1
|
Dang Q. LncRNA DARS-AS1 in human cancers: A comprehensive review of its potency as a biomarker and therapeutic target. Gene 2024; 923:148566. [PMID: 38762015 DOI: 10.1016/j.gene.2024.148566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Long non-coding RNAs have emerged as important players in cancer biology. Increasing evidence has uncovered their potency in improving cancer management as they can be used as a credible prognostic and diagnostic biomarker. Recently, DARS-AS1 has gained significant attention for its involvement in facilitating tumor progression. So far, numerous research has been reported its upregulation in different malignancies of human body systems and revealed its association with cancer hallmarks as well as clinicopathological characteristics. Importantly, targeting DARS-AS1 holds promise in cancer therapy. In the current study, we provide an in-depth analysis of its expression status and explore the underlying mechanisms through which DARS-AS1 contributes to tumor initiation, growth, invasion, and metastasis. Additionally, we examine the correlation between DARS-AS1 expression and clinicopathological features of cancer patients, shedding light on its potential as a cancer biomarker. Furthermore, we discuss the therapeutic potential of targeting DARS-AS1 in cancer treatment, highlighting emerging strategies, such as RNA interference and small molecule inhibitors. Boosting the understanding of its functional role can open new avenues for precision medicine, thus resulting in better outcomes for cancer patients.
Collapse
Affiliation(s)
- Qiucai Dang
- Zhumadian Preschool Education College, Zhumadian, Henan Province 463000, China.
| |
Collapse
|
2
|
Xiong H, Liao M, Zhang H, Li Y, Bai J, Zhang J, Li L, Zhang L. DARS expression in BCR/ABL1-negative myeloproliferative neoplasms and its association with the immune microenvironment. Sci Rep 2024; 14:16711. [PMID: 39030308 PMCID: PMC11271514 DOI: 10.1038/s41598-024-67067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
DARS, encoding for aspartyl-tRNA synthetase, is implicated in the pathogenesis of various cancers, including renal cell carcinoma, glioblastoma, colon cancer, and gastric cancer. Its role in BCR/ABL1-negative myeloproliferative neoplasms (MPNs), however, remains unexplored. This study aimed to elucidate the expression of DARS in patients with MPNs (PV 23, ET 19, PMF 16) through immunohistochemical analysis and to examine the profiles of circulating immune cells and cytokines using flow cytometry. Our findings indicate a significant overexpression of DARS in all MPNs subtypes at the protein level compared to controls (P < 0.05). Notably, elevated DARS expression was linked to splenomegaly in MPNs patients. The expression of DARS showed a negative correlation with CD4+ T cells (R = - 0.451, P = 0.0004) and CD4+ T/CD8+ T cell ratio (R = - 0.3758, P = 0.0040), as well as with CD68+ tumor-associated macrophages (R = 0.4037, P = 0.0017). Conversely, it was positively correlated with IL-2 (R = 0.5419, P < 0.001), IL-5 (R = 0.3161, P = 0.0166), IL-6 (R = 0.2992, P = 0.0238), and IFN-γ (R = 0.3873, P = 0.0029). These findings underscore a significant association between DARS expression in MPNs patients and specific clinical characteristics, as well as immune cell composition. Further investigation into the interplay between DARS and the immune microenvironment in MPNs could shed light on the underlying mechanisms of MPNs pathogenesis and immune dysregulation.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Hematology, The Second Hospital of Lanzhou University, Lanzhou, China
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Minjing Liao
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Huitao Zhang
- Department of General Practice, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yanhong Li
- Department of Hematology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Jun Bai
- Department of Hematology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Jinping Zhang
- Department of Hematology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, The Second Hospital of Lanzhou University, Lanzhou, China.
| | - Liansheng Zhang
- Department of Hematology, The Second Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
3
|
Li J, Li Y, Sun X, Wei L, Guan J, Fu L, Du J, Zhang X, Cheng M, Ma H, Jiang S, Zheng Q, Wang L. Silencing lncRNA-DARS-AS1 suppresses nonsmall cell lung cancer progression by stimulating miR-302a-3p to inhibit ACAT1 expression. Mol Carcinog 2024; 63:757-771. [PMID: 38289172 DOI: 10.1002/mc.23686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/17/2023] [Accepted: 01/13/2024] [Indexed: 03/16/2024]
Abstract
Long noncoding RNAs (LncRNAs) have been gaining attention as potential therapeutic targets for lung cancer. In this study, we investigated the expression and biological behavior of lncRNA DARS-AS1, its predicted interacting partner miR-302a-3p, and ACAT1 in nonsmall cell lung cancer (NSCLC). The transcript level of DARS-AS1, miR-302a-3p, and ACAT1 was analyzed using qRT-PCR. Endogenous expression of ACAT1 and the expression of-and changes in-AKT/ERK pathway-related proteins were determined using western blotting. MTS, Transwell, and apoptosis experiments were used to investigate the behavior of cells. The subcellular localization of DARS-AS1 was verified using FISH, and its binding site was verified using dual-luciferase reporter experiments. The binding of DARS-AS1 to miR-302a-3p was verified using RNA co-immunoprecipitation. In vivo experiments were performed using a xenograft model to determine the effect of DARS-AS1 knockout on ACAT1 and NSCLC. lncRNA DARS-AS1 was upregulated in NSCLC cell lines and tissues and the expression of lncRNA DARS-AS1 was negatively correlated with survival of patients with NSCLC. Knockdown of DARS-AS1 inhibited the malignant behaviors of NSCLC via upregulating miR-302a-3p. miR-302a-3p induced suppression of malignancy through regulating oncogene ACAT1. This study demonstrates that the DARS-AS1-miR-302a-3p-ACAT1 pathway plays a key role in NSCLC.
Collapse
Affiliation(s)
- Ji Li
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yizhuo Li
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xiaodan Sun
- Postdoctoral Research Workstation, Jilin Cancer Hospital, Changchun, China
| | - Lai Wei
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jingqian Guan
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lin Fu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jiang Du
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xiupeng Zhang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ming Cheng
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Huan Ma
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Siyu Jiang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Liang Wang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Yang Y, Yan X, Bai X, Yang J, Song J. Programmed cell death-ligand 2: new insights in cancer. Front Immunol 2024; 15:1359532. [PMID: 38605944 PMCID: PMC11006960 DOI: 10.3389/fimmu.2024.1359532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Immunotherapy has revolutionized cancer treatment, with the anti-PD-1/PD-L1 axis therapy demonstrating significant clinical efficacy across various tumor types. However, it should be noted that this therapy is not universally effective for all PD-L1-positive patients, highlighting the need to expedite research on the second ligand of PD-1, known as Programmed Cell Death Receptor Ligand 2 (PD-L2). As an immune checkpoint molecule, PD-L2 was reported to be associated with patient's prognosis and plays a pivotal role in cancer cell immune escape. An in-depth understanding of the regulatory process of PD-L2 expression may stratify patients to benefit from anti-PD-1 immunotherapy. Our review focuses on exploring PD-L2 expression in different tumors, its correlation with prognosis, regulatory factors, and the interplay between PD-L2 and tumor treatment, which may provide a notable avenue in developing immune combination therapy and improving the clinical efficacy of anti-PD-1 therapies.
