1
|
Batool A, Kopp I, Kubeil M, Bachmann M, Andrews PC, Stephan H. Targeted bismuth-based materials for cancer. Dalton Trans 2025; 54:5614-5639. [PMID: 40040450 DOI: 10.1039/d5dt00163c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The use of bismuth and its compounds in biomedicine has developed rapidly in recent years. Due to their unique properties, there are great opportunities for the development of new non-invasive strategies for the early diagnosis and effective treatment of cancers. This perspective highlights key fabrication methods to generate well-defined and clinically relevant bismuth materials of varying characteristics. On the one hand, this opens up a wide range of possibilities for unimodal and multimodal imaging. On the other hand, effective treatment strategies, which are increasingly based on combinatorial therapies, are given a great deal of attention. One of the biggest challenges remains the selective tumour targeting, whether active or passive. Here we present an overview on new developments of bismuth based materials moving forward from a simple enrichment at the tumour site via uptake by the mononuclear phagocytic system (MPS) to a more active tumour specific targeting via covalent modification with tumour-seeking molecules based on either small or antibody-derived molecules.
Collapse
Affiliation(s)
- Amna Batool
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Ina Kopp
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| |
Collapse
|
2
|
Hu M, Yuan L, Zhu J. The Dual Role of NRF2 in Colorectal Cancer: Targeting NRF2 as a Potential Therapeutic Approach. J Inflamm Res 2024; 17:5985-6004. [PMID: 39247839 PMCID: PMC11380863 DOI: 10.2147/jir.s479794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Colorectal cancer (CRC), as the third most common bisexual cancer worldwide, requires urgent research on its underlying mechanisms and intervention methods. NRF2 is an important transcription factor involved in the regulation of redox homeostasis, protein degradation, DNA repair, and other cancer processes, playing an important role in cancer. In recent years, the complex role of NRF2 in CRC has been continuously revealed: on the one hand, it exhibits a chemopreventive effect on cancer by protecting normal cells from oxidative stress, and on the other hand, it also exhibits a protective effect on malignant cells. Therefore, this article explores the dual role of NRF2 and its related signaling pathways in CRC, including their chemical protective properties and promoting effects in the occurrence, development, metastasis, and chemotherapy resistance of CRC. In addition, this article focuses on exploring the regulation of NRF2 in CRC ferroptosis, as well as NRF2 drug modulators (activators and inhibitors) targeting CRC, including natural products, compounds, and traditional Chinese medicine formulations.
Collapse
Affiliation(s)
- Mengyun Hu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lingling Yuan
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jie Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Oncology Department II, Chengdu, People's Republic of China
| |
Collapse
|
3
|
Yuan L, Wang Y, Li N, Yang X, Sun X, Tian H, Zhang Y. Mechanism of Action and Therapeutic Implications of Nrf2/HO-1 in Inflammatory Bowel Disease. Antioxidants (Basel) 2024; 13:1012. [PMID: 39199256 PMCID: PMC11351392 DOI: 10.3390/antiox13081012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress (OS) is a key factor in the generation of various pathophysiological conditions. Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) is a major transcriptional regulator of antioxidant reactions. Heme oxygenase-1 (HO-1), a gene regulated by Nrf2, is one of the most critical cytoprotective molecules. In recent years, Nrf2/HO-1 has received widespread attention as a major regulatory pathway for intracellular defense against oxidative stress. It is considered as a potential target for the treatment of inflammatory bowel disease (IBD). This review highlights the mechanism of action and therapeutic significance of Nrf2/HO-1 in IBD and IBD complications (intestinal fibrosis and colorectal cancer (CRC)), as well as the potential of phytochemicals targeting Nrf2/HO-1 in the treatment of IBD. The results suggest that the therapeutic effects of Nrf2/HO-1 on IBD mainly involve the following aspects: (1) Controlling of oxidative stress to reduce intestinal inflammation and injury; (2) Regulation of intestinal flora to repair the intestinal mucosal barrier; and (3) Prevention of ferroptosis in intestinal epithelial cells. However, due to the complex role of Nrf2/HO-1, a more nuanced understanding of the exact mechanisms involved in Nrf2/HO-1 is the way forward for the treatment of IBD in the future.
