1
|
Yaghoobi A, Rezaee M, Hedayati N, Keshavarzmotamed A, Khalilzad MA, Russel R, Asemi Z, Rajabi Moghadam H, Mafi A. Insight into the cardioprotective effects of melatonin: shining a spotlight on intercellular Sirt signaling communication. Mol Cell Biochem 2025; 480:799-823. [PMID: 38980593 DOI: 10.1007/s11010-024-05002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/25/2024] [Indexed: 07/10/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death and illness worldwide. While there have been advancements in the treatment of CVDs using medication and medical procedures, these conventional methods have limited effectiveness in halting the progression of heart diseases to complete heart failure. However, in recent years, the hormone melatonin has shown promise as a protective agent for the heart. Melatonin, which is secreted by the pineal gland and regulates our sleep-wake cycle, plays a role in various biological processes including oxidative stress, mitochondrial function, and cell death. The Sirtuin (Sirt) family of proteins has gained attention for their involvement in many cellular functions related to heart health. It has been well established that melatonin activates the Sirt signaling pathways, leading to several beneficial effects on the heart. These include preserving mitochondrial function, reducing oxidative stress, decreasing inflammation, preventing cell death, and regulating autophagy in cardiac cells. Therefore, melatonin could play crucial roles in ameliorating various cardiovascular pathologies, such as sepsis, drug toxicity-induced myocardial injury, myocardial ischemia-reperfusion injury, hypertension, heart failure, and diabetic cardiomyopathy. These effects may be partly attributed to the modulation of different Sirt family members by melatonin. This review summarizes the existing body of literature highlighting the cardioprotective effects of melatonin, specifically the ones including modulation of Sirt signaling pathways. Also, we discuss the potential use of melatonin-Sirt interactions as a forthcoming therapeutic target for managing and preventing CVDs.
Collapse
Affiliation(s)
- Alireza Yaghoobi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | | | | | - Reitel Russel
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hasan Rajabi Moghadam
- Department of Cardiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Huang W, Zheng J, Wang M, Du LY, Bai L, Tang H. The potential therapeutic role of melatonin in organ fibrosis: a comprehensive review. Front Med (Lausanne) 2024; 11:1502368. [PMID: 39735699 PMCID: PMC11681627 DOI: 10.3389/fmed.2024.1502368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/30/2024] [Indexed: 12/31/2024] Open
Abstract
Organ fibrosis is a pathological process characterized by the inability of normal tissue cells to regenerate sufficiently to meet the dynamic repair demands of chronic injury, resulting in excessive extracellular matrix deposition and ultimately leading to organ dysfunction. Despite the increasing depth of research in the field of organ fibrosis and a more comprehensive understanding of its pathogenesis, effective treatments for fibrosis-related diseases are still lacking. Melatonin, a neuroendocrine hormone synthesized by the pineal gland, plays a crucial role in regulating biological rhythms, sleep, and antioxidant defenses. Recent studies have shown that melatonin may have potential in inhibiting organ fibrosis, possibly due to its functions in anti-oxidative stress, anti-inflammation, remodeling the extracellular matrix (ECM), inhibiting epithelial-mesenchymal transition (EMT), and regulating apoptosis, thereby alleviating fibrosis. This review aims to explore the therapeutic potential of melatonin in fibrosis-related human diseases using findings from various in vivo and in vitro studies. These discoveries should provide important insights for the further development of new drugs to treat fibrosis.
