1
|
Jin ZY, Ling ZQ. PAQR4: From spatial regulation of cell signaling to physiological homeostasis and diseases. Biochim Biophys Acta Rev Cancer 2025; 1880:189314. [PMID: 40194713 DOI: 10.1016/j.bbcan.2025.189314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025]
Abstract
Progestin and adipoQ receptor family member 4 (PAQR4) gene is a recently discovered seven-transmembrane protein-coding gene that belongs to the PAQR family. An increasing amount of evidence suggests that PAQR4 is upregulated in multiple tumors and participates in tumor progression and chemotherapy resistance via different signaling pathways; PAQR4 regulates cellular ceramide homeostasis by influencing sphingolipid metabolism and glycerol metabolism, and plays a significant role in adipose tissue remodeling. Meanwhile, it is known that the differential expression of PAQR4 is associated with the occurrence of various diseases and is a potential biomarker and therapeutic target. This article conducts a systematic review of the subcellular localization of PAQR4, its topological structure characteristics, and its functions in cancer occurrence, metabolic diseases, and fertility, and provides clues for the future research and translational application of PAQR4.
Collapse
Affiliation(s)
- Zi-Yan Jin
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Postgraduate Training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
2
|
Kozłowska-Tomczyk K, Borski N, Głód P, Gogola-Mruk J, Ptak A. PGRMC1 and PAQR4 are promising molecular targets for a rare subtype of ovarian cancer. Open Life Sci 2024; 19:20220982. [PMID: 39464509 PMCID: PMC11512499 DOI: 10.1515/biol-2022-0982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
The heterogeneity of ovarian cancer (OC) has made developing effective treatments difficult. Nowadays, hormone therapy plays a growing role in the treatment of OC; however, hormone modulators have had only limited success so far. To provide a more rigorous foundation for hormonal therapy for different OC subtypes, the current study used a series of bioinformatics approaches to analyse the expression profiles of genes encoding membrane progesterone (PGRMC1, progestins and the adipoQ receptor [PAQR] family), and androgen (zinc transporter member 9 [ZIP9], OXER1) receptors. Our work investigated also their prognostic value in the context of OC. We found differences in expression of ZIP9 and OXER1 between different OC subtypes, as well as between patient tumour and normal tissues. Expression of mRNA encoding PAQR7 and PAQR8 in a panel of OC cell lines was below the qPCR detection limit and was downregulated in tumour tissue samples, whereas high expression of PGRMC1 and PAQR4 mRNA was observed in rare subtypes of OC cell lines. In addition, chemical inhibition of PGRMC1 reduced the viability of rare OCs represented by COV434 cells. In conclusion, PGRMC1 and PAQR4 are promising targets for anticancer therapy, particularly for rare subtypes of OC. These findings may reflect differences in the observed responses of various OC subtypes to hormone therapy.
Collapse
Affiliation(s)
- Kamila Kozłowska-Tomczyk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biology, Institute of Zoology and Biomedical Sciences, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Norbert Borski
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Paulina Głód
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biology, Institute of Zoology and Biomedical Sciences, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
3
|
Cun Y, Guo C, Jin Y, Zhou L, Zhang C, Chen N, Peng Y, Zhang P, Guo Y. Breviscapine ameliorates autophagy by activating the JAK2/STAT5/BCL2 pathway in a transient cerebral ischemia rat model. J Neuropathol Exp Neurol 2024; 83:615-625. [PMID: 38804899 DOI: 10.1093/jnen/nlae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Breviscapine (Bre), an extract from Erigeron breviscapus, has been widely used to treat cerebral ischemia but the mechanisms of its neuroprotective effects need to be clarified. The present study investigated whether Bre could alleviate excessive autophagy induced by cerebral ischemia in the rat middle cerebral artery occlusion (MCAO) ischemia model via activating the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5)/B-cell lymphoma 2 (BCL2) pathway. Rats were randomly divided into 5 groups, i.e. Sham group, MCAO+saline group, MCAO+Bre group, MCAO+DMSO (Dimethyl sulfoxide) group, and MCAO+Bre+AG490 (Tyrphostin AG490, the inhibitor of STAT5) group. The model was established and neuroprotection was evaluated by determining infarct volumes and conducting neurological behavioral tests. Autophagy levels in the infarct penumbra were detected using transmission electron microscopy and Western blotting. The expression of proteins in the JAK2/STAT5/BCL2 pathway was tested by Western blotting. Compared to the MCAO+saline group, the infarct volumes in the MCAO+Bre group were significantly reduced and neurological behavior improved. Breviscapine administration also significantly increased p-JAK2, p-STAT5, and BCL2 expression but decreased autolysosome numbers; it also downregulated Beclin-1 expression and the LC3II/LCI ratio. The JAK2 inhibitor AG490 reversed these effects. These findings indicate that breviscapine can improve neural recovery following ischemia through alleviating excessive autophagy and activation of the JAK2/STAT5/BCL2 axis.
Collapse
Affiliation(s)
- Yongdan Cun
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
- Yunnan College of Business Management, Kunming, China
| | - Cunxiao Guo
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yaju Jin
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Li Zhou
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Chengcai Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Na Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yicheng Peng
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Pengyue Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yiting Guo
- Department of Traditional Chinese Medicine, The 920th Hospital of the PLA Joint Service Support Force, Kunming, China
| |
Collapse
|
4
|
Patil D, Raut S, Joshi M, Bhatt P, Bhatt LK. PAQR4 oncogene: a novel target for cancer therapy. Med Oncol 2024; 41:161. [PMID: 38767705 DOI: 10.1007/s12032-024-02382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/06/2024] [Indexed: 05/22/2024]
Abstract
Despite decades of basic and clinical research and trials of promising new therapies, cancer remains a major cause of morbidity and mortality due to the emergence of drug resistance to anticancer drugs. These resistance events have a very well-understood underlying mechanism, and their therapeutic relevance has long been recognized. Thus, drug resistance continues to be a major obstacle to providing cancer patients with the intended "cure". PAQR4 (Progestin and AdipoQ Receptor Family Member 4) gene is a recently identified novel protein-coding gene associated with various human cancers and acts through different signaling pathways. PAQR4 has a significant influence on multiple proteins that may regulate various gene expressions and may develop chemoresistance. This review discusses the roles of PAQR4 in tumor immunity, carcinogenesis, and chemoresistance. This paper is the first review, discussing PAQR4 in the pathogenesis of cancer. The review further explores the PAQR4 as a potential target in various malignancies.