Collapse
Affiliation(s)
- Yukang Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Xia Yan
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xueqi Bai
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiayang Yang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianbo Song
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Ahmadi M, Najari-Hanjani P, Ghaffarnia R, Ghaderian SMH, Mousavi P, Ghafouri-Fard S. The hsa-miR-3613-5p, a potential oncogene correlated with diagnostic and prognostic merits in kidney renal clear cell carcinoma. Pathol Res Pract 2023; 251:154903. [PMID: 37879147 DOI: 10.1016/j.prp.2023.154903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
MicroRNA-3613 (hsa-miR-3613-5p), a biomarker with a dual role as an oncogenic or tumor suppressor, is associated with different types of cancer. This study aimed to determine the correlation between the hsa-miR-3613-5p gene expression and Kidney renal clear cell carcinoma (KIRC). Utilizing several bioinformatics tools, we examined the expression level and clinicopathological value of hsa-miR-3613-5p in patients with KIRC compared to normal tissues. Other bioinformatic measures, including survival analysis, diagnostic merit of hsa-miR-3613-5p, downstream target prediction, potential upstream lncRNAs, network construction, and functional enrichment analysis of hsa-miR-3613-5p, were performed. We observed that overexpression of hsa-miR-3613-5p in KIRC tissues had valuable diagnostic merit and was significantly correlated with the poor overall survival of KIRC patients. We also realized a correlation between abnormal expression of hsa-miR-3613-5p and several clinical parameters such as pathological stage, race, age, and histological grades in patients with KIRC. Moreover, we constructed the most potential regulatory network of hsa-miR-3613-5p in KIRC with 17 different axes, including four pseudogenes, two lncRNAs, and three mRNAs. Besides, we uncovered six variants in the mature form of hsa-miR-3613-5p. Finally, pathway enrichment analysis demonstrated that the top-ranked pathways for hsa-miR-3613-5p are cell cycle, cell adhesion molecules (CAMs), and hepatocellular carcinoma pathways. The present report suggests that the higher expression of hsa-miR-3613-5p is associated with the progression of KIRC. Therefore, it may be considered a valuable indicator for the early detection, risk stratification, and targeted treatment of patients with KIRC.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Najari-Hanjani
- Department of Genetics, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Roya Ghaffarnia
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Liu X, Zhang G, Yu T, Liu J, Chai X, Yin D, Zhang C. CL4-modified exosomes deliver lncRNA DARS-AS1 siRNA to suppress triple-negative breast cancer progression and attenuate doxorubicin resistance by inhibiting autophagy. Int J Biol Macromol 2023; 250:126147. [PMID: 37544559 DOI: 10.1016/j.ijbiomac.2023.126147] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/12/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Triple-negative breast cancer (TNBC) is a fatal disease. Drug resistance and the lack of effective drugs are the leading causes of death in patients with TNBC. Recently, long non-coding RNAs have been proven to be effective drug design targets owing to their high tissue specificity; however, an effective drug delivery system is necessary for their clinical application. In this study, we constructed a novel nanodrug delivery system based on the epidermal growth factor receptor (EGFR)-targeted aptamer CL4-modified exosomes (EXOs-CL4) for the targeted delivery of aspartyl-tRNA synthetase-antisense RNA 1 (DARS-AS1) small interfering RNA (siRNA) and doxorubicin (DOX) to TNBC cells in vitro and in vivo. This delivery system exerted potent anti-proliferation, anti-migration, and pro-apoptotic effects on TNBC cells. Silencing DARS-AS1 increased the sensitivity of TNBC cells to DOX by suppressing the transforming growth factor-β (TGF-β)/Smad3 signaling pathway-induced autophagy, thereby enhancing the synergetic antitumor effects. Collectively, our findings revealed that EXOs-CL4-mediated delivery of DARS-AS1 siRNA can be used as a new treatment strategy for DOX-resistant TNBC. Moreover, EXOs-CL4 can be used as effective drug delivery systems for targeted TNBC therapy.
Collapse
Affiliation(s)
- Xinli Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Tongyao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Xiaoxia Chai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Dachuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Chenyan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
7
|
Lin H, Qu L, Chen G, Zhang C, Lu L, Chen Y. Comprehensive analysis of necroptosis-related lncRNA signature with potential implications in tumor heterogeneity and prediction of prognosis in clear cell renal cell carcinoma. Eur J Med Res 2023; 28:236. [PMID: 37452355 PMCID: PMC10347828 DOI: 10.1186/s40001-023-01194-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Necroptosis has been reported to play a critical role in occurrence and progression of cancer. The dysregulation of long non-coding RNAs (lncRNAs) is associated with the progression and metastasis of clear cell renal cell carcinoma (CCRCC). However, research on necroptosis-related lncRNAs in the tumor heterogeneity and prognosis of CCRCC is not completely unclear. This study aimed to analysis the tumor heterogeneity among CCRCC subgroups and construct a CCRCC prognostic signature based on necroptosis-related lncRNAs. METHODS Weighted gene co-expression network analysis (WGCNA) was performed to identify necroptosis-related lncRNAs. A preliminary classification of molecular subgroups was performed by non-negative matrix factorization (NMF) consensus clustering analysis. Comprehensive analyses, including fraction genome altered (FGA), tumor mutational burden (TMB), DNA methylation alterations, copy number variations (CNVs), and single nucleotide polymorphisms (SNPs), were performed to explore the potential factors for tumor heterogeneity among the three subgroups. Subsequently, we constructed a predictive signature by multivariate Cox regression. Nomogram, calibration curves, decision curve analysis (DCA), and time-dependent receiver-operating characteristics (ROC) were used to validate and evaluate the signature. Finally, immune correlation analyses, including immune-related signaling pathways, immune cell infiltration status and immune checkpoint gene expression level, were also performed. RESULTS Seven necroptosis-related lncRNAs were screened out by WGCNA, and three subgroups were classified by NMF consensus clustering analysis. There were significant differences in survival prognosis, clinicopathological characteristics, enrichments of immune-related signaling pathway, degree of immune cell infiltration, and expression of immune checkpoint genes in the various subgroups. Most importantly, we found that 26 differentially expressed genes (DEGs) among the 3 subgroups were not affected by DNA methylation alterations, CNVs and SNPs. On the contrary, these DEGs were associated with the seven necroptosis-related lncRNAs. Subsequently, the identified RP11-133F8.2 and RP11-283G6.4 by multivariate Cox regression analysis were involved in the risk model, which could serve as an independent prognostic factor for CCRCC. Finally, qRT-PCR confirmed the differential expression of the two lncRNAs. CONCLUSIONS These findings contributed to understanding the function of necroptosis-related lncRNAs in CCRCC and provided new insights of prognostic evaluation and optimal therapeutic strategy for CCRCC.
Collapse
Affiliation(s)
- Hang Lin
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Lingzhi Qu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Guanqiu Chen
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Liqing Lu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Zhang Q, Ren H, Ge L, Zhang W, Song F, Huang P. A review on the role of long non-coding RNA and microRNA network in clear cell renal cell carcinoma and its tumor microenvironment. Cancer Cell Int 2023; 23:16. [PMID: 36732762 PMCID: PMC9893571 DOI: 10.1186/s12935-023-02861-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Renal cell carcinoma (RCC) is the second lethal urogenital malignancy with the increasing incidence and mortality in the world. Clear cell renal cell carcinoma (ccRCC) is one major subtype of RCC, which accounts for about 70 to 80% of all RCC cases. Although many innovative therapeutic options have emerged during the last few decades, the efficacy of these treatments for ccRCC patients is very limited. To date, the prognosis of patients with advanced or metastatic ccRCC is still poor. The 5-year survival rate of these patients remains less than 10%, which mainly attributes to the complexity and heterogeneity of the tumor microenvironment (TME). It has been demonstrated that long non-coding RNAs (lncRNAs) perform an indispensable role in the initiation and progression of various tumors. They mostly function as sponges for microRNAs (miRNAs) to regulate the expression of target genes, finally influence the growth, metastasis, apoptosis, drug resistance and TME of tumor cells. However, the role of lncRNA/miRNA/mRNA axis in the TME of ccRCC remains poorly understood. In this review, we summarized the biological function of lncRNA/miRNA/mRNA axis in the pathogenesis of ccRCC, then discussed how lncRNA/miRNA/mRNA axis regulate the TME, finally highlighted their potential application as novel biomarkers and therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Qi Zhang
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hao Ren
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Luqi Ge
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Wen Zhang