Collapse
Affiliation(s)
- Wei Huang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Juan Zheng
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ming Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ling-Yao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Nath A, Ghosh S, Bandyopadhyay D. Role of melatonin in mitigation of insulin resistance and ensuing diabetic cardiomyopathy. Life Sci 2024; 355:122993. [PMID: 39154810 DOI: 10.1016/j.lfs.2024.122993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Addressing insulin resistance or hyperinsulinemia might offer a viable treatment approach to stop the onset of diabetic cardiomyopathy, as these conditions independently predispose to the development of the disease, which is initially characterized by diastolic abnormalities. The development of diabetic cardiomyopathy appears to be driven mainly by insulin resistance or impaired insulin signalling and/or hyperinsulinemia. Oxidative stress, hypertrophy, fibrosis, cardiac diastolic dysfunction, and, ultimately, systolic heart failure are the outcomes of these pathophysiological alterations. Melatonin is a ubiquitous indoleamine, a widely distributed compound secreted mainly by the pineal gland, and serves a variety of purposes in almost every living creature. Melatonin is found to play a leading role by improving myocardial cell metabolism, decreasing vascular endothelial cell death, reversing micro-circulation disorders, reducing myocardial fibrosis, decreasing oxidative and endoplasmic reticulum stress, regulating cell autophagy and apoptosis, and enhancing mitochondrial function. This review highlights a relationship between insulin resistance and associated cardiomyopathy. It explores the potential therapeutic strategies offered by the neurohormone melatonin, an important antioxidant that plays a leading role in maintaining glucose homeostasis by influencing the glucose transporters independently and through its receptors. The vast distribution of melatonin receptors in the body, including beta cells of pancreatic islets, asserts the role of this indole molecule in maintaining glucose homeostasis. Melatonin controls the production of GLUT4 and/or the phosphorylation process of the receptor for insulin and its intracellular substrates, activating the insulin-signalling pathway through its G-protein-coupled membrane receptors.
Collapse
Affiliation(s)
- Anupama Nath
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science, Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Songita Ghosh
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science, Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science, Technology and Agriculture, 92 APC Road, Kolkata 700 009, India.
| |
Collapse
|
4
|
Atacak A, Baltaci SB, Akgun-Unal N, Mogulkoc R, Baltaci AK. Melatonin protects retinal tissue damage in streptozotocin-induced aged rats. Arch Gerontol Geriatr 2023; 112:105035. [PMID: 37075585 DOI: 10.1016/j.archger.2023.105035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVES The aim of this study was to investigate how melatonin administration affects retinal oxidative damage and retinal SIRT1 gene activation in diabetic elderly female rat model. METHODS 16-months-old female rats were used in the study. A total of 24 rats were divided into 4 groups in equal numbers: Group 1. Control, Group 2. Control + Melatonin, Group 3. Diabetes, Group 4. Diabetes + Melatonin. In group 3 and 4 rats, diabetes was induced by intraperitoneal (IP) injection of streptozotocin. Groups 2 and 4 were given ip melatonin for 4 weeks. SIRT-1 gene expression was determined by PCR method and GSH and MDA levels by ELISA in retinal tissue samples taken from animals sacrificed under general anesthesia. RESULTS In our study, the highest retinal SIRT1 expression values were obtained in the diabetes + melatonin (G4) group. The retinal SIRT1 expression values of the diabetes group (G3) were lower than group 4 and higher than the general control (G1) and control + melatonin (G2) groups. Again in our study, the highest retinal MDA values were obtained in the diabetes group (G3). The highest retinal GSH values were obtained in the Diabetes + melatonin group (G4). CONCLUSION The results of our study showed that melatonin supplementation has a protective effect on retinal tissue in a diabetic elderly female rat model. This protective effect of melatonin supplementation occurs by increasing both retinal antioxidant activity and retinal SIRT1 gene expression.
Collapse
Affiliation(s)
- Adem Atacak
- Medical Faculty Department of Physiology, Selcuk University, Konya, Turkey
| | | | - Nilufer Akgun-Unal
- Department of Biophysics, Faculty of Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | - Rasim Mogulkoc
- Medical Faculty Department of Physiology, Selcuk University, Konya, Turkey
| | | |
Collapse
|
5
|
Huo JL, Feng Q, Pan S, Fu WJ, Liu Z, Liu Z. Diabetic cardiomyopathy: Early diagnostic biomarkers, pathogenetic mechanisms, and therapeutic interventions. Cell Death Discov 2023; 9:256. [PMID: 37479697 PMCID: PMC10362058 DOI: 10.1038/s41420-023-01553-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) mainly refers to myocardial metabolic dysfunction caused by high glucose, and hyperglycemia is an independent risk factor for cardiac function in the absence of coronary atherosclerosis and hypertension. DCM, which is a severe complication of diabetes, has become the leading cause of heart failure in diabetic patients. The initial symptoms are inconspicuous, and patients gradually exhibit left ventricular dysfunction and eventually develop total heart failure, which brings a great challenge to the early diagnosis of DCM. To date, the underlying pathological mechanisms of DCM are complicated and have not been fully elucidated. Although there are therapeutic strategies available for DCM, the treatment is mainly focused on controlling blood glucose and blood lipids, and there is a lack of effective drugs targeting myocardial injury. Thus, a large percentage of patients with DCM inevitably develop heart failure. Given the neglected initial symptoms, the intricate cellular and molecular mechanisms, and the lack of available drugs, it is necessary to explore early diagnostic biomarkers, further understand the signaling pathways involved in the pathogenesis of DCM, summarize the current therapeutic strategies, and develop new targeted interventions.