Collapse
Affiliation(s)
- Dipti Patil
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Swapnil Raut
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Mitesh Joshi
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be University), Vile Parle (West), Mumbai, India
| | - Purvi Bhatt
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be University), Vile Parle (West), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
5
|
Zhu Y, Arkin G, Zeng W, Huang Y, Su L, Guo F, Ye J, Wen G, Xu J, Liu Y. Ultrasound image-guided cancer gene therapy using iRGD dual-targeted magnetic cationic microbubbles. Biomed Pharmacother 2024; 172:116221. [PMID: 38306843 DOI: 10.1016/j.biopha.2024.116221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
The gene therapy attracted more and more attention for the tumor therapy. To obtain a safe gene therapy system, the new gene vectors beyond the virus were developed for a high gene therapy efficiency. The ultrasound mediated gene therapy was safer and the plasmid DNA could be delivered by the microbubbles and combined with the ultrasound to increase the gene transfection efficiency. In this work, the cationic microbubbles decorated with Cyclo(Cys-Arg-Gly-Asp-Lys-Gly-Pro-AspCys) (iRGD peptides) and magnetic Fe3O4 nanoparticles (MBiM) was designed for targeted ultrasound contrast imaging guided gene therapy of tumors. The ultrasound image intensity was dramatically enhanced at the tumor site that received MBiM with the magnet applied, compared to those administrated the non-targeted microbubbles (MBb) or the microbubbles with only one target material on the surface (MBM and MBbi). The pGPU6/GFP/Neo-shAKT2 was used as a sample gene, which down regulate the AKT2 protein expression for the cancer therapy. It illustrated that MBiM/AKT2 had the highest gene transfection efficiency in the studied microbubbles mediated by the ultrasound, leading to the AKT2 protein expression downregulation and the strongest tumor killing effect in vitro and in vivo. In summary, a novel and biocompatible gene delivery platform via MBiM with both the endogenous and external targeting effects for breast cancer theranostics was developed.
Collapse
Affiliation(s)
- Yao Zhu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Gulzira Arkin
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Wei Zeng
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Yalan Huang
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Lili Su
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Fengjuan Guo
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Jiayu Ye
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Guanxi Wen
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Jinfeng Xu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China.
| | - Yingying Liu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China.
| |
Collapse
|
6
|
Rezaei S, Nikpanjeh N, Rezaee A, Gholami S, Hashemipour R, Biavarz N, Yousefi F, Tashakori A, Salmani F, Rajabi R, Khorrami R, Nabavi N, Ren J, Salimimoghadam S, Rashidi M, Zandieh MA, Hushmandi K, Wang Y. PI3K/Akt signaling in urological cancers: Tumorigenesis function, therapeutic potential, and therapy response regulation. Eur J Pharmacol 2023; 955:175909. [PMID: 37490949 DOI: 10.1016/j.ejphar.2023.175909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
In addition to environmental conditions, lifestyle factors, and chemical exposure, aberrant gene expression and mutations involve in the beginning and development of urological tumors. Even in Western nations, urological malignancies are among the top causes of patient death, and their prevalence appears to be gender dependent. The prognosis for individuals with urological malignancies remains dismal and unfavorable due to the ineffectiveness of conventional treatment methods. PI3K/Akt is a popular biochemical mechanism that is activated in tumor cells as a result of PTEN loss. PI3K/Akt escalates growth and metastasis. Moreover, due to the increase in tumor cell viability caused by PI3K/Akt activation, cancer cells may acquire resistance to treatment. This review article examines the function of PI3K/Akt in major urological tumors including bladder, prostate, and renal tumors. In prostate, bladder, and kidney tumors, the level of PI3K and Akt are notably elevated. In addition, the activation of PI3K/Akt enhances the levels of Bcl-2 and XIAP, hence increasing the tumor cell survival rate. PI3K/Akt ] upregulates EMT pathways and matrix metalloproteinase expression to increase urological cancer metastasis. Furthermore, stimulation of PI3K/Akt results in drug- and radio-resistant cancers, but its suppression by anti-tumor drugs impedes the tumorigenesis.