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China ,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China ,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
Du C, Han X, Zhang Y, Guo F, Yuan H, Wang F, Li M, Ning F, Wang W. DARS-AS1 modulates cell proliferation and migration of gastric cancer cells by regulating miR-330-3p/NAT10 axis. Open Med (Wars) 2022; 17:2036-2045. [PMID: 36568518 PMCID: PMC9755708 DOI: 10.1515/med-2022-0583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/01/2022] [Accepted: 09/18/2022] [Indexed: 12/15/2022] Open
Abstract
The long noncoding RNA DARS-AS1 was aberrantly expressed and participated in several human cancer progressions, whereas whether DARS-AS1 is involved in human gastric cancer remains unclear. This study aimed to investigate the influence of DARS-AS1 on gastric cancer progression and explore the potential regulatory network of DARS-AS1/miR-330-3p/NAT10. The expression levels of DARS-AS1, miR-330-3p, and NAT10 were measured by quantitative real-time polymerase chain reaction. The CCK-8 assay and Transwell assay were used to determine the cell viability, migration, and invasion capacities, respectively. The target association between miR-330-3p and DARS-AS1 or NAT10 was confirmed using a luciferase reporter assay. In result, DARS-AS1 levels were elevated in tumor tissues and associated with shorter overall survival in patients with gastric cancer. Knockdown of DARS-AS1 could hamper cell viability, migration, and invasion in gastric cancer cells. DARS-AS1 acts as a competitive endogenous RNA to regulate the NAT10 expression by sponging miR-330-3p in gastric cancer cells. In conclusion, DARS-AS1 was elevated in gastric cancer, and DARS-AS1/miR-330-3p/NAT10 signaling offered some new horizons for predicting prognosis and a novel therapeutic method for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Chunjuan Du
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China,Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Xia Han
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Yanyan Zhang
- Department of Pediatrics, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Fengli Guo
- Department of Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Haibin Yuan
- Department of Health Management, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Feng Wang
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Mianli Li
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Fangling Ning
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Weibo Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, No 324, Jingwuweiqi Road, Jinan, Shandong, 250021, China
| |
Collapse
|
10
|
Emam O, Wasfey EF, Hamdy NM. Notch-associated lncRNAs profiling circuiting epigenetic modification in colorectal cancer. Cancer Cell Int 2022; 22:316. [PMID: 36229883 PMCID: PMC9558410 DOI: 10.1186/s12935-022-02736-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most prevalent digestive cancers, ranking the 2nd cause of cancer-related fatality worldwide. The worldwide burden of CRC is predicted to rise by 60% by 2030. Environmental factors drive, first, inflammation and hence, cancer incidence increase. Main The Notch-signaling system is an evolutionarily conserved cascade, has role in the biological normal developmental processes as well as malignancies. Long non-coding RNAs (LncRNAs) have become major contributors in the advancement of cancer by serving as signal pathways regulators. They can control gene expression through post-translational changes, interactions with micro-RNAs or down-stream effector proteins. Recent emerging evidence has emphasized the role of lncRNAs in controlling Notch-signaling activity, regulating development of several cancers including CRC. Conclusion Notch-associated lncRNAs might be useful prognostic biomarkers or promising potential therapeutic targets for CRC treatment. Therefore, here-in we will focus on the role of “Notch-associated lncRNAs in CRC” highlighting “the impact of Notch-associated lncRNAs as player for cancer induction and/or progression.” Graphical Abstract ![]()
Collapse
Affiliation(s)
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
11
|
Li J, Gao H, Chen B, Li L, Wang Q, Gao Z. lncRNA DARS-AS1 Modulates TSPAN1-Mediated ITGA2 Hypomethylation by Interaction with miR-194-5p Thus Promoting Ovarian Cancer Progression. Stem Cells Int 2022; 2022:4041550. [PMID: 36187230 PMCID: PMC9522497 DOI: 10.1155/2022/4041550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022] Open
Abstract
Objective Ovarian cancer (OC) is usually called the "silent killer" due to its asymptomatic characteristics until advanced stages, thus being a significant threat to female health worldwide. In this work, we characterized an oncogenic DARS-AS1 role in OC. Methods The aggressiveness behaviors of the OC cell model were examined by CCK-8 assay, transwell invasion assay, flow cytometry, and immunoblotting analysis of apoptosis-related proteins. Interactions of miR-194-5p with lncRNA DARS-AS1 or TSPAN1 and of TSPAN1 with ITGA2 were validated by using a luciferase activity assay and chromatin immunoprecipitation (ChIP) assay. Results The OC cell model exhibited overexpressed lncRNA DARS-AS1 compared to normal cells. lncRNA DARS-AS1 knockdown led to reduced OC cell growth and metastasis while inducing the apoptosis in the OC cell model. lncRNA DARS-AS1 positively regulated TSPAN1 expression by binding with miR-194-5p and TSPAN1-mediated ITGA2 hypomethylation in OC cells. Further rescue function studies demonstrated that lncRNA DARS-AS1 affected OC cell viability, migration, invasion, and apoptosis ability by modulating miR-194-5p and TSPAN1 expressions. Conclusion Our work demonstrates that lncRNA DARS-AS1 promotes OC progression by modulating TSPAN1 and ITGA2 hypomethylation by binding with miR-194-5p.
Collapse
Affiliation(s)
- Jun Li
- Gynecologic Oncology Department, Xinxiang Central Hospital, China
- Xinxiang Medical University, The Fourth Clinical University, China
| | - Haoyu Gao
- Xinxiang Medical University, School of Basic Medical Sciences, China
| | - Beibei Chen
- Gynecologic Oncology Department, Xinxiang Central Hospital, China
| | - Li Li
- Gynecologic Oncology Department, Xinxiang Central Hospital, China
| | - Qianqing Wang
- Gynecologic Oncology Department, Xinxiang Central Hospital, China
| | - Zhihui Gao
- Gynecologic Oncology Department, Xinxiang Central Hospital, China
| |
Collapse
|
12
|
Long non-coding RNA DARS-AS1 promotes tumor progression by directly suppressing PACT-mediated cellular stress. Commun Biol 2022; 5:822. [PMID: 35970927 PMCID: PMC9378715 DOI: 10.1038/s42003-022-03778-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/29/2022] [Indexed: 11/08/2022] Open
Abstract
Cancer cells evolve various mechanisms to overcome cellular stresses and maintain progression. Protein kinase R (PKR) and its protein activator (PACT) are the initial responders in monitoring diverse stress signals and lead to inhibition of cell proliferation and cell apoptosis in consequence. However, the regulation of PACT-PKR pathway in cancer cells remains largely unknown. Herein, we identify that the long non-coding RNA (lncRNA) aspartyl-tRNA synthetase antisense RNA 1 (DARS-AS1) is directly involved in the inhibition of the PACT-PKR pathway and promotes the proliferation of cancer cells. Using large-scale CRISPRi functional screening of 971 cancer-associated lncRNAs, we find that DARS-AS1 is associated with significantly enhanced proliferation of cancer cells. Accordingly, knocking down DARS-AS1 inhibits cell proliferation of multiple cancer cell lines and promotes cancer cell apoptosis in vitro and significantly reduces tumor growth in vivo. Mechanistically, DARS-AS1 directly binds to the activator domain of PACT and prevents PACT-PKR interaction, thereby decreasing PKR activation, eIF2α phosphorylation and inhibiting apoptotic cell death. Clinically, DARS-AS1 is broadly expressed across multiple cancers and the increased expression of this lncRNA indicates poor prognosis. This study elucidates the lncRNA DARS-AS1 directed cancer-specific modulation of the PACT-PKR pathway and provides another target for cancer prognosis and therapeutic treatment. A loss-of-function screen reveals a role for lncRNA DARS-AS1 in promoting cancer cell proliferation and further experiments shows DARS-AS1 regulates the PACT-PKR pathway, overall suggesting it as a potential target for cancer therapy and prognosis.
Collapse
|
13
|
Liu X, Zhang G, Yu T, He J, Liu J, Chai X, Zhao G, Yin D, Zhang C. Exosomes deliver lncRNA DARS-AS1 siRNA to inhibit chronic unpredictable mild stress-induced TNBC metastasis. Cancer Lett 2022; 543:215781. [PMID: 35688263 DOI: 10.1016/j.canlet.2022.215781] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022]
Abstract
Triple-negative breast cancer (TNBC) is a rapidly recurring and highly metastatic malignancy with high heterogeneity and chemoradiotherapy resistance. Chronic unpredictable mild stress (CUMS) can induce the occurrence of tumors and enhance lymphatic infiltration and distant metastasis through direct interaction with the sympathetic nervous system; however, its relevance in TNBC is yet to be clarified. In this study, DARS-AS1, a newly reported CUMS-responsive lncRNA, was found to be enriched in TNBC clinical tumors and cells and positively correlated with late clinical stage in patients with TNBC. DARS-AS1 overexpression significantly enhanced the migration and invasion of TNBC tumors by inhibiting miR-129-2-3p and upregulated CDK1 to activate the NF-κB/STAT3 signaling pathway both in vitro and in vivo. Treatment with DARS-AS1 siRNA-loaded exosomes (EXOs) substantially slowed CUMS-induced TNBC cell growth and liver metastasis. Therefore, DARS-AS1 represents a potential therapeutic target for metastatic TNBC, and EXOs may serve as siRNA delivery carriers in clinical therapy.
