1
|
Karnopp JCF, Jorge J, da Silva JR, Boldo D, Del Pino Santos KF, Duarte AP, de Castro GR, de Azevedo RB, Prada AL, Amado JRR, Martines MAU. Synthesis, Characterization, and Cytotoxicity Evaluation of Chlorambucil-Functionalized Mesoporous Silica Nanoparticles. Pharmaceutics 2024; 16:1086. [PMID: 39204431 PMCID: PMC11359805 DOI: 10.3390/pharmaceutics16081086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
This study describes the synthesis and characterization of chlorambucil (CLB)-functionalized mesoporous silica nanoparticles (MSNs) for potential application in cancer therapy. The nanoparticles were designed with a diameter between 20 and 50 nm to optimize cellular uptake and avoid rapid clearance from the bloodstream. The synthesis method involved modifying a previously reported technique to reduce particle size. Successful functionalization with CLB was confirmed through various techniques, including Fourier transform infrared spectroscopy (FTIR) and elemental analysis. The cytotoxicity of the CLB-functionalized nanoparticles (MSN@NH2-CLB) was evaluated against human lung adenocarcinoma cells (A549) and colon carcinoma cells (CT26WT). The results suggest significantly higher cytotoxicity of MSN@NH2-CLB compared to unbound CLB, with improved selectivity towards cancer cells over normal cells. This suggests that MSN@NH2-CLB holds promise as a drug delivery system for targeted cancer therapy.
Collapse
Affiliation(s)
- Juliana Camila Fischer Karnopp
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, MS, Brazil; (J.C.F.K.); (J.J.); (D.B.); (K.F.D.P.S.); (A.P.D.)
| | - Juliana Jorge
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, MS, Brazil; (J.C.F.K.); (J.J.); (D.B.); (K.F.D.P.S.); (A.P.D.)
| | - Jaqueline Rodrigues da Silva
- Postgraduate Program in Nanoscience and Nanotechnology, Biological Science Institute, University of Brasilia, Brasilia 70910-900, DF, Brazil; (J.R.d.S.); (R.B.d.A.)
| | - Diego Boldo
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, MS, Brazil; (J.C.F.K.); (J.J.); (D.B.); (K.F.D.P.S.); (A.P.D.)
| | - Kristiane Fanti Del Pino Santos
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, MS, Brazil; (J.C.F.K.); (J.J.); (D.B.); (K.F.D.P.S.); (A.P.D.)
| | - Adriana Pereira Duarte
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, MS, Brazil; (J.C.F.K.); (J.J.); (D.B.); (K.F.D.P.S.); (A.P.D.)
| | - Gustavo Rocha de Castro
- Postgraduate Program in Environmental Biotechnology, Bioscience Institute, Sao Paulo State University, Botucatu 18618-000, SP, Brazil;
| | - Ricardo Bentes de Azevedo
- Postgraduate Program in Nanoscience and Nanotechnology, Biological Science Institute, University of Brasilia, Brasilia 70910-900, DF, Brazil; (J.R.d.S.); (R.B.d.A.)
| | - Ariadna Lafourcade Prada
- Postgraduate Program in Biotechnology, Faculty of Pharmacy, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
| | - Jesús Rafael Rodríguez Amado
- Postgraduate Program in Health Sciences, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil;
| | - Marco Antonio Utrera Martines
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, MS, Brazil; (J.C.F.K.); (J.J.); (D.B.); (K.F.D.P.S.); (A.P.D.)