Collapse
Affiliation(s)
- Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Negin Nikpanjeh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Iran University of Medical Sciences, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Islamic Azad University, Babol Branch, Babol, Iran
| | - Reza Hashemipour
- Faculty of Veterinary Medicine, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Negin Biavarz
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farnaz Yousefi
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Tashakori
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Hashemi M, Taheriazam A, Daneii P, Hassanpour A, Kakavand A, Rezaei S, Hejazi ES, Aboutalebi M, Gholamrezaie H, Saebfar H, Salimimoghadam S, Mirzaei S, Entezari M, Samarghandian S. Targeting PI3K/Akt signaling in prostate cancer therapy. J Cell Commun Signal 2023; 17:423-443. [PMID: 36367667 PMCID: PMC10409967 DOI: 10.1007/s12079-022-00702-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Urological cancers have obtained much attention in recent years due to their mortality and morbidity. The most common and malignant tumor of urological cancers is prostate cancer that imposes high socioeconomic costs on public life and androgen-deprivation therapy, surgery, and combination of chemotherapy and radiotherapy are employed in its treatment. PI3K/Akt signaling is an oncogenic pathway responsible for migration, proliferation and drug resistance in various cancers. In the present review, the role of PI3K/Akt signaling in prostate cancer progression is highlighted. The activation of PI3K/Akt signaling occurs in prostate cancer, while PTEN as inhibitor of PI3K/Akt shows down-regulation. Stimulation of PI3K/Akt signaling promotes survival of prostate tumor cells and prevents apoptosis. The cell cycle progression and proliferation rate of prostate tumor cells increase by PI3K/Akt signaling induction. PI3K/Akt signaling stimulates EMT and enhances metastasis of prostate tumor cells. Silencing PI3K/Akt signaling impairs growth and metastasis of prostate tumor cells. Activation of PI3K/Akt signaling mediates drug resistance and reduces radio-sensitivity of prostate tumor cells. Anti-tumor compounds suppress PI3K/Akt signaling in impairing prostate tumor progression. Furthermore, upstream regulators such as miRNAs, lncRNAs and circRNAs regulate PI3K/Akt signaling and it has clinical implications for prostate cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Gholamrezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- League of European Research Universities, European University Association, University of Milan, Milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
8
|
Fu W, Song J, Li H. Breviscapine reverses doxorubicin resistance in breast cancer and its related mechanisms. Thorac Cancer 2023; 14:2785-2792. [PMID: 37584258 PMCID: PMC10518232 DOI: 10.1111/1759-7714.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Based on the effect of breviscapine (BRE) on reversing drug resistance of human breast cancer cell line MCF-7/doxorubicin (Dox), the mechanism was preliminarily explored. METHODS The methyl thiazolyl tetrazolium (MTT) method was introduced to detect inhibitory effect of Dox alone or in combination with BRE on MCF-7 (M) and MCF-7/Dox (MD) cells, and the inhibitory concentration (IC50 ) was obtained. Cell apoptosis and Dox concentration was assessed by flow cytometry. The drug resistance multiple and reversal fold were calculated. Western blot was performed to evaluate the expression of Bcl-2, Bax, EGFR, p-EGFR, P-gp, caspase-3, and cleaved-caspase-3 protein in cells. The efflux of Rho-123 was measured by flow cytometry and fluorescence microscopy. RESULTS The IC50 of Dox on MD and M cells was 16.67 and 0.71 μg/mL, respectively, with a drug resistance ratio of 23.48 times. The IC50 of Dox combined with BRE on MD cells was 5.62 μg/mL, with a reversal ratio of 2.97 times. BRE greatly enhanced Dox-induced apoptosis of MD cells. Bax and cleaved-caspase-3 (proapoptotic protein) expression were obviously increased, while Bcl-2 (antiapoptotic protein) expression was significantly decreased after BRE treatment. BRE inhibited EGFR activation and P-gp expression. BRE increased the intracellular accumulation of Dox in MD cells by P-gp. CONCLUSION BRE could increase the MD sensitivity to Dox via increasing Bax and cleaved-caspase-3 expression and inhibiting Bcl-2 expression, thereby promoting cell apoptosis. BRE reversed Dox resistance of MD cells by increasing Dox intracellular accumulation through inhibiting P-gp expression via EGFR.
Collapse
Affiliation(s)
- Weijiang Fu
- Department of Geriatric Medicine & Shandong Key Laboratory Cardiovascular ProteomicsQilu Hospital of Shandong UniversityJinanChina
| | - Jie Song
- Department of Medical InsuranceQilu Hospital of Shandong UniversityJinanChina
| | - Haiying Li
- Department of UltrasoundQilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
9
|
Niu P, Liu F, Lei F, Peng J, Wang Y, Zhao J, Gao Z, Gao Q, Gu J. Breviscapine regulates the proliferation, migration, invasion, and apoptosis of colorectal cancer cells via the PI3K/AKT pathway. Sci Rep 2023; 13:9674. [PMID: 37316553 DOI: 10.1038/s41598-023-33792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/19/2023] [Indexed: 06/16/2023] Open
Abstract
Colorectal cancer (CRC) is ranked as one of the most common malignancies with a high death rate. It has been discovered that breviscapine can alter the progression and development of various cancers. Nevertheless, the function and mechanisms of breviscapine in CRC progression have not yet been described. The cell proliferation capacity of HCT116 and SW480 cells was assessed using the CCK-8 and EdU assays. Cell apoptosis was tested through flow cytometry, and cell migration and invasion were examined using the transwell assay. Moreover, protein expression was examined through a western blot. Tumor weight and volume were assessed using the nude mice in vivo assay, and the Ki-67 protein expression was verified through the IHC assay. This study discovered that an increased dose of breviscapine (0, 12.5, 25, 50, 100, 200, and 400 μM) gradually reduced cell proliferation and increased apoptosis in CRC. Additionally, breviscapine restricted the migration and invasion CRC cells. Moreover, it was revealed that breviscapine inactivated the PI3K/AKT pathway and inhibited CRC progression. Finally, an in vivo assay demonstrated that breviscapine restrained tumor growth in vivo. It affected the CRC cells' proliferation, migration, invasion, and apoptosis through the PI3K/AKT pathway. This discovery may offer new insights into CRC treatment.
Collapse
Affiliation(s)
- Pengfei Niu
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, No. 9, Jinyuanzhuang Road, The Shijingshan District, Beijing, 100144, China
| | - Feng Liu
- Beijing Viewsolid Biotechnology Co., Ltd., Beijing, 100195, China
| | - Fuming Lei
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, No. 9, Jinyuanzhuang Road, The Shijingshan District, Beijing, 100144, China
| | - Jisheng Peng
- Department of Traditional Chinese Medicine, Peking University Shougang Hospital, Beijing, 100144, China
| | - Yanzhao Wang
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, No. 9, Jinyuanzhuang Road, The Shijingshan District, Beijing, 100144, China
| | - Jun Zhao
- Department of Traditional Chinese Medicine, Peking University Shougang Hospital, Beijing, 100144, China
| | - Zhaoya Gao
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, No. 9, Jinyuanzhuang Road, The Shijingshan District, Beijing, 100144, China
| | - Qingkun Gao
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, No. 9, Jinyuanzhuang Road, The Shijingshan District, Beijing, 100144, China
| | - Jin Gu
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, No. 9, Jinyuanzhuang Road, The Shijingshan District, Beijing, 100144, China.