Collapse
Affiliation(s)
- Xinli Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Tongyao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jinliang He
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoxia Chai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Gang Zhao
- The First Hospital of Jilin University, Changchun, 130021, China.
| | - Dachuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Chenyan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
14
|
Shen W, Zhu M, Wang Q, Zhou X, Wang J, Wang T, Zhang J. DARS-AS1 recruits METTL3/METTL14 to bind and enhance DARS mRNA m 6A modification and translation for cytoprotective autophagy in cervical cancer. RNA Biol 2022; 19:751-763. [PMID: 35638109 PMCID: PMC9176263 DOI: 10.1080/15476286.2022.2079889] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer (CC) is one of the most prevalent malignancies among females. Cytoprotective autophagy could confer cancer cell tolerance to hypoxic stress, promoting cell survival and adaptation. Aspartyl-tRNA synthetase 1 antisense 1 (DARS-AS1) is an oncogenic long non-coding RNA (lncRNA) in various cancers, but how DARS-AS1 regulates cytoprotective autophagy in hypoxic environment in CC remains unclear. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays were conducted to explore the interaction between hypoxia-inducible factor 1 subunit alpha (HIF1α) and DARS-AS1 promoter. Methylated RNA immunoprecipitation (MeRIP) followed by quantitative real-time polymerase-chain reaction (RT-qPCR) detected methylated RNA level. The process of autophagic maturation was monitored by immunofluorescence staining. Higher DARS-AS1 expression was found in CC tissues and cytoprotective. We also uncovered that hypoxic exposure induced cytoprotective autophagy via HIF1α/DARS-AS1/DARS axis. Moreover, DARS-AS1 was validated to facilitate DARS translation via recruiting N6-adenosine-methyltransferase methyltransferase like 3 (METTL3) and methyltransferase like 14 (METTL14), which bound with DARS mRNA DARS mRNA 5’ untranslated region (5ʹUTR) and promoting its translation. The present study demonstrated that the ‘HIF1α/DARS-AS1/DARS/ATG5/ATG3’ pathway regulated the hypoxia-induced cytoprotective autophagy of CC and might be a promising target of therapeutic strategies for patients afflicted with CC.
Collapse
Affiliation(s)
- Weiwei Shen
- Department of Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Miaohua Zhu
- Department of Gynecology, Ningbo Women's & Children's Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Qiming Wang
- Department of Gynecology, Ningbo Women's & Children's Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Xiaoming Zhou
- Department of Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Jiaying Wang
- Department of Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Tingting Wang
- Department of Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Jing Zhang
- Department of Gynecology, Ningbo Women's & Children's Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
15
|
Hypoxia-induced LncRNA DACT3-AS1 upregulates PKM2 to promote metastasis in hepatocellular carcinoma through the HDAC2/FOXA3 pathway. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:848-860. [PMID: 35764883 PMCID: PMC9256752 DOI: 10.1038/s12276-022-00767-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022]
Abstract
Growing evidence has revealed that hypoxia is involved in multiple stages of cancer development. However, there are limited reports on the effects of long noncoding RNAs (lncRNAs) on hepatocellular carcinoma (HCC) progression under hypoxia. The main purposes of this study were to analyze the effect of the novel lncRNA DACT3-AS1 on metastasis in HCC and to elucidate the related molecular mechanism. Bioinformatics tools were employed. RT–qPCR or western blot assays were conducted to detect RNA or protein expression. Clinical samples and in vivo assays were utilized to reveal the role of DACT3-AS1 in HCC. Other mechanism and functional analyses were specifically designed and performed as well. Based on the collected data, this study revealed that HIF-1α transcriptionally activates DACT3-AS1 expression under hypoxia. DACT3-AS1 was verified to promote metastasis in HCC. Mechanistically, DACT3-AS1 promotes the interaction between HDAC2 and FOXA3 to stimulate FOXA3 deacetylation, which consequently downregulates the FOXA3 protein. Furthermore, FOXA3 serves as a transcription factor that can bind to the PKM2 promoter region, thus hindering PKM2 expression. To summarize, this study uncovered that HIF-1α-induced DACT3-AS1 promotes metastasis in HCC and can upregulate PKM2 via the HDAC2/FOXA3 pathway in HCC cells. Understanding the role of an RNA molecule involved in metastasis (spread) of liver cancer may suggest potential therapeutic targets. Hepatocarcinoma is a common primary liver cancer, and mortality remains high due to late diagnosis and the risk of metastasis. Scientists believe hypoxic (low oxygen) conditions in solid tumors may trigger metastasis by a mechanism involving long non-coding RNAs. Bin Li and co-workers at the Affiliated Hospital of Guilin Medical College, China, used patient tissue samples to examine the role of the long non-coding RNA molecule DACT3-AS1 in promoting hepatocarcinoma metastasis. Hypoxia triggers the overexpression of HIF-1α. This protein activated DACT3-AS1, which was then highly expressed in metastatic tissues. DACT3-AS1 interacted with a nearby gene and associated enzyme to promote cell migration and invasion, hinting at possible treatment options.
Collapse
|
16
|
Khan K, Gogonea V, Fox PL. Aminoacyl-tRNA synthetases of the multi-tRNA synthetase complex and their role in tumorigenesis. Transl Oncol 2022; 19:101392. [PMID: 35278792 PMCID: PMC8914993 DOI: 10.1016/j.tranon.2022.101392] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, 20 aminoacyl-tRNA synthetases (AARS) catalyze the ligation of amino acids to their cognate tRNAs to generate aminoacylated-tRNAs. In higher eukaryotes, 9 of the 20 AARSs, along with 3 auxiliary proteins, join to form the cytoplasmic multi-tRNA synthetase complex (MSC). The complex is absent in prokaryotes, but evolutionary expansion of MSC constituents, primarily by addition of novel interacting domains, facilitates formation of subcomplexes that join to establish the holo-MSC. In some cases, environmental cues direct the release of constituents from the MSC which enables the execution of non-canonical, i.e., "moonlighting", functions distinct from their essential activities in protein translation. These activities are generally beneficial, but can also be deleterious to the cell. Elucidation of the non-canonical activities of several AARSs residing in the MSC suggest they are potential therapeutic targets for cancer, as well as metabolic and neurologic diseases. Here, we describe the role of MSC-resident AARSs in cancer progression, and the factors that regulate their release from the MSC. Also, we highlight recent developments in therapeutic modalities that target MSC AARSs for cancer prevention and treatment.
Collapse
Affiliation(s)
- Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, United States of America
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
17
|
Sun Z, Tang X, Li Q, Wang H, Sun H, Tian J. Mesenchymal stem cell extracellular vesicles-derived microRNA-194-5p delays the development of intervertebral disc degeneration by targeting TRAF6. Regen Ther 2022; 19:88-96. [PMID: 35127996 PMCID: PMC8787669 DOI: 10.1016/j.reth.2021.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 01/08/2023] Open
Abstract
Objective Mesenchymal stem cells-derived extracellular vesicles (MSCs-EVs) can improve intervertebral disc degeneration (IDD). Considering that, their concrete mechanisms from microRNA-194-5p/tumor receptor-associated factor 6 (miR-194-5p/TRAF6) axis in IDD ask for disclosure in a scientific way. Methods Nucleus pulposus (NP) cells and MSCs were obtained. EVs were isolated from the obtained MSCs and identified. miR-194-5p expression in MSC-EVs was altered by sequence transfection. Subsequently, MSCs-EVs were co-cultured with NP cells intervened by tumor necrosis factor α (TNF-α). NP cell proliferation and apoptosis, along with their osteogenic differentiation ability were evaluated. miR-194-5p and TRAF6 expression and their interaction were determined. Results In TNF-α-intervened NP cells, miR-194-5p was down-regulated and TRAF6 was up-regulated. Restoring miR-194-5p effectively enhanced proliferation and osteogenic differentiation, and reduced apoptosis of TNF-α-intervened NP cells. miR-194-5p-enriched MSCs-EVs protected TNF-α-intervened NP cells. miR-194-5p targeted TRAF6, TRAF6 overexpression exerted negatively for the growth of TNF-α-intervened NP cells, and could reduce the protective effects of miR-194-5p on TNF-α-intervened NP cells. Conclusion It is elucidated that miR-194-5p derived from MSCs-EVs protects TNF-α-intervened NP cells through restricting TRAF6, replenishing a potential target for IDD treatment.
Collapse
|
18
|
LncRNAs in the Regulation of Genes and Signaling Pathways through miRNA-Mediated and Other Mechanisms in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2021; 22:ijms222011193. [PMID: 34681854 PMCID: PMC8539140 DOI: 10.3390/ijms222011193] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
The fundamental novelty in the pathogenesis of renal cell carcinoma (RCC) was discovered as a result of the recent identification of the role of long non-coding RNAs (lncRNAs). Here, we discuss several mechanisms for the dysregulation of the expression of protein-coding genes initiated by lncRNAs in the most common and aggressive type of kidney cancer-clear cell RCC (ccRCC). A model of competitive endogenous RNA (ceRNA) is considered, in which lncRNA acts on genes through the lncRNA/miRNA/mRNA axis. For the most studied oncogenic lncRNAs, such as HOTAIR, MALAT1, and TUG1, several regulatory axes were identified in ccRCC, demonstrating a number of sites for various miRNAs. Interestingly, the LINC00973/miR-7109/Siglec-15 axis represents a novel agent that can suppress the immune response in patients with ccRCC, serving as a valuable target in addition to the PD1/PD-L1 pathway. Other mechanisms of action of lncRNAs in ccRCC, involving direct binding with proteins, mRNAs, and genes/DNA, are also considered. Our review briefly highlights methods by which various mechanisms of action of lncRNAs were verified. We pay special attention to protein targets and signaling pathways with which lncRNAs are associated in ccRCC. Thus, these new data on the different mechanisms of lncRNA functioning provide a novel basis for understanding the pathogenesis of ccRCC and the identification of new prognostic markers and targets for therapy.