| |
Collapse
|
2
|
Patra S, Dey J, Kar S, Chakraborty A. Delivery of Chlorambucil to the Brain Using Surface Modified Solid Lipid Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:3403-3413. [PMID: 38700026 DOI: 10.1021/acsabm.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The delivery of drugs to the brain in the therapy of diseases of the central nervous system (CNS) remains a continuing challenge because of the lack of delivery systems that can cross the blood-brain barrier (BBB). Therefore, there is a need to develop an innovative delivery method for the treatment of CNS diseases. Thus, we have investigated the interaction of γ-aminobutyric acid (GABA) and S-(-)-γ-amino-α-hydroxybutyric acid (GAHBA) with the GABA receptor by performing a docking study. Both GABA and GAHBA show comparable binding affinities toward the receptor. In this study, we developed surface-modified solid lipid nanoparticles (SLNs) using GAHBA-derived lipids that can cross the BBB. CLB-loaded SLNs were characterized by a number of methods including differential scanning calorimetry, dynamic light scattering, UV-vis spectroscopy, and transmission electron microscopy. The blank and CLB-loaded SLN suspensions were found to exhibit good storage stability. Also, the SLNs showed a higher encapsulation efficiency for CLB drugs. In vitro release kinetics of CLB at physiological temperature was also investigated. The results of the in vitro cell cytotoxicity assay and flow cytometry studies in the human glioma U87MG cell line and human prostate cancer PC3 cell line suggested a higher efficacy of the GAHBA-modified CLB-loaded SLNs in U87MG cells. The transcription level of GABA receptor expression in the target organ and cell line was analyzed by a reverse transcription polymerase chain reaction study. The in vivo biodistribution and brain uptake in C57BL6 mice and SPECT/CT imaging in Wistar rats investigated using 99mTc-labeled SLN and autoradiography suggest that the SLNs have an increasing brain uptake. We have demonstrated the delivery of the anticancer drug chlorambucil (CLB) to glioma.
Collapse
Affiliation(s)
- Swagata Patra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Joykrishna Dey
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Somnath Kar
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| | - Avik Chakraborty
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| |
Collapse
|
3
|
Kulkarni B, Qutub S, Khashab NM, Hadjichristidis N. Rhodamine B-Conjugated Fluorescent Block Copolymer Micelles for Efficient Chlorambucil Delivery and Intracellular Imaging. ACS OMEGA 2023; 8:22698-22707. [PMID: 37396240 PMCID: PMC10308396 DOI: 10.1021/acsomega.3c01514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/25/2023] [Indexed: 07/04/2023]
Abstract
The clinical development of the anticancer drug chlorambucil (CHL) is limited by its low solubility in water, poor bioavailability, and off-target toxicity. Besides, another constraint for monitoring intracellular drug delivery is the non-fluorescent nature of CHL. Nanocarriers based on block copolymers of poly(ethylene glycol)/poly(ethylene oxide) (PEG/PEO) and poly(ε-caprolactone) (PCL) are an elegant choice for drug delivery applications due to their high biocompatibility and inherent biodegradability properties. Here, we have designed and prepared block copolymer micelles (BCM) containing CHL (BCM-CHL) from a block copolymer having fluorescent probe rhodamine B (RhB) end-groups to achieve efficient drug delivery and intracellular imaging. For this purpose, the previously reported tetraphenylethylene (TPE)-containing poly(ethylene oxide)-b-poly(ε-caprolactone) [TPE-(PEO-b-PCL)2] triblock copolymer was conjugated with RhB by a feasible and effective post-polymerization modification method. In addition, the block copolymer was obtained by a facile and efficient synthetic strategy of one-pot block copolymerization. The amphiphilicity of the resulting block copolymer TPE-(PEO-b-PCL-RhB)2 led to the spontaneous formation of micelles (BCM) in aqueous media and successful encapsulation of the hydrophobic anticancer drug CHL (CHL-BCM). Dynamic light scattering and transmission electron microscopy analyses of BCM and CHL-BCM revealed a favorable size (10-100 nm) for passive targeting of tumor tissues via the enhanced permeability and retention effect. The fluorescence emission spectrum (λex 315 nm) of BCM demonstrated Förster resonance energy transfer between TPE aggregates (donor) and RhB (acceptor). On the other hand, CHL-BCM revealed TPE monomer emission, which may be attributed to the π-π stacking interaction between TPE and CHL molecules. The in vitro drug release profile showed that CHL-BCM exhibits drug release in a sustained manner over 48 h. A cytotoxicity study proved the biocompatibility of BCM, while CHL-BCM revealed significant toxicity to cervical (HeLa) cancer cells. The inherent fluorescence of RhB in the block copolymer offered an opportunity to directly monitor the cellular uptake of the micelles by confocal laser scanning microscopy imaging. These results demonstrate the potential of these block copolymers as drug nanocarriers and as bioimaging probes for theranostic applications.