| |
Collapse
|
10
|
Chen J, Qin P, Tao Z, Ding W, Yao Y, Xu W, Yin D, Tan S. Anticancer Activity of Methyl Protodioscin against Prostate Cancer by Modulation of Cholesterol-Associated MAPK Signaling Pathway <i>via</i> FOXO1 Induction. Biol Pharm Bull 2023; 46:574-585. [PMID: 37005301 DOI: 10.1248/bpb.b22-00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Methyl protodioscin (MPD), a furostanol saponin found in the rhizomes of Dioscoreaceae, has lipid-lowering and broad anticancer properties. However, the efficacy of MPD in treating prostate cancer remains unexplored. Therefore, the present study aimed to evaluate the anticancer activity and action mechanism of MPD in prostate cancer. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), wound healing, transwell, and flow cytometer assays revealed that MPD suppressed proliferation, migration, cell cycle, and invasion and induced apoptosis of DU145 cells. Mechanistically, MPD decreased cholesterol concentration in the cholesterol oxidase, peroxidase and 4-aminoantipyrine phenol (COD-PAP) assay, disrupting the lipid rafts as detected using immunofluorescence and immunoblot analyses after sucrose density gradient centrifugation. Further, it reduced the associated mitogen-activated protein kinase (MAPK) signaling pathway protein P-extracellular regulated protein kinase (ERK), detected using immunoblot analysis. Forkhead box O (FOXO)1, a tumor suppressor and critical factor controlling cholesterol metabolism, was predicted to be a direct target of MPD and induced by MPD. Notably, in vivo studies demonstrated that MPD significantly reduced tumor size, suppressed cholesterol concentration and the MAPK signaling pathway, and induced FOXO1 expression and apoptosis in tumor tissue in a subcutaneous mouse model. These results suggest that MPD displays anti-prostate cancer activity by inducing FOXO1 protein, reducing cholesterol concentration, and disrupting lipid rafts. Consequently, the reduced MAPK signaling pathway suppresses proliferation, migration, invasion, and cell cycle and induces apoptosis of prostate cancer cells.
Collapse
Affiliation(s)
- Jie Chen
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Puyan Qin
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Zhanxia Tao
- College of Life Science, Capital Normal University
| | - Weijian Ding
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Yunlong Yao
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Weifang Xu
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Song Tan
- School of Pharmacy, Anhui University of Chinese Medicine
| |
Collapse
|
11
|
Lin J, Zhuo Y, Zhang Y, Liu R, Zhong W. Molecular predictors of metastasis in patients with prostate cancer. Expert Rev Mol Diagn 2023; 23:199-215. [PMID: 36860119 DOI: 10.1080/14737159.2023.2187289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
INTRODUCTION Prostate cancer is a serious threat to the health of older adults worldwide. The quality of life and survival time of patients sharply decline once metastasis occurs. Thus, early screening for prostate cancer is very advanced in developed countries. The detection methods used include Prostate-specific antigen (PSA) detection and digital rectal examination. However, the lack of universal access to early screening in some developing countries has resulted in an increased number of patients presenting with metastatic prostate cancer. In addition, the treatment methods for metastatic and localized prostate cancer are considerably different. In many patients, early-stage prostate cancer cells often metastasize due to delayed observation, negative PSA results, and delay in treatment time. Therefore, the identification of patients who are prone to metastasis is important for future clinical studies. AREAS COVERED this review introduced a large number of predictive molecules related to prostate cancer metastasis. These molecules involve the mutation and regulation of tumor cell genes, changes in the tumor microenvironment, and the liquid biopsy. EXPERT OPINION In next decade, PSMA PET/CT and liquid biopsy will be the excellent predicting tools, while 177 Lu- PSMA-RLT will be showed excellent anti-tumor efficacy in mPCa patients.
Collapse
Affiliation(s)
- Jundong Lin
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yangjia Zhuo
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yixun Zhang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Ren Liu
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weide Zhong
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Wang W, Huang Q, Liao Z, Zhang H, Liu Y, Liu F, Chen X, Zhang B, Chen Y, Zhu P. ALKBH5 prevents hepatocellular carcinoma progression by post-transcriptional inhibition of PAQR4 in an m6A dependent manner. Exp Hematol Oncol 2023; 12:1. [PMID: 36609413 PMCID: PMC9825045 DOI: 10.1186/s40164-022-00370-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 12/30/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is a prevalent modification of mRNA and is known to play important roles in tumorigenesis in many types of cancer. The function of N6-methyladenosine (m6A) RNA methylation depends on a variety of methyltransferases and demethylases. AlkB homolog 5 (ALKBH5) is a demethylase, and its biological function has not been completely explored in HCC. RESULTS ALKBH5 is downregulated and has antitumor effects in HCC cells. In addition, Progestin and AdipoQ Receptor 4 (PAQR4) was identified as a downstream target of ALKBH5 based on transcriptome sequencing and validation studies. We found that ALKBH5 decreases PAQR4 mRNA and protein expression in an N6-methyladenosine (m6A)-dependent manner. The study also showed that ALKBH5 changes PAQR4 expression via the m6A reader IGF2BP1. In both in vivo and in vitro experiments, PAQR4 showed a strong association with the development of HCC. Finally, we found that PAQR4 interacts with AKT and enhances PI3K/AKT pathway activation. CONCLUSIONS ALKBH5 inhibits HCC growth by downregulating PAQR4 expression in an m6A-dependent manner, therefore suppressing PI3K/AKT pathway activation.