Collapse
Affiliation(s)
- Jin-Ling Huo
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Qi Feng
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Wen-Jia Fu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| | - Zhenzhen Liu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
6
|
Farshidianfar M, Ardekani A, Tabrizi R, Lankarani KB, Taherifard E, Abdollahi A, Azizi A, Akbari M. Effects of Melatonin on Cardiac Injury and Inflammatory Biomarkers in Patients Undergoing Coronary Artery Bypass Graft Surgery: a Meta-analysis. Cardiol Ther 2023; 12:11-20. [PMID: 36352301 PMCID: PMC9986370 DOI: 10.1007/s40119-022-00287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The antiinflammatory and antioxidative effects of melatonin have been established in recent years. Several studies indicate that oxidative stress and inflammation are key drivers of post-coronary artery bypass graft (CABG) surgery complications. In the present study, we aimed to investigate the effects of melatonin on cardiac injury and inflammatory biomarkers in CABG candidates. METHODS Embase, Medline/PubMed, Web of Science, Scopus, and the Cochrane library were searched up to 5 June 2022. All randomized controlled trials examining cardiac injury and inflammatory biomarkers of CABG patients who received melatonin were included. The random-effects model was utilized to perform the analysis. RESULTS A total of 947 citations were retrieved through database searches. Finally, five articles (six trials with 342 patients) were included after the screening. Melatonin supplementation led to a significant reduction in cardiac troponin I (CTnI) [weighted mean difference(WMD): -2.28 ng/ml; 95% CI -2.87, -1.69; P < 0.01; I2: 91.25%] and high sensitivity-C reactive protein (hs-CRP) levels (WMD: -0.62 mg/L; 95% CI -0.73, -0.5; P < 0.01; I2: 99.98%) in patients undergoing CABG surgery. We found a nonsignificant decrease in creatine kinase isoenzyme muscle/brain (CK-MB) levels (WMD: -2.87 ng/ml; 95% CI -5.97, 0.23; P = 0.07; I2: 99.98%) after melatonin supplementation. No publication bias was found according to Egger's test. CONCLUSION Melatonin supplementation may be useful in reducing cardiac injury and inflammatory biomarkers in CABG candidates. Future studies should investigate the clinical significance of these findings.
Collapse
Affiliation(s)
- Melika Farshidianfar
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Ali Ardekani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.,School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.,Clinical Research Development Unit, Valiasr Hospital, Fasa University of Medical Sciences, Fasa, Iran.,USERN Office, Fasa University of Medical Sciences, Fasa, Iran
| | - Kamran B Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Erfan Taherifard
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ashkan Abdollahi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arezou Azizi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.,School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Akbari
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Chen Y, Zhang SP, Gong WW, Zheng YY, Shen JR, Liu X, Gu YH, Shi JH, Meng GL. Novel Therapeutic Potential of Retinoid-Related Orphan Receptor α in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24043462. [PMID: 36834872 PMCID: PMC9959049 DOI: 10.3390/ijms24043462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
The retinoid-related orphan receptor α (RORα) is one subfamily of nuclear hormone receptors (NRs). This review summarizes the understanding and potential effects of RORα in the cardiovascular system and then analyzes current advances, limitations and challenges, and further strategy for RORα-related drugs in cardiovascular diseases. Besides regulating circadian rhythm, RORα also influences a wide range of physiological and pathological processes in the cardiovascular system, including atherosclerosis, hypoxia or ischemia, myocardial ischemia/reperfusion injury, diabetic cardiomyopathy, hypertension, and myocardial hypertrophy. In terms of mechanism, RORα was involved in the regulation of inflammation, apoptosis, autophagy, oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial function. Besides natural ligands for RORα, several synthetic RORα agonists or antagonists have been developed. This review mainly summarizes protective roles and possible mechanisms of RORα against cardiovascular diseases. However, there are also several limitations and challenges of current research on RORα, especially the difficulties on the transformability from the bench to the bedside. By the aid of multidisciplinary research, breakthrough progress on RORα-related drugs to combat cardiovascular disorder may appear.