Collapse
Affiliation(s)
- Lingling Yuan
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| | - Yingyi Wang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| | - Na Li
- Department of Infection, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China;
| | - Xuli Yang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| | - Xuhui Sun
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| | - Huai’e Tian
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| | - Yi Zhang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| |
Collapse
|
4
|
Lei J, Liu Y, Yin M, Li S, Wang Z, Chen Y. Coordination environment dependence of anticancer activity in cyclometalated bismuth(III) complexes with C,O-chelating ligands. J Inorg Biochem 2024; 256:112571. [PMID: 38669912 DOI: 10.1016/j.jinorgbio.2024.112571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
In this paper, a series of cyclometalated bismuth(III) complexes bearing C,O-bidentate ligands were synthesized and characterized by techniques such as UV-vis, NMR, HRMS, and single crystal X-ray diffraction. Meanwhile, their cytotoxicities against various human cell lines, including colon cancer cells (HCT-116), breast cancer cells (MDA-MB-231), lung cancer cells (A549), gastric cancer cells (SGC-7901), and normal embryonic kidney cells (HEK-293) were assessed in vitro. Compared with the clinical cisplatin, most of the synthesized complexes possessed significantly higher degrees of anticancer activity and selectivity, giving a selectivity index of up to 71.3. The structure-activity relationship study revealed that the anticancer performance of these bismuth(III) species depends on the factors of coordination environment surrounding the metal center, such as coordination number, coordination bonding strength, lone 6s2 electron pair stereoactivity. The Annexin V-FITC/PI double staining assay results suggested that the coordination environment-dependent cytotoxicity is ascribable to apoptosis. Western blot analysis confirmed the proposal, as evidenced by the down-regulating level of Bcl-2 and the activation of caspase-3. Furthermore, the representative complexes Bi1, Bi4, Bi6, and Bi8 exhibited relatively lower inhibitory efficiency on human ovarian cancer cells (A2780) than on its cisplatin-resistant daughter cells (A2780/cis), thus demonstrating that such compounds are capable of circumventing the cisplatin-induced resistance. This investigation elucidated the excellent anticancer performance of C,O-coordinated bismuth(III) complexes and established the correlation between cytotoxic activity and coordination chemistry, which provides a practical basis for in-depth designing and developing bismuth-based chemotherapeutics.
Collapse
Affiliation(s)
- Jian Lei
- School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory for Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Yongping Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Mingming Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Shan Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory for Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Zixiu Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory for Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Yi Chen
- School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China.
| |
Collapse
|
5
|
Gonçalves Â, Matias M, Salvador JAR, Silvestre S. Bioactive Bismuth Compounds: Is Their Toxicity a Barrier to Therapeutic Use? Int J Mol Sci 2024; 25:1600. [PMID: 38338879 PMCID: PMC10855265 DOI: 10.3390/ijms25031600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Bismuth compounds are considered relatively non-toxic, with their low solubility in aqueous solutions (e.g., biological fluids) being the major contributing factor to this property. Bismuth derivatives are widely used for the treatment of peptic ulcers, functional dyspepsia, and chronic gastritis. Moreover, the properties of bismuth compounds have also been extensively explored in two main fields of action: antimicrobial and anticancer. Despite the clinical interest of bismuth-based drugs, several side effects have also been reported. In fact, excessive acute ingestion of bismuth, or abuse for an extended period of time, can lead to toxicity. However, evidence has demonstrated that the discontinuation of these compounds usually reverses their toxic effects. Notwithstanding, the continuously growing use of bismuth products suggests that it is indeed part of our environment and our daily lives, which urges a more in-depth review and investigation into its possible undesired activities. Therefore, this review aims to update the pharmaco-toxicological properties of bismuth compounds. A special focus will be given to in vitro, in vivo, and clinical studies exploring their toxicity.
Collapse
Affiliation(s)
- Ângela Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (Â.G.); (M.M.)
| | - Mariana Matias
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (Â.G.); (M.M.)
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC—Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Samuel Silvestre
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (Â.G.); (M.M.)