Collapse
Affiliation(s)
- Weijian Wang
- grid.33199.310000 0004 0368 7223Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030 China
| | - Qibo Huang
- grid.33199.310000 0004 0368 7223Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030 China
| | - Zhibin Liao
- grid.33199.310000 0004 0368 7223Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030 China ,grid.33199.310000 0004 0368 7223Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Hongwei Zhang
- grid.33199.310000 0004 0368 7223Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030 China ,grid.33199.310000 0004 0368 7223Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yachong Liu
- grid.33199.310000 0004 0368 7223Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030 China
| | - Furong Liu
- grid.33199.310000 0004 0368 7223Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030 China
| | - Xiaoping Chen
- grid.33199.310000 0004 0368 7223Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030 China ,grid.33199.310000 0004 0368 7223Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Bixiang Zhang
- grid.33199.310000 0004 0368 7223Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030 China ,grid.33199.310000 0004 0368 7223Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yan Chen
- grid.33199.310000 0004 0368 7223Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030 China ,grid.33199.310000 0004 0368 7223Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Peng Zhu
- grid.33199.310000 0004 0368 7223Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030 China ,grid.33199.310000 0004 0368 7223Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
13
|
Wang K, Meng J, Wang X, Yan M, Liu S, Yang S, Xu S, Liu D, Li C, Yang K. Pan-cancer analysis of the prognostic and immunological role of PAQR4. Sci Rep 2022; 12:21268. [PMID: 36481756 PMCID: PMC9732355 DOI: 10.1038/s41598-022-25220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Progestin and adipoQ receptor family member 4 (PAQR4) is a protein-coding gene. Recent studies have shown that PAQR4 is related to the development of multiple cancers. However, there is no systematic pan-cancer analysis of this gene. In this study, the expression of PAQR4, correlations with clinical prognosis, immune situation, and its potential molecular functions and mechanisms in pan-cancer were explored by bioinformatics analysis. The Cancer Genome Atlas was applied to investigate the relations between PAQR4 and clinical features, prognostic effects, and tumor immune microenvironment. R software was used to perform statistical analysis and figure creation. The expression of PAQR4 in BLCA and KIRC was validated by qRT-PCR and immunohistochemistry, and its function was explored by cellular experiments. Bioinformatics analysis revealed that PAQR4 was up-regulated in multiple cancers and related to poor prognosis. The high expression of PAQR4 was closely associated with high tumor stage, immune cell infiltration, tumor mutation burden, and microsatellite instability in different cancer types. In addition, the high expression of PAQR4 also indicated involvement in the immune regulatory pathways. The involvement of PAQR4 in the immune regulation of different tumors was confirmed by GSEA enrichment analysis. Moreover, PAQR4 was highly expressed in bladder cancer and renal clear cell carcinoma tissues and cell lines. Cell proliferation, migration, and invasion of bladder cancer and renal clear cell carcinoma cell lines were significantly decreased after the knockdown of PAQR4. This study elucidated the role of PAQR4 in carcinogenesis as well as tumor immunity. PAQR4 may serve as a potential prognostic biomarker in a variety of cancers.
Collapse
Affiliation(s)
- Kaibin Wang
- grid.412648.d0000 0004 1798 6160Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jinhuan Meng
- grid.412648.d0000 0004 1798 6160Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xudong Wang
- grid.412648.d0000 0004 1798 6160Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mo Yan
- grid.412648.d0000 0004 1798 6160Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shuaibing Liu
- grid.412648.d0000 0004 1798 6160Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shaobo Yang
- grid.412648.d0000 0004 1798 6160Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shengxian Xu
- grid.412648.d0000 0004 1798 6160Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Dongze Liu
- grid.412648.d0000 0004 1798 6160Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Changying Li
- grid.412648.d0000 0004 1798 6160Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Kuo Yang
- grid.412648.d0000 0004 1798 6160Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
14
|
Ye Z, Xia Y, Li L, Li B, Chen W, Han S, Zhou X, Chen L, Yu W, Ruan Y, Cheng F. Effect of transmembrane protein 100 on prostate cancer progression by regulating SCNN1D through the FAK/PI3K/AKT pathway. Transl Oncol 2022; 27:101578. [PMID: 36375375 PMCID: PMC9661392 DOI: 10.1016/j.tranon.2022.101578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
The effects of transmembrane (TMEM) proteins in the progression of prostate cancer (PCa) remain unknown. This study aims to explore the functions of TMEM100 in PCa. To explore the expression, regulation, and effects of TMEM100 in PCa, two PCa cell lines and 30 PCa tissue samples with adjacent control tissues were examined. Online databases, immunohistochemistry, immunofluorescence, western blot, flow cytometry, colony formation, wound healing, transwell assays, and xenograft mouse models were used to explore effects of TMEM100 relevant to PCa. TMEM100 expression was shown to decrease in PCa patients, and low TMEM100 expression was associated with tumor stage and metastasis. Overexpression of TMEM100 suppressed PCa progression by inhibiting the FAK/PI3K/AKT signaling pathway. Tumor size was smaller in TMEM100 overexpressing PCa cells in xenograft mice than in control mice. We also found that TMEM100 could regulate SCNN1D by inhibiting FAK/PI3K/AKT signaling in PCa cell lines. Taken together, our findings indicate that TMEM100 is a tumor suppressor that plays a vital role in preventing PCa proliferation, migration, and invasion through inhibition of FAK/PI3K/AKT signaling. These studies suggest that TMEM100 can be used as a predictive biomarker and therapeutic target.
Collapse
Affiliation(s)
- Zehua Ye
- Corresponding author at: Department of Urology, Renmin hospital of Wuhan university, 238 Jiefang Road, Wuhan 430060, China.
| | - Yuqi Xia
- Corresponding author at: Department of Urology, Renmin hospital of Wuhan university, 238 Jiefang Road, Wuhan 430060, China.
| | - Lei Li
- Corresponding author at: Department of Urology, Renmin hospital of Wuhan university, 238 Jiefang Road, Wuhan 430060, China.
| | | | | | | | | | | | | | - Yuan Ruan
- Corresponding author at: Department of Urology, Renmin hospital of Wuhan university, 238 Jiefang Road, Wuhan 430060, China.
| | - Fan Cheng
- Corresponding author at: Department of Urology, Renmin hospital of Wuhan university, 238 Jiefang Road, Wuhan 430060, China.
