the overall survival time of HCC patients who exhibited higher levels of NNT-AS1 expression was significantly shorter than that of HCC patients who had lower levels of NNT-AS1 expression (P = 0.0402). Further mechanistic investigation indicated that NNT-AS1 inhibition significantly decreased the levels of TGF-β, TGFBR1, and SMAD5 in HCC cells. In HCC tissues, IHC detection showed that relatively high NNT-AS1 levels were associated with a reduction in infiltrated CD4 lymphocyte numbers. In conclusion, this research identifies a novel mechanism by which NNT-AS1 impairs CD4 T cell infiltration via activation of the TGF-β signaling pathway in HCC.
Collapse
Affiliation(s)
- Yakun Wang
- Medical Research Center, Beijing Chao-yang Hospital, Capital Medical University, China
| | - Lei Yang
- Medical Research Center, Beijing Chao-yang Hospital, Capital Medical University, China
| | - Xichen Dong
- Medical Research Center, Beijing Chao-yang Hospital, Capital Medical University, China
| | - Xin Yang
- Pathology Department, Beijing Cancer Hospital & Beijing Institute for Cancer Research, Beijing 100142, China
| | - Xinxue Zhang
- Hepatobiliary Surgery Department, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhe Liu
- Hepatobiliary Surgery Department, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xin Zhao
- Hepatobiliary Surgery Department, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Tao Wen
- Medical Research Center, Beijing Chao-yang Hospital, Capital Medical University, China
| |
Collapse
|
18
|
Jiang X, Chen D. LncRNA FAM83H-AS1 maintains intervertebral disc tissue homeostasis and attenuates inflammation-related pain via promoting nucleus pulposus cell growth through miR-22-3p inhibition. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1518. [PMID: 33313263 PMCID: PMC7729348 DOI: 10.21037/atm-20-7056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Intervertebral disc degeneration (IVDD) is regarded as the leading cause of low back pain, resulting in disability and a heavy burden on public health. Several studies have unveiled that long noncoding RNAs (lncRNAs) play a key role in the pathogenesis and progression of IVDD. In this study, we aimed to investigate the biological function and latent molecular mechanism of the lncRNA FAM83H antisense RNA 1 (FAM83H-AS1) in IVDD development. Methods Firstly, we established an IVDD model in rats using advanced glycation end products (AGEs) intradiscal injection. Subsequently, gain-of-function assays were conducted to investigate the role of FAM83H-AS1 in the progression of IVDD. Bioinformatics analysis, RNA pull down assay and rescue experiments were employed to shed light on the molecular mechanism underlying FAM83H-AS1 involving in IVDD. Results Our findings verified that AGEs treatment aggravated IVDD damage, and FAM83H-AS1 was downregulated in the IVDD group. Additionally, overexpression of FAM83H-AS1 contributed to the growth of nucleus pulposus (NP) cells and ameliorated IVDD injury. It was revealed that FAM83H-AS1 possessed the speculated binding sites of miR-22-3p. More importantly, we confirmed that FAM83H-AS1 functioned as a sponge of miR-22-3p in IVDD. Lastly, we demonstrated that miR-22-3p mediated the impact of FAM83H-AS1 on cell proliferation, ECM degradation, and inflammation. Conclusions Our study indicated that FAM83H-AS1 relieved IVDD deterioration through sponging miR-22-3p, and provides novel insights into the mechanisms underlying FAM83H-AS1 in IVDD progression.