Collapse
|
19
|
Zhou Y, Zhang Z, Wo M, Xu W. The long non-coding RNA NNT-AS1 promotes clear cell renal cell carcinoma progression via regulation of the miR-137/ Y-box binding protein 1 axis. Bioengineered 2021; 12:8994-9005. [PMID: 34643163 PMCID: PMC8806961 DOI: 10.1080/21655979.2021.1992330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been implicated in the progression of malignant tumors, including in clear cell renal cell carcinoma (ccRCC). However, the function and the specific mechanism of lncRNA nicotinamide nucleotide transhydrogenase antisense RNA 1 (NNT-AS1) in ccRCC remains unknown. Thus, this study explored the role of NNT-AS1 in ccRCC. We evaluated NNT-AS1 expression in ccRCC specimens. Next, CCK-8 and Transwell assays were used to evaluate cell proliferation and metastatic abilities. The interaction between miR-137 and NNT-AS1 or Y-box binding protein 1 (YBX-1) was confirmed using a dual luciferase reporter assay. The results showed that NNT-AS1 was significantly upregulated in ccRCC specimens compared with normal tissues. Inhibition of NNT-AS1 restrained ccRCC proliferation and metastasis. Mechanistically, NNT-AS1 acted as a competitive endogenous RNA to sponge miR-137, which depressed ccRCC cells proliferation and metastasis. Moreover, with the use of bioinformatics analysis, the famous oncogene YBX-1 was selected as the potential target of miR-137. Luciferase assay also confirmed the interaction between miR-137 and YBX-1. Further functional studies demonstrated that the inhibition effect of NNT-AS1 knockdown on ccRCC carcinogenesis could be partially reversed by overexpression of YBX-1, suggesting that NNT-AS1 promotes ccRCC progression through the miR-137/YBX-1 pathway. In summary, these findings indicate that NNT-AS1 promotes ccRCC progression via the miR-137/YBX-1 pathway, which may provide a promising therapeutic target for renal cell carcinoma.
Collapse
Affiliation(s)
- Yadi Zhou
- Clinical Laboratory, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Zhenghao Zhang
- Clinical Laboratory, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Mingyi Wo
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Wenfang Xu
- Clinical Laboratory, Affiliated Hospital of Shaoxing University, Shaoxing, China
| |
Collapse
|
20
|
Liu Y, Liang L, Ji L, Zhang F, Chen D, Duan S, Shen H, Liang Y, Chen Y. Potentiated lung adenocarcinoma (LUAD) cell growth, migration and invasion by lncRNA DARS-AS1 via miR-188-5p/ KLF12 axis. Aging (Albany NY) 2021; 13:23376-23392. [PMID: 34644678 PMCID: PMC8544313 DOI: 10.18632/aging.203632] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 09/18/2021] [Indexed: 12/12/2022]
Abstract
Lung adenocarcinoma (LUAD) is the most common histological type of non-small cell lung cancer (NSCLC). Due to the nonspecific early symptoms, the majority of the diagnosed LUAD patients are in the middle and late stages, with multiple metastases, and have missed the optimal period for treatment. Current studies have reported lncRNA DARS-AS1 as a cancer-promoting gene that expedites tumorigenesis. This is the first study demonstrating that DARS-AS1 is involved in the mediating process of LUAD. Cell functional experiments revealed that lncRNA DARS-AS1 participated in enhancing LUAD proliferation, invasion, and migration by inhibiting miR-188-5p. The investigation on DARS-AS1/miR-188-5p led to the discovery of KLF12 as a downstream target of miR-188-5p, and the regulatory pathway was established as DARS-AS1/miR-188-5p/KLF12. According to western blot results, DARS-AS1 promoted LUAD cell growth, migration, and invasion via stimulation of the PI3K/AKT pathway, activating the EMT process, and up-regulating the CyclinD1 and Bcl-2 proteins. This was the first report on the DARS-AS1/miR-188-5p/KLF12 axis and offered a novel strategy for early diagnosis, a new therapeutic method, and an improved prognosis for LUAD.
Collapse
Affiliation(s)
- Yangyang Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Lu Liang
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Liang Ji
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Fuquan Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Donglai Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Shanzhou Duan
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Shen
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Yao Liang
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Yongbing Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
21
|
Feng Y, Wei G, Zhang L, Zhou H, Wang W, Guo P, Cheng C, Ji L, Cai Q, Feng Y, Tu H. LncRNA DARS-AS1 aggravates the growth and metastasis of hepatocellular carcinoma via regulating the miR-3200-5p-Cytoskeleton associated protein 2 (CKAP2) axis. Bioengineered 2021; 12:8217-8232. [PMID: 34596006 PMCID: PMC8806480 DOI: 10.1080/21655979.2021.1982272] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Accumulating signs have found that long noncoding RNAs (lncRNAs) contribute to hepatocellular carcinoma (HCC). Here, we probed the effect and mechanism of lncRNA DARS-AS1 in HCC. The profiles of DARS-AS1 and Cytoskeleton associated protein 2 (CKAP2) in 50 HCC tissues and non-tumor tissues were examined by real-time quantitative polymerase chain reaction (RT-qPCR). DARS-AS1 and CKAP2 overexpression and/or knockdown cell models were established. The proliferation, apoptosis, invasion and epithelial-mesenchymal transition (EMT) were determined. CKAP2, and focal adhesion kinase (FAK)-extracellular signal-regulated kinase (ERK) was tested by Western blot (WB). The relationship between DARS-AS1 and CKAP2 was predicted by Bioinformatics, and the dual-luciferase reporter assay was applied to verify the targeting association between miR-3200-5p and DARS-AS1 and CKAP2. DARS-AS1 was overexpressed in HCC tissues (vs. that in non-tumor tissues) and was closely correlated with the patients’ tumor stage. DARS-AS1 facilitated HCC cell proliferation and hampered apoptosis. HCC cell migration and EMT were enhanced by DARS-AS1. DARS-AS1 up-regulated CKAP2, which aggravated HCC. Further investigation illustrated that either DARS-AS1 or CKAP2 activated FAK-ERK pathway, and miR-3200-5p was competitively restrained by DARS-AS1. miR-3200-5p exerted tumor-suppressive effects in HCC and inactivated CKAP2 and FAK-ERK pathway. All in all, this study corroborates that DARS-AS1 facilitates HCC proliferation and metastasis by regulating miR-3200-5p-mediated CKAP2, which provides a potential target for HCC diagnosis and treatment. Abbreviations: CCK-8: cell counting kit-8; CKAP2: Cytoskeleton associated protein 2; cDNA:complementary DNA; DAPI: 4ʹ,6-diamidino-2-phenylindole; DARS-AS1: DARS1 antisense RNA 1; DEPC: diethyl pyrocarbonate; DMEM-F12: Dulbecco’s minimal essential medium/Ham’s-F12; EMT: epithelial-mesenchymal transition; ERK: extracellular signal-regulated kinase; FAK: focal adhesion kinase; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HCC: hepatocellular carcinoma; HE: hematoxylin-eosin; IHC: Immunohistochemistry; LIHC: Liver hepatocellular carcinoma; lncRNAs: long noncoding RNAs; MIAT: lncRNA myocardial infarction-related transcripts; MT: Mutant; NC: negative control; PBS: phosphate-buffered saline; PMSF: Phenylmethylsulfonyl fluoride; PVDF: polyvinylidene difluoride; RT: room temperature; RT-qPCR: real-time quantitative polymerase chain reaction; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SPF: specific pathogen-free; TMAP: tumor-associated microtubule-associated protein; TUNEL: TdT-mediated dUTP nick end labeling; V: volume; WT: wild type.