| |
Collapse
|
15
|
Li MJ, Sun WS, Yuan Y, Zhang YK, Lu Q, Gao YZ, Ye T, Xing DM. Breviscapine remodels myocardial glucose and lipid metabolism by regulating serotonin to alleviate doxorubicin-induced cardiotoxicity. Front Pharmacol 2022; 13:930835. [PMID: 36238546 PMCID: PMC9551275 DOI: 10.3389/fphar.2022.930835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
Aims: The broad-spectrum anticancer drug doxorubicin (Dox) is associated with a high incidence of cardiotoxicity, which severely affects the clinical application of the drug and patients’ quality of life. Here, we assess how Dox modulates myocardial energy and contractile function and this could aid the development of relevant protective drugs. Methods: Mice were subjected to doxorubicin and breviscapine treatment. Cardiac function was analyzed by echocardiography, and Dox-mediated signaling was assessed in isolated cardiomyocytes. The dual cardio-protective and anti-tumor actions of breviscapine were assessed in mouse breast tumor models. Results: We found that Dox disrupts myocardial energy metabolism by decreasing glucose uptake and increasing fatty acid oxidation, leading to a decrease in ATP production rate, an increase in oxygen consumption rate and oxidative stress, and further energy deficits to enhance myocardial fatty acid uptake and drive DIC development. Interestingly, breviscapine increases the efficiency of ATP production and restores myocardial energy homeostasis by modulating the serotonin-glucose-myocardial PI3K/AKT loop, increasing glucose utilization by the heart and reducing lipid oxidation. It enhances mitochondrial autophagy via the PINK1/Parkin pathway, eliminates damaged mitochondrial accumulation caused by Dox, reduces the degree of cardiac fibrosis and inflammation, and restores cardiac micro-environmental homeostasis. Importantly, its low inflammation levels reduce myeloid immunosuppressive cell infiltration, and this effect is synergistic with the anti-tumor effect of Dox. Conclusion: Our findings suggest that disruption of the cardiac metabolic network by Dox is an important driver of its cardiotoxicity and that serotonin is an important regulator of myocardial glucose and lipid metabolism. Myocardial energy homeostasis and timely clearance of damaged mitochondria synergistically contribute to the prevention of anthracycline-induced cardiotoxicity and improve the efficiency of tumor treatment.
Collapse
Affiliation(s)
- Meng-Jiao Li
- Cancer Institute of the Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wen-She Sun
- Cancer Institute of the Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Yang Yuan
- Cancer Institute of the Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Yu-Kun Zhang
- Cancer Institute of the Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qi Lu
- Cancer Institute of the Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yuan-Zhen Gao
- Cancer Institute of the Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ting Ye
- Cancer Institute of the Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Dong-Ming Xing
- Cancer Institute of the Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Dong-Ming Xing,
| |
Collapse
|
16
|
Lee WJ, Ji H, Jeong SD, Pandey PR, Gorospe M, Kim HH. LINC00162 regulates cell proliferation and apoptosis by sponging PAQR4-targeting miR-485-5p. J Cell Physiol 2022; 237:2943-2960. [PMID: 35491694 PMCID: PMC9846112 DOI: 10.1002/jcp.30758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 01/21/2023]
Abstract
Growing evidence indicates that long intergenic noncoding RNAs play an important role in cancer progression by affecting gene regulation at the transcriptional and posttranscriptional levels. Recent studies have shown that long intergenic noncoding RNA functions as a competitive endogenous RNA, which can interact with and mitigate the function of microRNA. In this study, we investigated the molecular mechanism by which LINC00162 regulates cell proliferation and apoptotic cell death. By analyzing RNA sequencing data, LINC00162 was identified to be a target of heterogeneous nuclear ribonucleoprotein K (hnRNPK). HnRNPK positively regulated LINC00162 expression through p38 mitogen-activated protein kinase. Lowering the level of either hnRNPK or LINC00162 decreased proliferation and colony formation while it increased apoptotic cell death. Small RNA sequencing followed by the antisense oligonucleotide pulldown, revealed that LINC00162 interacts directly with miR-485-5p which exhibited tumor-suppressing effects by suppressing cell proliferation and colony formation, and increasing apoptotic cell death. Through the bioinformatic approaches, progestin and adipoQ receptor 4 (PAQR4) was selected as a common target of LINC00162 and miR-485-5p. miR-485-5p decreased the expression of PAQR4 by directly binding to the 3'-untranslated region of PAQR4 messenger RNA. Knockdown of hnRNPK and LINC00162 increased the level of functional miR-485-5p, indicating that LINC00162 may compete for miR-485-5p, thereby derepressing PAQR4 expression. Overexpression of either hnRNPK or LINC00162, or inhibition of miR-485-5p, protected cells against etoposide-induced apoptotic death. Our findings demonstrate that a regulatory paradigm implicating hnRNPK, LINC00162, miR-485-5p, and PAQR4 plays an important role in cell proliferation and apoptosis, and is a promising target for cancer therapeutics.