Collapse
Affiliation(s)
- Xin Jiang
- Orthopaedics Department, Chinese-Japanese Friendship Hospital, Beijing, China
| | - Dong Chen
- Orthopaedics Department, Chinese-Japanese Friendship Hospital, Beijing, China
| |
Collapse
|
19
|
Chen S, Shen X. Long noncoding RNAs: functions and mechanisms in colon cancer. Mol Cancer 2020; 19:167. [PMID: 33246471 PMCID: PMC7697375 DOI: 10.1186/s12943-020-01287-2] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022] Open
Abstract
Evidence indicates that long non-coding RNAs (lncRNAs) play a crucial role in the carcinogenesis and progression of a wide variety of human malignancies including colon cancer. In this review, we describe the functions and mechanisms of lncRNAs involved in colon oncogenesis, such as HOTAIR, PVT1, H19, MALAT1, SNHG1, SNHG7, SNHG15, TUG1, XIST, ROR and ZEB1-AS1. We summarize the roles of lncRNAs in regulating cell proliferation, cell apoptotic death, the cell cycle, cell migrative and invasive ability, epithelial-mesenchymal transition (EMT), cancer stem cells and drug resistance in colon cancer. In addition, we briefly highlight the functions of circRNAs in colon tumorigenesis and progression, including circPPP1R12A, circPIP5K1A, circCTIC1, circ_0001313, circRNA_104916 and circRNA-ACAP2. This review provides the rationale for anticancer therapy via modulation of lncRNAs and circular RNAs (circRNAs) in colon carcinoma.
Collapse
Affiliation(s)
- Sian Chen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, No 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, No 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
20
|
El-Ashmawy NE, Al-Ashmawy GM, Hamouda SM. Long non-coding RNA FAM83H-AS1 as an emerging marker for diagnosis, prognosis and therapeutic targeting of cancer. Cell Biochem Funct 2020; 39:350-356. [PMID: 33159470 DOI: 10.1002/cbf.3601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/12/2020] [Accepted: 10/24/2020] [Indexed: 12/24/2022]
Abstract
Incidence and mortality rates of cancer continue to increase greatly despite the improved diagnostic and therapeutic methods. Based on GLOBOCAN estimates, the numbers of new cancer cases reported in 2018 were ~18.1 million, while the numbers of cancer mortalities were ~9.6 million. It remains difficult to diagnose most cancer patients at early stages. Although cancer therapy market is rapidly evolving, the effectiveness of therapy is still inadequate. Therefore, exploring new biomarkers for diagnosis, prognosis and treatment is essential for cancer management. Long non-coding RNAs (lncRNAs) are unique regulatory molecules that control several cellular processes and are implicated in diverse human diseases including cancer. LncRNAs could serve as potential biomarkers for cancer patients to aid diagnosis and determine prognosis. In addition, numerous lncRNAs have proved their ability to predict response to cancer treatment. FAM83H antisense RNA 1 (FAM83H-AS1) is among those highly dysregulated lncRNAs in cancer. FAM83H-AS1 was demonstrated to participate in the progression of different malignancies and also shown to play a vital role in diagnosis, prognosis and treatment. Here, we analyse recent studies concerning the oncogenic role and molecular mechanisms of lncRNA FAM83H-AS1 in the following cancer types: bladder, breast, lung, hepatocellular, colorectal, gastric, pancreatic, ovarian, cervical cancer as well as glioma.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ghada M Al-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sara M Hamouda
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
21
|
Yang Q, Wang J, Zhong P, Mou T, Hua H, Liu P, Xie F. The clinical prognostic value of lncRNA FAM83H-AS1 in cancer patients: a meta-analysis. Cancer Cell Int 2020; 20:72. [PMID: 32165862 PMCID: PMC7059312 DOI: 10.1186/s12935-020-1148-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Background Family with sequence similarity 83 member H antisense RNA 1 (FAM83H-AS1) is a novel long non-coding RNA. Increasing studies have reported that FAM83H-AS1 is abnormally expressed in a variety of tumors and is associated with poor outcome. However, the clinical prognostic significance of lncRNA FAM83H-AS1 in tumors is not completely known. Methods In this meta-analysis, literature was collected up until February 5, 2020 through multifarious retrieval strategies by searching through electronic databases of PubMed, Cochrane Library, EMBASE, Medline, Web of Science, CNKI, Weipu, and Wanfang. A total of 14 studies that met the inclusion criteria with relevant clinical data and prognostic information were included in the meta-analysis. Results The combined results revealed that high expression of FAM83H-AS1 was associated with poor overall survival (OS) (HR = 1.63, 95% CI 1.24–2.14, P = 0.0004) in a variety of cancers. Additionally, upregulated FAM83H-AS1 expression was significantly correlated with tumor TNM stage (III/IV vs. I/II, OR = 2.40, 95% CI 1.36–4.23, P = 0.003) and lymph node metastasis (positive vs. negative, OR = 1.70, 95% CI 1.14–2.52, P = 0.008) in patients with cancer. Conclusions Our results of this meta-analysis indicated that elevated FAM83H-AS1 expression could predict poor prognosis in patients with cancer and suggested that FAM83H-AS1 might serve as a novel biomarker for cancer.