Collapse
Affiliation(s)
- Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shu-Ping Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Wei-Wei Gong
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yang-Yang Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jie-Ru Shen
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases, Nantong University, Nantong 226001, China
| | - Xiao Liu
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases, Nantong University, Nantong 226001, China
| | - Yun-Hui Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jia-Hai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases, Nantong University, Nantong 226001, China
- Correspondence: (J.-H.S.); (G.-L.M.); Tel.: +86-513-8116-0901 (J.-H.S.); +86-513-8505-1726 (G.-L.M.); Fax: +86-513-8116-0901 (J.-H.S.); +86-513-8505-1728 (G.-L.M.)
| | - Guo-Liang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
- Correspondence: (J.-H.S.); (G.-L.M.); Tel.: +86-513-8116-0901 (J.-H.S.); +86-513-8505-1726 (G.-L.M.); Fax: +86-513-8116-0901 (J.-H.S.); +86-513-8505-1728 (G.-L.M.)
| |
Collapse
|
8
|
Luchetti F, Balduini W, Carloni S, Nasoni M, Reiter R. Melatonin, tunneling nanotubes, mesenchymal cells, and tissue regeneration. Neural Regen Res 2023; 18:760-762. [DOI: 10.4103/1673-5374.353480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Franco C, Sciatti E, Favero G, Bonomini F, Vizzardi E, Rezzani R. Essential Hypertension and Oxidative Stress: Novel Future Perspectives. Int J Mol Sci 2022; 23:ijms232214489. [PMID: 36430967 PMCID: PMC9692622 DOI: 10.3390/ijms232214489] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Among cardiovascular diseases, hypertension is one of the main risk factors predisposing to fatal complications. Oxidative stress and chronic inflammation have been identified as potentially responsible for the development of endothelial damage and vascular stiffness, two of the primum movens of hypertension and cardiovascular diseases. Based on these data, we conducted an open-label randomized study, first, to evaluate the endothelial damage and vascular stiffness in hypertense patients; second, to test the effect of supplementation with a physiological antioxidant (melatonin 1 mg/day for 1 year) in patients with essential hypertension vs. hypertensive controls. Twenty-three patients of either gender were enrolled and randomized 1:1 in two groups (control and supplemented group). The plasmatic total antioxidant capacity (as a marker of oxidative stress), blood pressure, arterial stiffness, and peripheral endothelial function were evaluated at the beginning of the study and after 1 year in both groups. Our results showed that arterial stiffness improved significantly (p = 0.022) in supplemented patients. The endothelial function increased too, even if not significantly (p = 0.688), after 1 year of melatonin administration. Moreover, the supplemented group showed a significative reduction in TAC levels (p = 0.041) correlated with the improvement of arterial stiffness. These data suggest that melatonin may play an important role in reducing the serum levels of TAC and, consequently, in improving arterial stiffness.
Collapse
Affiliation(s)
- Caterina Franco
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Edoardo Sciatti
- Cardiology Unit 1, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Gaia Favero
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Francesca Bonomini
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (SISDO), 25123 Brescia, Italy
| | - Enrico Vizzardi
- Section of Cardiovascular Diseases, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy
- Correspondence: (E.V.); (R.R.)
| | - Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (SISDO), 25123 Brescia, Italy
- Correspondence: (E.V.); (R.R.)