Collapse
Affiliation(s)
- Woo Joo Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Haein Ji
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Seong Dong Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea,Department of Biopharmaceutical Convergence, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea,Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea,Correspondence: Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea. Phone: +82-2-3410-1039; Fax: +82-2-3410-0534;
| |
Collapse
|
17
|
Fan S, Huang Y, Zuo X, Li Z, Zhang L, Tang J, Lu L, Huang Y. Exploring the molecular mechanism of action of Polygonum capitatum Buch-Ham. ex D. Don for the treatment of bacterial prostatitis based on network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115007. [PMID: 35150815 DOI: 10.1016/j.jep.2022.115007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Polygonum capitatum Buch-Ham. ex D. Don (CNPC2009), a traditional Miao-national herbal medicine, has been widely used with considerable therapeutic efficacy in the treatment of various urologic disorders including prostatitis. However, the molecular mechanism of action (MOA) remains unclear. AIM OF THE STUDY In this study, UPLC-Q-Exactive-MS and Network pharmacological methods were used to explore the underlying molecular MOA of Polygonum capitatum Buch-Ham. Ex D. Don (P.capitatum) for the treatment bacterial prostatitis (BP). MATERIALS AND METHODS The UPLC-Q-Exactive-MS technique was used to identify the chemical components of P. capitatum. Databases such as SwissTargetPrediction, Gene Cards, and OMIM were used to predict the targets of P. capitatum for the treatment of BP. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) was used to analyze the protein-protein interaction (PPI) and construct a PPI network, and the Metascape was used for Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. In addition, experimental treatment of Escherichia coli (E.coli)-induced BP was verified. RESULTS A total of 31 molecular components were identified by UPLC-Q-Exactive-MS. Network pharmacology revealed that P. capitatum may act on the AKT1, PI3K, MTO, EGFR and other targets through active components such as Gallic acid, Quercetin, Luteolin, Protocatechuic Acid, Kaempferol and thereby regulate PI3K-AKT, ErbB, AMPK, HIF-1, and other signaling pathways to intervene in the pathological mechanism of BP. Verification through experimental results showed that compared with the model group, treatment with P. capitatum could significantly inhibit bacterial growth in prostate tissues, lowered the prostate index, down-regulated the levels of inflammatory mediators(IL-1β, IL-6, and TNF-α) in prostate tissues, and down-regulate the protein expression and mRNA expression levels of AKT and PI3K. CONCLUSION This study preliminarily revealed the MOA of P. capitatum for treating BP with multiple components, multiple targets, and multiple pathways, especially affecting the PI3K-AKT signaling pathways.
Collapse
Affiliation(s)
- Shanshan Fan
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Yuxing Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xurui Zuo
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Ziqiang Li
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No. 69 Zengchan Road, Hebei District, Tianjin, 300250, China
| | - Liyan Zhang
- School of Pharmacy, Guiyang College of Traditional Chinese Medicine, Guiyang, 550002, China
| | - Jingwen Tang
- Guizhou Weimen Pharmaceutical Co., Ltd, No. 23 Gaoxin Road, Wudang District, Guiyang City, Guizhou, 550004, China
| | - Liping Lu
- Guizhou Weimen Pharmaceutical Co., Ltd, No. 23 Gaoxin Road, Wudang District, Guiyang City, Guizhou, 550004, China
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No. 69 Zengchan Road, Hebei District, Tianjin, 300250, China.
| |
Collapse
|
18
|
Govindarasu M, Abirami P, Rajakumar G, Ansari MA, Alomary MN, Aba Alkhayl FF, Aloliqi AA, Thiruvengadam M, Vaiyapuri M. Kaempferitrin inhibits colorectal cancer cells by inducing reactive oxygen species and modulating PI3K/AKT signalling pathway. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Qu C, Ma T, Yan X, Li X, Li Y. Overexpressed PAQR4 predicts poor overall survival and construction of a prognostic nomogram based on PAQR family for hepatocellular carcinoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:3069-3090. [PMID: 35240821 DOI: 10.3934/mbe.2022142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE We aimed to explore the expression and clinical prognostic significance of PAQR4 in hepatocellular carcinoma (HCC). METHODS We obtained the gene expression matrix and clinical data of HCC from the cancer genome atlas (TCGA) and international cancer genome consortium (ICGC) databases. The prognostic value of PAQR4 in HCC was evaluated using the Kaplan-Meier and Cox regression analyses. PAQR4-related pathways were explored by gene set enrichment analysis (GSEA). A clinical nomogram prognostic model based on the PAQR family was constructed using Cox proportional hazards models. RESULTS We found that PAQR4 is overexpressed in HCC from multiple databases; additionally, quantitative real-time polymerase chain reaction (qRT-PCR) validated the upregulation of PAQR4 in HCC. PAQR4 expression was related to age, grade, alpha fetoprotein (AFP), T classification and clinical stage of HCC patients. High PAQR4 expression was associated with poor overall survival and was an independent prognostic factor for HCC patients through Kaplan-Meier analysis and Cox regression analysis, respectively. In addition, GSEA identified that the high PAQR4 expression phenotype was involved in the cell cycle, Notch signaling pathway, mTOR signaling pathway, etc. Finally, three PAQR family genes (PAQR4, PAQR8 and PAQR9) were associated with the prognosis of patients with HCC. A clinical nomogram prediction model was verified in TCGA training and ICGC validation sets, and it exerted dramatic predictive efficiency in this study. CONCLUSIONS PAQR4 may be regarded as a promising prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Caihao Qu
- Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
| | - Tengda Ma
- Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
| | - Xin Yan
- Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
| | - Xiaomei Li
- Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
| | - Yumin Li
- Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
20
|
Breviscapine Participates in the Progression of Prostate Cancer by Inhibiting ZFP91 Expression through Upregulation of MicroRNA-129-5p. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1511607. [PMID: 34925523 PMCID: PMC8674053 DOI: 10.1155/2021/1511607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022]
Abstract
Objective To investigate the effect of breviscapine (BVP) on the development of prostate cancer and its molecular mechanism. Materials and Methods After treatment with breviscapine and microRNA-129-5p, MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) and cell counting kit-8 (CCK-8) tests were performed to examine the proliferation rate of cells, while Transwell was used to analyze cell migration ability; at the same time, quantitative real-time polymerase chain reaction (qRT-PCR) was applied to detect the expression of microRNA-129-5p and ZFP91 in prostate cancer cells. In addition, the binding of microRNA-129-5p and ZFP91 was confirmed by dual-luciferase reporting assay; meanwhile, cell reverse experiment verified that breviscapine can regulate ZFP91 via upregulating microRNA-129-5p. Results The results of MTT, CCK-8, and Transwell experiments demonstrated that breviscapine inhibited the proliferation as well as the migration capacities of PC cells; meanwhile, it upregulated the level of microRNA-129-5p in PC cells while downregulated that of ZFP91. Furthermore, dual-luciferase reporter gene assay verified that ZFP91 was a potential target of microRNA-129-5p. Finally, cell reverse experiment confirmed that breviscapine downregulated ZFP91 expression by upregulating microRNA-129-5p, while downregulation of microRNA-129-5p partially reversed the inhibitory effect of breviscapine on cell proliferation ability. Conclusions Breviscapine may inhibit the expression of ZFP91 through upregulating microRNA-129-5p and thus participating in the progression of PC.