Collapse
Affiliation(s)
- Qin Yang
- Department of Gastroenterology, The First People's Hospital of Neijiang, Neijiang, Sichuan China
| | - Jie Wang
- Department of Hepatic-Biliary-Pancreatic Surgery, The First People's Hospital of Neijiang, No. 31, Tuozhong Lane, Jiaotong Road, Neijiang, 641000 Sichuan China
| | - Pingyong Zhong
- Department of Hepatic-Biliary-Pancreatic Surgery, The First People's Hospital of Neijiang, No. 31, Tuozhong Lane, Jiaotong Road, Neijiang, 641000 Sichuan China
| | - Tinggang Mou
- Department of Hepatic-Biliary-Pancreatic Surgery, The First People's Hospital of Neijiang, No. 31, Tuozhong Lane, Jiaotong Road, Neijiang, 641000 Sichuan China
| | - Hao Hua
- Department of Hepatic-Biliary-Pancreatic Surgery, The First People's Hospital of Neijiang, No. 31, Tuozhong Lane, Jiaotong Road, Neijiang, 641000 Sichuan China
| | - Pan Liu
- Department of Hepatic-Biliary-Pancreatic Surgery, The First People's Hospital of Neijiang, No. 31, Tuozhong Lane, Jiaotong Road, Neijiang, 641000 Sichuan China
| | - Fei Xie
- Department of Hepatic-Biliary-Pancreatic Surgery, The First People's Hospital of Neijiang, No. 31, Tuozhong Lane, Jiaotong Road, Neijiang, 641000 Sichuan China
| |
Collapse
|
22
|
Silence of FAM83H-AS1 promotes chemosensitivity of gastric cancer through Wnt/β-catenin signaling pathway. Biomed Pharmacother 2020; 125:109961. [PMID: 32028241 DOI: 10.1016/j.biopha.2020.109961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is a malignant tumor originated from the epithelium of gastric mucosa, its incidence is second only to lung cancer in China. Chemotherapy is one of the most effective methods to treat GC, but some patients are insensitive to chemotherapeutic drugs, leading to chemotherapy failure. In this study, the expression of FAM83H-AS1 was up-regulated in GC tissues and cell lines, and was related to differentiation, invasion depth and chemotherapy insensitivity of GC patients. FAM83H-AS1 was high-expressed in chemoresistant GC tissues and cell line (SGC7901/R), and silence of FAM83H-AS1 sensitized SGC7901/R cells to cisplatin (CDDP) and 5-fluorouracil (5-FU). In addition, silence of FAM83H-AS1 could inactivate Wnt/β-catenin signaling pathway in SGC7901/R cells. The activating of Wnt/β-catenin signaling pathway reversed the promoting effect of FAM83H-AS1 silence on chemotherapy sensitivity, which meant Wnt/β-catenin signaling pathway mediated the regulation of FAM83H-AS1 on chemotherapy sensitivity in SGC7901/R cells. In conclusion, FAM83H-AS1 is related with the CDDP and 5-FU insensitivity of GC patients, silence of FAM83H-AS1 promotes chemosensitivity of GC through Wnt/β-catenin signaling pathway.
Collapse
|