Collapse
Affiliation(s)
- Yanqing Feng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Gang Wei
- Department of Gastroentrology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Linfei Zhang
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Huadong Zhou
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Peng Guo
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Caitao Cheng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lei Ji
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qinghe Cai
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yong Feng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Huahua Tu
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
22
|
Fiori LM, Orri M, Aouabed Z, Théroux JF, Lin R, Nagy C, Frey BN, Lam RW, MacQueen GM, Milev R, Müller DJ, Parikh SV, Rotzinger S, Uher R, Foster JA, Kennedy SH, Turecki G. Treatment-emergent and trajectory-based peripheral gene expression markers of antidepressant response. Transl Psychiatry 2021; 11:439. [PMID: 34420030 PMCID: PMC8380246 DOI: 10.1038/s41398-021-01564-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022] Open
Abstract
Identifying biomarkers of antidepressant response may advance personalized treatment of major depressive disorder (MDD). We aimed to identify longitudinal changes in gene expression associated with response to antidepressants in a sample of MDD patients treated with escitalopram. Patients (N = 153) from the CAN-BIND-1 cohort were treated for 8 weeks, and depressive symptoms were assessed using the Montgomery-Åsberg Depression Rating Scale at 0, 2, 4, 6, and 8 weeks. We identified three groups of patients according to response status: early responders (22.9%), later responders (32.0%), and nonresponders (45.1%). RNA sequencing was performed in blood obtained at weeks 0, 2, and 8. RNA expression was modeled using growth models, and differences in the longitudinal changes in expression according to response were investigated using multiple regression models. The expression of RNAs related to response was investigated in the brains of depressed individuals, as well as in neuronal cells in vitro. We identified four RNAs (CERCAM, DARS-AS1, FAM228B, HBEGF) whose change over time was independently associated with a response status. For all except HBEGF, responders showed higher expression over time, compared to nonresponders. While the change in all RNAs differentiated early responders from nonresponders, changes in DARS-AS1 and HBEGF also differentiated later responders from nonresponders. Additionally, HBEGF was downregulated in the brains of depressed individuals, and increased in response to escitalopram treatment in vitro. In conclusion, using longitudinal assessments of gene expression, we provide insights into biological processes involved in the intermediate stages of escitalopram response, highlighting several genes with potential utility as biomarkers of antidepressant response.
Collapse
Affiliation(s)
- Laura M. Fiori
- grid.14709.3b0000 0004 1936 8649McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec Canada
| | - Massimiliano Orri
- grid.14709.3b0000 0004 1936 8649McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec Canada
| | - Zahia Aouabed
- grid.14709.3b0000 0004 1936 8649McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec Canada
| | - Jean François Théroux
- grid.14709.3b0000 0004 1936 8649McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec Canada
| | - Rixing Lin
- grid.14709.3b0000 0004 1936 8649McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec Canada
| | - Corina Nagy
- grid.14709.3b0000 0004 1936 8649McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec Canada
| | - Benicio N. Frey
- grid.416721.70000 0001 0742 7355Department of Psychiatry & Behavioural Neurosciences, McMaster University and St Joseph’s Healthcare Hamilton, Hamilton, Ontario Canada
| | - Raymond W. Lam
- grid.17091.3e0000 0001 2288 9830Department of Psychiatry, University of British Columbia, Vancouver, British Columbia Canada
| | - Glenda M. MacQueen
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | - Roumen Milev
- grid.410356.50000 0004 1936 8331Departments of Psychiatry and Psychology, Queens University, Providence Care Hospital, Kingston, Ontario Canada
| | - Daniel J. Müller
- grid.17063.330000 0001 2157 2938Department of Psychiatry, University Health Network, Krembil Research Institute, University of Toronto, Toronto, Ontario Canada ,grid.155956.b0000 0000 8793 5925Centre for Addiction and Mental Health, Toronto, Ontario Canada
| | - Sagar V. Parikh
- grid.214458.e0000000086837370Department of Psychiatry, University of Michigan, Ann Arbor, Michigan USA
| | - Susan Rotzinger
- grid.17063.330000 0001 2157 2938Department of Psychiatry, University Health Network, Krembil Research Institute, University of Toronto, Toronto, Ontario Canada
| | - Rudolf Uher
- grid.458365.90000 0004 4689 2163Nova Scotia Health Authority, Halifax, NS Canada ,grid.55602.340000 0004 1936 8200Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia Canada
| | - Jane A. Foster
- grid.17063.330000 0001 2157 2938Department of Psychiatry, University Health Network, Krembil Research Institute, University of Toronto, Toronto, Ontario Canada
| | - Sidney H. Kennedy
- grid.17063.330000 0001 2157 2938Department of Psychiatry, University Health Network, Krembil Research Institute, University of Toronto, Toronto, Ontario Canada ,grid.415502.7St Michael’s Hospital, Li Ka Shing Knowledge Institute, Centre for Depression and Suicide Studies, Toronto, Ontario Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
23
|
Wang C, Li X, Zhang L, Chen Y, Dong R, Zhang J, Zhao J, Guo X, Yang G, Li Y, Gu C, Xi Q, Zhang R. miR-194-5p down-regulates tumor cell PD-L1 expression and promotes anti-tumor immunity in pancreatic cancer. Int Immunopharmacol 2021; 97:107822. [PMID: 34098485 DOI: 10.1016/j.intimp.2021.107822] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/09/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is a highly malignant cancer of the digestive tract. Studies have shown that in some types of cancer, a high level of microRNA-194-5p (miR-194-5p) is beneficial for controlling tumor progression, while in other cancers it plays a completely opposite role. However, how miR-194-5p affects anti-tumor immunity of pancreatic cancer remains unclear. In this study, we found that high expression of miR-194-5p in human pancreatic cancer patients is associated with a better survival rate, while increased expression of programmed cell death ligand 1 (PD-L1) in human pancreatic cancer patients is associated with a worse survival rate. In pancreatic cancer, the expression level of PD-L1 is negatively correlated with the expression level of miR-194-5p, and we identified that PD-L1 was target gene of miR-194-5p. In addition, we found that overexpression of miR-194-5p inhibited the migration, invasion and proliferation of pancreatic cancer cells in vitro. The orthotopic mouse model of pancreatic cancer shown that miR-194-5p suppressed the progression of pancreatic cancer, promoted the infiltration of CD8+ T cells in tumor immune microenvironments, and enhanced the IFN-γ production of CD8+ T cells. Consistently, the co-culture experiments showed that overexpression of miR-194-5p in tumor cell enhanced IFN-γ production by CD8+ T cells. In conclusion, miR-194-5p may serve as a novel immunotherapeutic target for pancreatic ductal adenocarcinoma (PDAC) by inhibiting the expression of PD-L1, and play important roles in inhibiting the progression of pancreatic cancer and boosting the anti-tumor effect of CD8+ T cells.
Collapse
Affiliation(s)
- Chengzhi Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Li
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lijuan Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ruijie Dong
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Jieyou Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Jingyi Zhao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Xiangdong Guo
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Guangze Yang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Yan Li
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chao Gu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Qing Xi
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China.