Collapse
|
21
|
Zhao G, Shi X, Sun Z, Zhao P, Lu Z. PAQR4 promotes the development of hepatocellular carcinoma by activating PI3K/AKT pathway. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1602-1613. [PMID: 34718369 DOI: 10.1093/abbs/gmab143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 01/10/2023] Open
Abstract
Progestin and adipoQ receptor 4 (PAQR4) is a novel tumorigenic factor that promotes cell proliferation and metastasis in lung and breast cancer, but its role in hepatocellular carcinoma (HCC) is unknown. The aim of our study was to explore its role and underlying mechanism in the development of HCC. Analysis of GEPIA database indicated that PAQR4 was highly expressed in HCC samples, and the mRNA level of PAQR4 was negatively correlated with the overall survival of HCC patients. Knockdown of PAQR4 in Hep3B cells suppressed cell proliferation by hindering G1/S transition of cell cycle as shown by the flow cytometry analysis. PAQR4 knockdown also expedited the cell apoptosis. Knockdown of PAQR4 repressed the migratory and invasive potential of Hep3B cells. PAQR4 knockdown sensitized Hep3B cells to apatinib-based chemotherapy. PAQR4 knockdown blocked the activation of PI3K/AKT pathway, as reflected by the reduced phosphorylation of AKT and p85. Conversely, overexpression of PAQR4 exerted opposite effects in Huh-7 cells. PI3K inhibitor LY294002 could eliminate the effects of PAQR4 on cell proliferation, apoptosis, chemoresistance, and invasion. In tumor xenograft model, knockdown of PAQR4 suppressed tumor growth in vivo, while PAQR4 overexpression promoted tumor growth. Collectively, our data suggest that PAQR4 has a tumorigenic effect on HCC progression by activating PI3K/AKT pathway.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaobao Shi
- Department of Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110004, China
| | - Zhanbo Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Pengfei Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
22
|
Monticolo F, Chiusano ML. Computational Approaches for Cancer-Fighting: From Gene Expression to Functional Foods. Cancers (Basel) 2021; 13:4207. [PMID: 34439361 PMCID: PMC8393935 DOI: 10.3390/cancers13164207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023] Open
Abstract
It is today widely accepted that a healthy diet is very useful to prevent the risk for cancer or its deleterious effects. Nutrigenomics studies are therefore taking place with the aim to test the effects of nutrients at molecular level and contribute to the search for anti-cancer treatments. These efforts are expanding the precious source of information necessary for the selection of natural compounds useful for the design of novel drugs or functional foods. Here we present a computational study to select new candidate compounds that could play a role in cancer prevention and care. Starting from a dataset of genes that are co-expressed in programmed cell death experiments, we investigated on nutrigenomics treatments inducing apoptosis, and searched for compounds that determine the same expression pattern. Subsequently, we selected cancer types where the genes showed an opposite expression pattern and we confirmed that the apoptotic/nutrigenomics expression trend had a significant positive survival in cancer-affected patients. Furthermore, we considered the functional interactors of the genes as defined by public protein-protein interaction data, and inferred on their involvement in cancers and/or in programmed cell death. We identified 7 genes and, from available nutrigenomics experiments, 6 compounds effective on their expression. These 6 compounds were exploited to identify, by ligand-based virtual screening, additional molecules with similar structure. We checked for ADME criteria and selected 23 natural compounds representing suitable candidates for further testing their efficacy in apoptosis induction. Due to their presence in natural resources, novel drugs and/or the design of functional foods are conceivable from the presented results.
Collapse
Affiliation(s)
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy;
| |
Collapse
|
23
|
Chen W, Cen S, Zhou X, Yang T, Wu K, Zou L, Luo J, Li C, Lv D, Mao X. Circular RNA CircNOLC1, Upregulated by NF-KappaB, Promotes the Progression of Prostate Cancer via miR-647/PAQR4 Axis. Front Cell Dev Biol 2021; 8:624764. [PMID: 33490086 PMCID: PMC7820754 DOI: 10.3389/fcell.2020.624764] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Background CircRNAs recently have shown critical roles in tumor biology. However, their roles in prostate cancer (PCa) remains largely unclear. Methods CircRNA microarrays were performed in immortal prostate cell line RWPE1 and PCa cell lines as DU145, PC3, LNCaP, C4-2, and 22RV1. Combined with upregulated circRNAs in PCa tissues, circNOLC1 expression was validated in PCa cells and tissues via qRT-PCR and FISH. Sanger sequencing, actinomycin D, gDNA, and cDNA, RNase R assays were used to assess the circular characteristics of circNOLC1. CCK-8, colony formation, transwell migration assays, and mice xenograft models were conducted to evaluate the functions of PCa cells after circNOLC1 knockdown and overexpression. RNA pulldown, luciferase reporter assay, FISH (fluorescence in situ hybridization), and CHIP were utilized to illustrate the further mechanisms of circNOLC1. Results Our research indicated that circNOLC1 was overexpressed in PCa cells and tissues, and circNOLC1 was more stable than linear NOLC1 mRNA. CircNOLC1 promoted PCa cells proliferation and migration in vitro and vivo. Additionally, we found that circNOLC1 could upregulate PAQR4 expression by sponging miR-647, leading to the activation of PI3K/Akt pathway. Moreover, NF-kappaB was identified to bind to the NOLC1 promoter sites and upregulated both NOLC1 and circNOLC1 expression. Conclusion CircNOLC1, elevated by transcription factor NF-kappaB, promotes PCa progression via a miR-647/PAQR4 axis, and circNOLC1 is a potential biomarker and target for PCa treatment.
Collapse
Affiliation(s)
- Wenbin Chen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shengren Cen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xumin Zhou
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Taowei Yang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kaihui Wu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Libin Zou
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junqi Luo
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanyin Li
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Daojun Lv
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|