- CNC—Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
6
|
Iuchi K, Fukasawa M, Murakami T, Hisatomi H. Cold atmospheric nitrogen plasma induces metal-initiated cell death by cell membrane rupture and mitochondrial perturbation. Cell Biochem Funct 2023; 41:687-695. [PMID: 37322606 DOI: 10.1002/cbf.3823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/06/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Cold atmospheric plasma (CAP) is a novel biomedical tool used for cancer therapy. A device using nitrogen gas (N2 CAP) produced CAP that induced cell death through the production of reactive nitrogen species and an increase in intracellular calcium. In this study, we investigated the effect of N2 CAP-irradiation on cell membrane and mitochondrial function in human embryonic kidney cell line 293T. We investigated whether iron is involved in N2 CAP-induced cell death, as deferoxamine methanesulfonate (an iron chelator) inhibits this process. We found that N2 CAP induced cell membrane disturbance and loss of mitochondrial membrane potential in an irradiation time-dependent manner. BAPTA-AM, a cell-permeable calcium chelator, inhibited N2 CAP-induced loss of mitochondrial membrane potential. These results suggest that disruption of intracellular metal homeostasis was involved in N2 CAP-induced cell membrane rupture and mitochondrial dysfunction. Moreover, N2 CAP irradiation generated a time-dependent production of peroxynitrite. However, lipid-derived radicals are unrelated to N2 CAP-induced cell death. Generally, N2 CAP-induced cell death is driven by the complex interaction between metal movement and reactive oxygen and nitrogen species produced by N2 CAP.
Collapse
Affiliation(s)
- Katsuya Iuchi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo, Japan
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan
| | - Mami Fukasawa
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo, Japan
| | - Tomoyuki Murakami
- Department of Systems Design Engineering, Faculty of Science and Technology, Seikei University, Tokyo, Japan
| | - Hisashi Hisatomi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo, Japan
| |
Collapse
|
7
|
Li W, Huang Y, Liu Y, Wang Z, Li S, Chen Y, Ye Y, Yin S, Lei J. Antibacterial performance of heterocyclic organobismuth (III) complexes based on bidentate C,O‐coordinating ligands: Synergism of ligand identity and coordination number. Appl Organomet Chem 2023; 37. [DOI: 10.1002/aoc.7141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/11/2023] [Indexed: 01/04/2025]
Abstract
A series of heterocyclic organobismuth (III) complexes based on bidentate C,O‐coordinating ligands were designed and synthesized as antimicrobials. Antibacterial assays showed that complexes of this type are more effective for Gram‐positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, and Enterococcus faecalis) than Gram‐negative ones (Escherichia coli and Pseudomonas aeruginosa). Their activities are especially relevant to the synergism of lipophilicity, geometry, and stability, which depends on both the identity of coordinating ligands and the coordination number at the bismuth center. By comparison, the hypervalent 14‐Bi‐6 species diarylbismuth nitrate (8) was found to exhibit the most potent inhibitory effect, together with a high degree of selectivity, which gives an IC50(LO2)/MIC(Staphylococcus aureus) ratio of up to 23.08. Time–kill analysis demonstrated that complex 8 is bacteriostatic at low concentrations while displaying significant bactericidal activity at high doses. The results of drug resistance experiments suggested that complex 8 can inhibit the formation of bacterial biofilm and consequently delay or prevent the development of drug resistance. Furthermore, complex 8 also showed high inhibition efficiency against several drug‐resistant Staphylococcus aureus, and the MIC values are within the range of 0.39–1.56 μM, thus indicating the lack of cross‐resistance between this organometallic compound and commonly used antibiotics.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy Gannan Medical University Ganzhou China
| | - Yan Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy Gannan Medical University Ganzhou China
| | - Yongping Liu
- School of Medicine Hunan University of Chinese Medicine Changsha China
| | - Zixiu Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy Gannan Medical University Ganzhou China
| | - Shan Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy Gannan Medical University Ganzhou China
| | - Yi Chen
- School of Medicine Hunan University of Chinese Medicine Changsha China
| | - Yifei Ye
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy Gannan Medical University Ganzhou China
| | - Shuang‐Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Jian Lei
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy Gannan Medical University Ganzhou China
| |
Collapse
|
8
|
Guo SB, Huang WJ, Tian XP. Brusatol modulates diverse cancer hallmarks and signaling pathways as a potential cancer therapeutic. ACTA MATERIA MEDICA 2022; 1. [DOI: 10.15212/amm-2022-0014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Cancer is a consequence of uncontrolled cell proliferation that is associated with cell-cycle disruption. It is a multifactorial disease that depends on the modulation of numerous oncogenic signaling pathways and targets. Although a battle against cancer has been waged for centuries, this disease remains a major cause of death worldwide. Because of the development of resistance to current anticancer drugs, substantial effort has been focused on discovering more effective agents for tumor therapy. Natural products have powerful prospects as anticancer drugs. Brusatol, a component isolated from the plant Brucea javanica, has been demonstrated to efficiently combat a wide variety of tumors. Extensive studies have indicated that brusatol exhibits anticancer effects by arresting the cell cycle; promoting apoptosis; inducing autophagy; attenuating epithelial-mesenchymal transition; inhibiting migration, invasion and angiogenesis; and increasing chemosensitivity and radiosensitivity. These effects involve various oncogenic signaling pathways, including the MAPK, NF-κB, PI3K/AKT/mTOR, JAK/STAT and Keap1/Nrf2/ARE signaling pathways. This review describes the evidence suggesting that brusatol is a promising drug candidate for cancer therapeutics.