| | - Rongxin Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
24
|
Zhou M, Cheng H, Fu Y, Zhang J. Long noncoding RNA DARS-AS1 regulates TP53 ubiquitination and affects ovarian cancer progression by modulation miR-194-5p/RBX1 axis. J Biochem Mol Toxicol 2021; 35:e22865. [PMID: 34328246 DOI: 10.1002/jbt.22865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Ovarian cancer is a malignant tumor with a poor prognosis, its underlying mechanism is still unclear. OBJECTIVE In this study, long noncoding RNA DARS-AS1 was studied to identify its function in the development of ovarian cancer. METHODS Perform functional experiments to detect the effects of DARS-AS1 on the proliferation, apoptosis, and migration of ovarian cancer cells A2780. The luciferase report, immunoprecipitation (IP) experiment, and ubiquitination level determination verify that RBX1 ubiquitination and mediate the degradation of tumor suppressor gene TP53. RESULTS Knockdown of DARS-AS1 can inhibit cell proliferation, migration, and apoptosis, and the application of miR-194-5p inhibitors can prevent this process. Luciferase and IP experiments showed that DARS-AS1 regulates the expression of RBX1 by binding to miR-194-5p, and RBX1 mediates its degradation through ubiquitination of TP53.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Gynecological Oncology, Shaanxi Cancer Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Hao Cheng
- Department of Ultrasonography, Shaanxi Cancer Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Yulan Fu
- Department of Gynecological Oncology, Shaanxi Cancer Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Jun Zhang
- Department of Gynecological Oncology, Shaanxi Cancer Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
25
|
Kang H, Ma D, Zhang J, Zhao J, Yang M. Long non-coding RNA GATA6-AS1 upregulates GATA6 to regulate the biological behaviors of lung adenocarcinoma cells. BMC Pulm Med 2021; 21:166. [PMID: 33992085 PMCID: PMC8126172 DOI: 10.1186/s12890-021-01521-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/29/2021] [Indexed: 01/15/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is known to be one of the leading causes of cancer-related deaths globally. In recent decades, long non-coding RNAs (lncRNAs) have been indicated to exert pivotal regulating functions in multiple biological behaviors in the initiation and development of LUAD. However, the functional mechanism of lncRNA GATA binding protein 6 antisense RNA 1 (GATA6-AS1) in LUAD has not been explored. Methods In the current study, GATA6-AS1 expression in LUAD tissues was revealed. Meanwhile, GATA6-AS1 expression in LUAD cells was investigated via RT-qPCR analysis. After A549 and H1975 cells were transfected with GATA6-AS1 overexpression plasmids, EdU and colony formation assays, TUNEL assays and flow cytometry analyses, as well as wound healing and Transwell assays were conducted to detect cell proliferation, apoptosis, migration and invasion. Afterwards, bioinformatic tools, western blot analyses, dual-luciferase reporter assays, and RNA immunoprecipitation (RIP) assays were performed to investigate the correlation of microRNA-4530 (miR-4530), GATA6-AS1 and GATA6. Results We found that GATA6-AS1 expression was low-expressed in LUAD tissues and cells. Furthermore, the upregulation of GATA6-AS1 suppressed the proliferative, migration and invasion abilities, as well as promoted apoptotic rate of A549 and H1975 cells. Moreover, the mechanistic investigations revealed that GATA6-AS1 upregulated the expression of its cognate sense gene GATA6 by binding with miR-4530, thereby modulating the malignant progression of LUAD cells. Conclusions GATA6-AS1 repressed LUAD cell proliferation, migration and invasion, and promoted cell apoptosis via regulation of the miR-4530/GATA6 axis, indicating GATA6-AS1 as a new prognostic biomarker for LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01521-7.
Collapse
Affiliation(s)
- Honggang Kang
- Department of Oncology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, Shandong, China
| | - Dan Ma
- Department of Oncology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, Shandong, China
| | - Jing Zhang
- Department of Oncology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, Shandong, China.
| | - Jun Zhao
- Department of Oncology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, Shandong, China
| | - Mengxiang Yang
- Department of Oncology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, Shandong, China
| |
Collapse
|
26
|
Yang Y, Gong P, Yao D, Xue D, He X. LncRNA HCG18 Promotes Clear Cell Renal Cell Carcinoma Progression by Targeting miR-152-3p to Upregulate RAB14. Cancer Manag Res 2021; 13:2287-2294. [PMID: 33732021 PMCID: PMC7959199 DOI: 10.2147/cmar.s298649] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/31/2021] [Indexed: 12/20/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have been regarded as crucial regulators in many cancers, including clear cell renal cell carcinoma (ccRCC). This research aimed to explore the biological role and molecular mechanism of lncRNA HCG18 in ccRCC. Materials and Methods The expression levels of HCG18, miR-152-3p and RAB14 were examined by RT-qPCR. Cell viability, migration and invasion were examined by CCK-8 and transwell assays. Luciferase reporter and RIP assays were adopted to verify the interaction between miR-152-3p and HCG18 or RAB14. Results It was found that HCG18 expression was highly expressed in ccRCC tissues and cells, and patients with high expression of HCG18 had a short overall survival time. Moreover, HCG18 depletion attenuated ccRCC cell viability, migration and invasion. In addition, miR-152-3p was confirmed as a downstream target of HCG18 and was inversely regulated by HCG18, and RAB14 was a target of miR-152-3p. Functional assays demonstrated that miR-152-3p silencing or RAB14 addition abolished the inhibitory effects of HCG18 knockdown on ccRCC progression. Conclusion The results of the present study indicated that HCG18 accelerated the development and progression of ccRCC by upregulating RAB14 via sponging miR-152-3p, suggesting a potential therapeutic target for patients with ccRCC.
Collapse
Affiliation(s)
- Yu Yang
- Department of Hepatopancreatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People's Republic of China
| | - Pengfeng Gong
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People's Republic of China
| | - Dongwei Yao
- Department of Urology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, People's Republic of China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People's Republic of China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People's Republic of China
| |
Collapse
|
27
|
He J, Huang Y, Liu J, Ge L, Tang X, Lu M, Hu Z. Hypoxic conditioned promotes the proliferation of human olfactory mucosa mesenchymal stem cells and relevant lncRNA and mRNA analysis. Life Sci 2020; 265:118861. [PMID: 33301811 DOI: 10.1016/j.lfs.2020.118861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
AIMS LncRNAs are involved in many biological processes, and hypoxia contributed to the alterations of lncRNAs. Hypoxic preconditioned olfactory mucosa mesenchymal stem cells (OM-MSCs) exerted stronger anti-apoptotic ability in models of disease, but the molecules that controlled different biological characteristics of human OM-MSCs between hypoxic and normoxic conditions were unclear. The present study was aimed to explore the molecules that controlled different biological characteristics of human OM-MSCs between hypoxic and normoxic conditions. MAIN METHODS LncRNAs and mRNAs expression profiles of human OM-MSCs between hypoxic (3%) and normoxic conditions were analyzed by Next-Generation Sequencing (NGS) analysis, bioinformatics analysis on these data were further performed. Moreover, loss-of function assay was conducted to investigate the impact of hypoxic condition on the proliferation and apoptosis of OM-MSCs. KEY FINDINGS Through the comparative analysis and bioinformatics analysis, a total of 1741 lncRNAs and 1603 mRNAs were significant differentially expressed in the hypoxia group compared with normoxia group. Enrichment analysis revealed that differentially expressed genes of human OM-MSCs mainly participated in cell cycle regulation, secretin of cytokines and so on. Meanwhile, hypoxic condition significantly promoted proliferation and inhibited apoptosis of human OM-MSCs, following loss-of-function assays confirmed that lncRNA DARS-AS1 were involved in this regulatory process by hypoxic condition. Further prediction of targeted genes and the construction of lncRNA-miRNA-mRNA interaction network enriched the significance regarding the mechanism of DARS-AS1. SIGNIFICANCE Altogether, these findings provided a new perspective for understanding the molecules expression patterns in hypoxia that contributed to corresponding phenotype alterations of OM-MSCs.
Collapse
Affiliation(s)
- Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Yan Huang
- National Health Commission Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan, PR China; Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China; Hunan Provincial Key Laboratory of Neurorestoratology, Second Affiliated Hospital of Hunan Normal University, Changsha 410003, Hunan, PR China
| | - Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Lite Ge
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Ming Lu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China; Department of Neurosurgery, Second Affiliated Hospital of Hunan Normal University, Changsha 410003, Hunan, PR China; Hunan Provincial Key Laboratory of Neurorestoratology, Second Affiliated Hospital of Hunan Normal University, Changsha 410003, Hunan, PR China.
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China.
| |
Collapse
|
28
|
A "Lymphocyte MicroRNA Signature" as Predictive Biomarker of Immunotherapy Response and Plasma PD-1/PD-L1 Expression Levels in Patients with Metastatic Renal Cell Carcinoma: Pointing towards Epigenetic Reprogramming. Cancers (Basel) 2020; 12:cancers12113396. [PMID: 33207823 PMCID: PMC7697734 DOI: 10.3390/cancers12113396] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary MicroRNAs are small molecules of non-coding RNAs which regulate gene expression at the post-transcriptional level. Normal miRNA expression and function can be deregulated in cancer. The comprehensive molecular characterization of Renal Cell Carcinoma shows several genes silenced and signaling pathways deregulated by epigenetic modifications, such as the abnormal expression of miRNAs. They can be secreted from malignant cells in whole-blood, plasma, serum, and urine samples, making miRNAs potential non-invasive tumor biomarkers. However, if a single miRNA can show low discriminatory power, the combination of miRNAs in a “miRNA signature”, identified in the peripheral lymphocytes of patients, could function better with much higher probability to predict the response to immunotherapy and to discriminate responders from non-responders patients already at therapy baseline. Abstract Introduction of checkpoint inhibitors resulted in durable responses and improvements in overall survival in advanced RCC patients, but the treatment efficacy is widely variable, and a considerable number of patients are resistant to PD-1/PD-L1 inhibition. This variability of clinical response makes necessary the discovery of predictive biomarkers for patient selection. Previous findings showed that the epigenetic modifications, including an extensive microRNA-mediated regulation of tumor suppressor genes, are key features of RCC. Based on this biological background, we hypothesized that a miRNA expression profile directly identified in the peripheral lymphocytes of the patients before and after the nivolumab administration could represent a step toward a real-time monitoring of the dynamic changes during cancer evolution and treatment. Interestingly, we found a specific subset of miRNAs, called “lymphocyte miRNA signature”, specifically induced in long-responder patients (CR, PR, or SD to nivolumab >18 months). Focusing on the clinical translational potential of miRNAs in controlling the expression of immune checkpoints, we identified the association between the plasma levels of soluble PD-1/PD-L1 and expression of some lymphocyte miRNAs. These findings could help the development of novel dynamic predictive biomarkers urgently needed to predict the potential response to immunotherapy and to guide clinical decision-making in RCC patients.