| |
Collapse
|
10
|
Tobeiha M, Jafari A, Fadaei S, Mirazimi SMA, Dashti F, Amiri A, Khan H, Asemi Z, Reiter RJ, Hamblin MR, Mirzaei H. Evidence for the Benefits of Melatonin in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:888319. [PMID: 35795371 PMCID: PMC9251346 DOI: 10.3389/fcvm.2022.888319] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
The pineal gland is a neuroendocrine gland which produces melatonin, a neuroendocrine hormone with critical physiological roles in the circadian rhythm and sleep-wake cycle. Melatonin has been shown to possess anti-oxidant activity and neuroprotective properties. Numerous studies have shown that melatonin has significant functions in cardiovascular disease, and may have anti-aging properties. The ability of melatonin to decrease primary hypertension needs to be more extensively evaluated. Melatonin has shown significant benefits in reducing cardiac pathology, and preventing the death of cardiac muscle in response to ischemia-reperfusion in rodent species. Moreover, melatonin may also prevent the hypertrophy of the heart muscle under some circumstances, which in turn would lessen the development of heart failure. Several currently used conventional drugs show cardiotoxicity as an adverse effect. Recent rodent studies have shown that melatonin acts as an anti-oxidant and is effective in suppressing heart damage mediated by pharmacologic drugs. Therefore, melatonin has been shown to have cardioprotective activity in multiple animal and human studies. Herein, we summarize the most established benefits of melatonin in the cardiovascular system with a focus on the molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and Endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, United States
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
11
|
Zhuo X, Jiang H. Protective effects of melatonin in cisplatin-induced cardiac toxicity: possible role of BDNF-TNF-α signaling pathway. Acta Cir Bras 2022; 37:e370208. [PMID: 35507972 PMCID: PMC9064185 DOI: 10.1590/acb370208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022] Open
Abstract
Purpose: The present study explored the role of melatonin in cisplatin-induced cardiac injury along with the possible role of brain-derived neurotrophic factor (BDNF) in melatonin-mediated effects. Methods: Wistar rats were administered cisplatin (10 mg/kg), and cardiac injury was assessed by measuring the levels of cardiac troponin (cTnT) and lactate dehydrogenase (LDH-1).The extent of apoptosis was measured by measuring caspase-3 (pro-apoptotic) and Bcl-2 (anti-apoptotic) in hearts. The levels of BDNF, tumour necrosis factor α (TNF-α) and reduced glutathione were measured in heart. Melatonin (5 and 10 mg/kg) was administered for 15 days, and the role of BDNF was identified by co-administering BDNF inhibitor, ANA-12 (0.25 and 0.5 mg/kg). Results: Melatonin attenuated cTnT and LDH-1 levels along with reduction in caspase-3 and increase in Bcl-2. It also increased cisplatin-induced decrease in BDNF, increase in TNF-α and decrease in reduced glutathione levels. Moreover, ANA-12 abolished the cardioprotective effects, anti-inflammatory and antioxidant effects of melatonin suggesting the role of BDNF in melatonin-mediated effects in cisplatin-induced cardiac injury. Conclusions: Melatonin is useful in cisplatin-induced cardiac injury, which may be due to an increase in BDNF, decrease in inflammation and increase in antioxidant activities.
Collapse
|
12
|
Hoseini SG, Heshmat‐Ghahdarijani K, Khosrawi S, Garakyaraghi M, Shafie D, Mansourian M, Roohafza H, Azizi E, Sadeghi M. Melatonin supplementation improves N-terminal pro-B-type natriuretic peptide levels and quality of life in patients with heart failure with reduced ejection fraction: Results from MeHR trial, a randomized clinical trial. Clin Cardiol 2022; 45:417-426. [PMID: 35170783 PMCID: PMC9019884 DOI: 10.1002/clc.23796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Melatonin, the major secretion of the pineal gland, has beneficial effects on the cardiovascular system and might advantage heart failure with reduced ejection fraction (HFrEF) by attenuating the effects of the renin-angiotensin-aldosterone and sympathetic system on the heart besides its antioxidant and anti-inflammatory effects. HYPOTHESIS We hypothesized that oral melatonin might improve echocardiographic parameters, serum biomarkers, and a composite clinical outcome (including quality of life, hospitalization, and mortality) in patients with HFrEF. METHODS A placebo-controlled double-blinded randomized clinical trial was conducted on patients with stable HFrEF. The intervention was 10 mg melatonin or placebo tablets administered every night for 24 weeks. Echocardiography and measurements of N-terminal pro-B-type natriuretic peptide (NT-Pro BNP), high-sensitivity C-reactive protein, lipid profile, and psychological parameters were done at baseline and after 24 weeks. RESULTS Overall, 92 patients were recruited, and 85 completed the study (melatonin: 42, placebo: 43). Serum NT-Pro BNP decreased significantly in the melatonin compared with the placebo group (estimated marginal means for difference [95% confidence interval]: 111.0 [6.2-215.7], p = .044). Moreover, the melatonin group had a significantly better clinical outcome (0.93 [0.18-1.69], p = .017), quality of life (5.8 [0.9-12.5], p = .037), and New York Heart Association class (odds ratio: 12.9 [1.6-102.4]; p = .015) at the end of the trial. Other studied outcomes were not significantly different between groups. CONCLUSIONS Oral melatonin decreased NT-Pro BNP and improved the quality of life in patients with HFrEF. Thus it might be a beneficial supplement in HFrEF.