Collapse
Affiliation(s)
- Song-Bin Guo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Wei-Juan Huang
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Xiao-Peng Tian
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| |
Collapse
|
9
|
Griffith DM, Li H, Werrett MV, Andrews PC, Sun H. Medicinal chemistry and biomedical applications of bismuth-based compounds and nanoparticles. Chem Soc Rev 2021; 50:12037-12069. [PMID: 34533144 DOI: 10.1039/d0cs00031k] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bismuth as a relatively non-toxic and inexpensive metal with exceptional properties has numerous biomedical applications. Bismuth-based compounds are used extensively as medicines for the treatment of gastrointestinal disorders including dyspepsia, gastric ulcers and H. pylori infections. Recently, its medicinal application was further extended to potential treatments of viral infection, multidrug resistant microbial infections, cancer and also imaging, drug delivery and biosensing. In this review we have highlighted the unique chemistry and biological chemistry of bismuth-209 as a prelude to sections covering the unique antibacterial activity of bismuth including a description of research undertaken to date to elucidate key molecular mechanisms of action against H. pylori, the development of novel compounds to treat infection from microbes beyond H. pylori and the significant role bismuth compounds can play as resistance breakers. Furthermore we have provided an account of the potential therapeutic application of bismuth-213 in targeted alpha therapy as well as a summary of the biomedical applications of bismuth-based nanoparticles and composites. Ultimately this review aims to provide the state of the art, highlight the untapped biomedical potential of bismuth and encourage original contributions to this exciting and important field.
Collapse
Affiliation(s)
- Darren M Griffith
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.,SSPC, Synthesis and Solid State Pharmaceutical Centre, Ireland
| | - Hongyan Li
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | | | - Philip C Andrews
- School of Chemistry, Monash University, Melbourne, VIC, Australia
| | - Hongzhe Sun
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
10
|
Mirzaei S, Mohammadi AT, Gholami MH, Hashemi F, Zarrabi A, Zabolian A, Hushmandi K, Makvandi P, Samec M, Liskova A, Kubatka P, Nabavi N, Aref AR, Ashrafizadeh M, Khan H, Najafi M. Nrf2 signaling pathway in cisplatin chemotherapy: Potential involvement in organ protection and chemoresistance. Pharmacol Res 2021; 167:105575. [PMID: 33771701 DOI: 10.1016/j.phrs.2021.105575] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 12/14/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a vital transcription factor and its induction is of significant importance for protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) stimulate Nrf2 signaling, enhancing the activity of antioxidant enzymes such as catalase, superoxide dismutase and glutathione peroxidase. These enzymes are associated with retarding oxidative stress. On the other hand, Nrf2 activation in cancer cells is responsible for the development of chemoresistance due to disrupting oxidative mediated-cell death by reducing ROS levels. Cisplatin (CP), cis-diamminedichloroplatinum(II), is a potent anti-tumor agent extensively used in cancer therapy, but its frequent application leads to the development of chemoresistance as well. In the present study, association of Nrf2 signaling with chemoresistance to CP and protection against its deleterious effects is discussed. Anti-tumor compounds, mainly phytochemicals, retard chemoresistance by suppressing Nrf2 signaling. Upstream mediators such as microRNAs can regulate Nrf2 expression during CP chemotherapy regimens. Protection against side effects of CP is mediated via activating Nrf2 signaling and its downstream targets activating antioxidant defense system. Protective agents that activate Nrf2 signaling, can ameliorate CP-mediated ototoxicity, nephrotoxicity and neurotoxicity. Reducing ROS levels and preventing cell death are the most important factors involved in alleviating CP toxicity upon Nrf2 activation. As pre-clinical experiments advocate the role of Nrf2 in chemoprotection and CP resistance, translating these findings to the clinic can provide a significant progress in treatment of cancer patients.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aliasghar Tabatabaei Mohammadi
- Asu Vanda Gene Research Company, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Science Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- Centre for Materials Interface, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, 56025 Pisa, Pontedera, Italy
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6 Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanashah University of Medical Sciences, Kermanshah 6715847141, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|