Collapse
|
29
|
Chen Y, Wu Q, Lin J, Wei J. DARS-AS1 accelerates the proliferation of cervical cancer cells via miR-628-5p/JAG1 axis to activate Notch pathway. Cancer Cell Int 2020; 20:535. [PMID: 33292218 PMCID: PMC7640441 DOI: 10.1186/s12935-020-01592-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022] Open
Abstract
Background Growing evidence has indicated the vital parts of long non-coding RNAs (lncRNAs) in modulating the progression of assorted human cancers, including cervical cancer (CC). Nevertheless, the role and mechanism of aspartyl-tRNA synthetase antisense RNA 1 (DARS-AS1) have been not comprehensively illustrated in CC yet. Methods Real-time quantitative polymerase chain reaction (RT-qPCR) was exploited for assessing RNA expression while western blot for protein expression in CC cells. The cell counting kit-8 (CCK-8), colony formation and TdT-mediated dUTP Nick-End Labeling (TUNEL) assays, as well as flow cytometry analysis, were employed to evaluate the modulation of DARS-AS1 on the proliferation and apoptosis of CC cells. In addition, RNA immunoprecipitation (RIP), RNA pull down assay and luciferase reporter assay confirmed the interactivity among DARS-AS1, miR-628-5p and jagged canonical Notch ligand 1 (JAG1). RBP-JK luciferase reporter assay determined the activity of Notch pathway. Results DARS-AS1 level was significantly increased in CC cells. Moreover, down-regulation of DARS-AS1 hampered cell the proliferation and accelerated the apoptosis of CC cells. Importantly, DARS-AS1 was a competing endogenous RNA (ceRNA) to elevate JAG1 level through sequestering miR-628-5p, leading to activated Notch pathway to aggravate CC tumorigenesis. Conclusions DARS-AS1/miR-628-5p/JAG1/Notch signaling accelerates CC progression, indicating DARS-AS1 as a novel therapeutic target for patients with CC.
Collapse
Affiliation(s)
- Yihong Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350000, Fujian, China
| | - Qiumei Wu
- Fujian Provincial Maternal and Child Health Care Hospital, No. 18 Daoshan Road, Gulou District, Fuzhou, 350000, Fujian, China
| | - Jing Lin
- Department of Embryology, Fujian Medical University, No. 88 Jiaotong Road, Taijiang District, Fuzhou, 350000, Fujian, China
| | - Juanbing Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350000, Fujian, China.
| |
Collapse
|
30
|
Dou B, Jiang Z, Chen X, Wang C, Wu J, An J, Sheng G. Oncogenic Long Noncoding RNA DARS-AS1 in Childhood Acute Myeloid Leukemia by Binding to microRNA-425. Technol Cancer Res Treat 2020; 19:1533033820965580. [PMID: 33073700 PMCID: PMC7592321 DOI: 10.1177/1533033820965580] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Acute myeloid leukemia (AML) represents a hematological cancer. The aim of the investigation was to probe the regulatory relevance of long non-coding RNA (lncRNA) aspartyl-tRNA synthetase anti-sense 1 (DARS-AS1)/microRNA-425 (miR-425)/transforming growth factor-beta 1 (TGFB1) to the development of AML. METHODS The DARS-AS1 expression in bone marrow tissues was first analyzed in healthy subjects and AML patients. Subsequently, AML cell lines with DARS-AS1 knockdown were constructed, followed by cell proliferation and apoptosis assays. Afterward, downstream miRNA of DARS-AS1 and target mRNA of the miRNA were analyzed by bioinformatics, and their binding relationships were verified. Functional rescue experiments were then implemented. Finally, activation of the Smad2/3 signaling in MV4-11 and BF-24 cells were detected by western blot. RESULTS DARS-AS1 was overexpressed in bone marrow tissues of AML patients and cells, and DARS-AS1 knockdown suppressed the proliferation of AML cells and induced apoptosis. DARS-AS1 bound to and negatively correlated with miR-425. Further results suggested that TGFB1 might be a target gene of miR-425 and could promote Smad2/3 phosphorylation and nuclear translocation. Finally, DARS-AS1 depletion could diminish the tumor volume in vivo. CONCLUSION All in all, we highlighted here that DARS-AS1 enhanced the expression of TGFB1 through binding to miR-425 to modulate AML progression via the Smad2/3 pathway, which might perform as a therapeutic target for AML.
Collapse
Affiliation(s)
- Binghua Dou
- Department of Paediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhu Jiang
- Department of Ultrasound, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xiaoguang Chen
- Department of Paediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Chunmei Wang
- Department of Paediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jing Wu
- Department of Paediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jindou An
- Department of Paediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Guangyao Sheng
- Department of Paediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
31
|
Fan H, Hou J, Liu S, Xiao Z, Cui J. Long Non-Coding RNA DARS-AS1 Contributes to Prostate Cancer Progression Through Regulating the MicroRNA-628-5p/MTDH Axis. Cancer Manag Res 2020; 12:8363-8377. [PMID: 32982430 PMCID: PMC7490096 DOI: 10.2147/cmar.s271021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose DARS antisense RNA 1 (DARS-AS1) is a long non-coding RNA that has been validated as a critical regulator in several human cancer types. Our study aimed to determine the expression profile of DARS-AS1 in prostate cancer (PCa) tissues and cell lines. Functional experiments were conducted to explore the detailed roles of DARS-AS1 in regulating PCa carcinogenesis. Furthermore, the detailed mechanisms by which DARS-AS1 regulates the oncogenicity of PCa cells were uncovered. Methods Reverse transcription quantitative polymerase chain reaction was performed to analyze DARS-AS1 expression in PCa tissues and cell lines. Cell Counting Kit-8 assays, flow cytometry analyses, Transwell assays, and tumor xenograft experiments were conducted to determine the regulatory effects of DARS-AS1 knockdown on the malignant phenotype of PCa cells. Bioinformatics analysis was performed to identify putative microRNAs (miRNAs) targeting DARS-AS1, and the direct interaction between DARS-AS1 and miR-628-5p was verified using RNA immunoprecipitation and luciferase reporter assays. Results DARS-AS1 was highly expressed in PCa tissues and cell lines. In vitro functional experiments demonstrated that DARS-AS1 depletion suppressed PCa cell proliferation, promoted cell apoptosis, and restricted cell migration and invasion. In vivo studies revealed that the downregulation of DARS-AS1 inhibited PCa tumor growth in nude mice. Mechanistic investigation verified that DARS-AS1 functioned as an endogenous miR-628-5p sponge in PCa cells and consequently promoted the expression of metadherin (MTDH). Furthermore, the involvement of miR-628-5p/MTDH axis in DARS-AS1-mediated regulatory actions in PCa cells was verified using rescue experiments. Conclusion DARS-AS1 functioned as a competing endogenous RNA in PCa by adsorbing miR-628-5p and thereby increasing the expression of MTDH, resulting in enhanced PCa progression. The identification of a novel DARS-AS1/miR-628-5p/MTDH regulatory network in PCa cells may offer a new theoretical basis for the development of promising therapeutic targets.
Collapse
Affiliation(s)
- Haitao Fan
- Department of Urology, The Second Hospital of Jilin University, Changchun, Jilin 130041, People's Republic of China
| | - Junhui Hou
- Department of Oncology & Radiotherapy, Qingdao Central Medical Group, Qingdao, Shandong 266000, People's Republic of China
| | - Siqing Liu
- Department of Outpatient, Qingdao Special Service Sanatorium of PLA Navy, Qingdao, Shandong 266071, People's Republic of China
| | - Zuomin Xiao
- Department of Clinical Laboratory, Jinan Jigang Hospital, Jinan, Shandong 250101, People's Republic of China
| | - Jia Cui
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, People's Republic of China
| |
Collapse
|