Collapse
Affiliation(s)
- Shervin G. Hoseini
- Isfahan Cardiovascular Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
- Department of Physical Medicine and Rehabilitation, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Kiyan Heshmat‐Ghahdarijani
- Heart Failure Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| | - Saeid Khosrawi
- Department of Physical Medicine and Rehabilitation, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Mohammad Garakyaraghi
- Heart Failure Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| | - Marjan Mansourian
- Isfahan Cardiovascular Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| | - Hamidreza Roohafza
- Cardiac Rehabilitation Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| | - Elham Azizi
- Cardiac Rehabilitation Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| | - Masoumeh Sadeghi
- Cardiac Rehabilitation Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
13
|
Role of the Antioxidant Activity of Melatonin in Myocardial Ischemia-Reperfusion Injury. Antioxidants (Basel) 2022; 11:antiox11040627. [PMID: 35453312 PMCID: PMC9032762 DOI: 10.3390/antiox11040627] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/01/2022] Open
Abstract
Ischemia-reperfusion injury is a common problem in the age of interventional cardiology; it is primarily mediated by oxidative stress and reactive agents. Melatonin has antioxidative properties that make its use promising for treating ischemia-reperfusion injury. Multiple experimental studies in murine and porcine models have been performed with good results. Clinical trials have also been conducted but given their heterogeneity, no conclusive results can be made. Melatonin pharmacokinetic properties are not ideal; therefore, many analogs have been proposed with improved characteristics, and some studies have evaluated their efficacy in animal models, but clinical trials are needed to recommend their use. In this review, we expose the results of the most impactful studies regarding melatonin use in ischemia-reperfusion injury.
Collapse
|
14
|
Qin R, Zhao Q, Han B, Zhu HP, Peng C, Zhan G, Huang W. Indole-Based Small Molecules as Potential Therapeutic Agents for the Treatment of Fibrosis. Front Pharmacol 2022; 13:845892. [PMID: 35250597 PMCID: PMC8888875 DOI: 10.3389/fphar.2022.845892] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
Indole alkaloids are widely distributed in nature and have been particularly studied because of their diverse biological activities, such as anti-inflammatory, anti-tumor, anti-bacterial, and anti-oxidant activities. Many kinds of indole alkaloids have been applied to clinical practice, proving that indole alkaloids are beneficial scaffolds and occupy a crucial position in the development of novel agents. Fibrosis is an end-stage pathological condition of most chronic inflammatory diseases and is characterized by excessive deposition of fibrous connective tissue components, ultimately resulting in organ dysfunction and even failure with significant morbidity and mortality. Indole alkaloids and indole derivatives can alleviate pulmonary, myocardial, renal, liver, and islet fibrosis through the suppression of inflammatory response, oxidative stress, TGF-β/Smad pathway, and other signaling pathways. Natural indole alkaloids, such as isorhynchophylline, evodiamine, conophylline, indirubin, rutaecarpine, yohimbine, and vincristine, are reportedly effective in organ fibrosis treatment. In brief, indole alkaloids with a wide range of pharmacological bioactivities are important candidate drugs for organ fibrosis treatment. The present review discusses the potential of natural indole alkaloids, semi-synthetic indole alkaloids, synthetic indole derivatives, and indole-contained metabolites in organ fibrosis treatment.
Collapse
Affiliation(s)
- Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wei Huang, ; Gu Zhan,
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wei Huang, ; Gu Zhan,
| |
Collapse
|
15
|
Luan Y, Luan Y, Feng Q, Chen X, Ren KD, Yang Y. Emerging Role of Mitophagy in the Heart: Therapeutic Potentials to Modulate Mitophagy in Cardiac Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3259963. [PMID: 34603595 PMCID: PMC8483925 DOI: 10.1155/2021/3259963] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
The normal function of the mitochondria is crucial for most tissues especially for those that demand a high energy supply. Emerging evidence has pointed out that healthy mitochondrial function is closely associated with normal heart function. When these processes fail to repair the damaged mitochondria, cells initiate a removal process referred to as mitophagy to clear away defective mitochondria. In cardiomyocytes, mitophagy is closely associated with metabolic activity, cell differentiation, apoptosis, and other physiological processes involved in major phenotypic alterations. Mitophagy alterations may contribute to detrimental or beneficial effects in a multitude of cardiac diseases, indicating potential clinical insights after a close understanding of the mechanisms. Here, we discuss the current opinions of mitophagy in the progression of cardiac diseases, such as ischemic heart disease, diabetic cardiomyopathy, cardiac hypertrophy, heart failure, and arrhythmia, and focus on the key molecules and related pathways involved in the regulation of mitophagy. We also discuss recently reported approaches targeting mitophagy in the therapy of cardiac diseases.
Collapse
Affiliation(s)
- Yi Luan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
| | - Xing Chen
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
16
|
Rahbarghazi A, Siahkouhian M, Rahbarghazi R, Ahmadi M, Bolboli L, Mahdipour M, Haghighi L, Hassanpour M, Sokouti Nasimi F, Keyhanmanesh R. Melatonin and prolonged physical activity attenuated the detrimental effects of diabetic condition on murine cardiac tissue. Tissue Cell 2021; 69:101486. [PMID: 33453677 DOI: 10.1016/j.tice.2021.101486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/22/2022]
Abstract
In this study, the combined effects of four-week swimming training and melatonin were examined on the oxidative response, inflammation, apoptosis, and angiogenesis capacity of cardiac tissue in the mouse model of diabetes. The mice were randomly allocated into five groups (n = 10 per group) as follows: Control; Diabetic group; Diabetic + Melatonin group; Diabetic + Exercise group; and Diabetic + Exercise + Melatonin group. 50 mg/kg streptozotocin was intraperitoneally administrated. In melatonin-treated groups, melatonin was injected intraperitoneally at 3 mg/kg body weight for four weeks and twice weekly. Swimming exercises were performed for four weeks. We measured cardiac superoxide dismutase, glutathione peroxidase enzymes, malondialdehyde, and total antioxidant capacity. The expression of tumor necrosis factor-α, Caspase‑3, Sirtuin1, and Connexin-43 was measured using real-time PCR analysis. The vascular density was analyzed by immunohistochemistry using CD31 and α-smooth muscle actin antibodies. The combination of melatonin and exercise elevated cardiac superoxide dismutase, glutathione peroxidase coincided with the reduction of malondialdehyde and increase of total antioxidant capacity as compared to the diabetic mice (p < 0.05). In Diabetic + Exercise + Melatonin mice, tumor necrosis factor-α, Caspase‑3 was significantly down-regulated compared to the Diabetic group (p < 0.05). Melatonin and exercise suppressed the expression of Connexin-43 and Sirtuin1 in diabetic mice in comparison with the control mice (p < 0.05). H & E staining showed necrosis and focal hyperemia reduction in the Diabetic + Exercise + Melatonin group compared to the Diabetic group. Data showed a decrease of CD31+ and α-smooth muscle actin+ vessels in the Diabetic group as compared to the normal samples (p < 0.05). The number of CD31+ vessels, but not α-smooth muscle actin+ type, increased in the Diabetic + Exercise + Melatonin group compared to the Diabetic mice. These data demonstrated that exercise along with melatonin administration could diminish the detrimental effects of diabetes on cardiac tissue via using different mechanisms.
Collapse
Affiliation(s)
- Afshin Rahbarghazi
- Department of Physical Education and Sports Sciences, Faculty of Educational Science and Psychology, University of Mohaghegh Ardabil, Ardabil, Iran; Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marefat Siahkouhian
- Department of Physical Education and Sports Sciences, Faculty of Educational Science and Psychology, University of Mohaghegh Ardabil, Ardabil, Iran.
| | - Reza Rahbarghazi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahdi Ahmadi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lotfali Bolboli
- Department of Physical Education and Sports Sciences, Faculty of Educational Science and Psychology, University of Mohaghegh Ardabil, Ardabil, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Haghighi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Rana Keyhanmanesh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Segovia-Roldan M, Diez ER, Pueyo E. Melatonin to Rescue the Aged Heart: Antiarrhythmic and Antioxidant Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8876792. [PMID: 33791076 PMCID: PMC7984894 DOI: 10.1155/2021/8876792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022]
Abstract
Aging comes with gradual loss of functions that increase the vulnerability to disease, senescence, and death. The mechanisms underlying these processes are linked to a prolonged imbalance between damage and repair. Damaging mechanisms include oxidative stress, mitochondrial dysfunction, chronodisruption, inflammation, and telomere attrition, as well as genetic and epigenetic alterations. Several endogenous tissue repairing mechanisms also decrease. These alterations associated with aging affect the entire organism. The most devastating manifestations involve the cardiovascular system and may lead to lethal cardiac arrhythmias. Together with structural remodeling, electrophysiological and intercellular communication alterations during aging predispose to arrhythmic events. Despite the knowledge on repairing mechanisms in the cardiovascular system, effective antiaging strategies able to reduce the risk of arrhythmias are still missing. Melatonin is a promising therapeutic candidate due to its pleiotropic actions. This indoleamine regulates chronobiology and endocrine physiology. Of relevance, melatonin is an antiaging, antioxidant, antiapoptotic, antiarrhythmic, immunomodulatory, and antiproliferative molecule. This review focuses on the protective effects of melatonin on age-induced cardiac functional and structural alterations, potentially becoming a new fountain of youth for the heart.
Collapse
Affiliation(s)
- Margarita Segovia-Roldan
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), I3A, Universidad de Zaragoza, IIS Aragón and CIBER-BBN, Spain
| | | | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), I3A, Universidad de Zaragoza, IIS Aragón and CIBER-BBN, Spain
| |
Collapse
|
18
|
Reiter RJ, Sharma R. Central and peripheral actions of melatonin on reproduction in seasonal and continuous breeding mammals. Gen Comp Endocrinol 2021; 300:113620. [PMID: 32950582 DOI: 10.1016/j.ygcen.2020.113620] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/13/2020] [Indexed: 02/08/2023]
Abstract
Under field conditions, especially for mammals that inhabit high latitudes, the regulation of seasonal breeding activity to ensure delivery of the young at the time most conducive to their survival is essential. This is most frequently accomplished by the annual reproductive cycle being linked to seasonal photoperiod changes which determine the nocturnal duration of the pineal melatonin signal. Mating can occur during any season that ensures spring/early summer delivery of the offspring. Thus, the season of mating is determined by the duration of pregnancy. The precise hormonal control of the annual cycle of reproduction by melatonin is accomplished at the level of the hypothalamo-pituitary axis which, in turn, determines the physiological state of the gonad and adnexa due to the regulation of pituitary gonadotrophin release. Many species are continuous rather than seasonal breeders. In these species, melatonin has a minor hormonal influence on the central regulation of reproduction but, nevertheless, its antioxidant functions at the level of the gonads support optimal reproductive physiology. Possibly like all cells, those in the ovary, e.g., granulosa cells and oocytes (less is known about melatonin synthesis by the testes or spermatogenic cells), synthesize melatonin which is used locally to combat free radicals and reactive nitrogen species which would otherwise cause oxidative/nitrosative stress to these critically important cells. Oxidative damage to the oocyte, zygote, blastocyst, etc., results in an abnormal fetus which is either sloughed or gives rise to an unhealthy offspring. The importance of the protection of the gametes (both oocytes and sperm) from oxidative molecular mutilation cannot be overstated. Fortunately, as a highly effective free radical scavenger and indirect antioxidant (by upregulating antioxidant enzyme), locally-produced melatonin is in the optimal location to protect the reproductive system from such damage.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, United States.
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, United States
| |
Collapse
|