Collapse
Affiliation(s)
- Bhagyashree Kulkarni
- Polymer
Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Somayah Qutub
- Smart
Hybrid Materials (SHMs) Laboratory, Chemistry Program, Advanced Membranes
and Porous Materials Center, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Niveen M. Khashab
- Smart
Hybrid Materials (SHMs) Laboratory, Chemistry Program, Advanced Membranes
and Porous Materials Center, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer
Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
4
|
Mohan H, Fagan A, Giordani S. Carbon Nanomaterials (CNMs) in Cancer Therapy: A Database of CNM-Based Nanocarrier Systems. Pharmaceutics 2023; 15:pharmaceutics15051545. [PMID: 37242787 DOI: 10.3390/pharmaceutics15051545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Carbon nanomaterials (CNMs) are an incredibly versatile class of materials that can be used as scaffolds to construct anticancer nanocarrier systems. The ease of chemical functionalisation, biocompatibility, and intrinsic therapeutic capabilities of many of these nanoparticles can be leveraged to design effective anticancer systems. This article is the first comprehensive review of CNM-based nanocarrier systems that incorporate approved chemotherapy drugs, and many different types of CNMs and chemotherapy agents are discussed. Almost 200 examples of these nanocarrier systems have been analysed and compiled into a database. The entries are organised by anticancer drug type, and the composition, drug loading/release metrics, and experimental results from these systems have been compiled. Our analysis reveals graphene, and particularly graphene oxide (GO), as the most frequently employed CNM, with carbon nanotubes and carbon dots following in popularity. Moreover, the database encompasses various chemotherapeutic agents, with antimicrotubule agents being the most common payload due to their compatibility with CNM surfaces. The benefits of the identified systems are discussed, and the factors affecting their efficacy are detailed.
Collapse
Affiliation(s)
- Hugh Mohan
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| | - Andrew Fagan
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| |
Collapse
|
5
|
Borzooee Moghadam N, Avatefi M, Karimi M, Mahmoudifard M. Graphene family in cancer therapy: recent progress in cancer gene/drug delivery applications. J Mater Chem B 2023; 11:2568-2613. [PMID: 36883982 DOI: 10.1039/d2tb01858f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In the past few years, the development in the construction and architecture of graphene based nanocomplexes has dramatically accelerated the use of nano-graphene for therapeutic and diagnostic purposes, fostering a new area of nano-cancer therapy. To be specific, nano-graphene is increasingly used in cancer therapy, where diagnosis and treatment are coupled to deal with the clinical difficulties and challenges of this lethal disease. As a distinct family of nanomaterials, graphene derivatives exhibit outstanding structural, mechanical, electrical, optical, and thermal capabilities. Concurrently, they can transport a wide variety of synthetic agents, including medicines and biomolecules, such as nucleic acid sequences (DNA and RNA). Herewith, we first provide an overview of the most effective functionalizing agents for graphene derivatives and afterward discuss the significant improvements in the gene and drug delivery composites based on graphene.
Collapse
Affiliation(s)
- Negin Borzooee Moghadam
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Manizheh Avatefi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Mahnaz Karimi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
6
|
Kumari S, Nehra A, Gupta K, Puri A, Kumar V, Singh KP, Kumar M, Sharma A. Chlorambucil-Loaded Graphene-Oxide-Based Nano-Vesicles for Cancer Therapy. Pharmaceutics 2023; 15:649. [PMID: 36839970 PMCID: PMC9961782 DOI: 10.3390/pharmaceutics15020649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023] Open
Abstract
In this study, the authors have designed biocompatible nano-vesicles using graphene oxide (GO) for the release of chlorambucil (CHL) drugs targeting cancerous cells. The GO sheets were first sulfonated and conjugated with folic acid (FA) molecules for controlled release and high loading efficiency of CHL. The chlorambucil (CHL) drug loading onto the functionalized GO surface was performed through π-π stacking and hydrophobic interactions with the aromatic planes of GO. The drug loading and "in vitro" release from the nano-vesicles at different pH were studied. The average particle size, absorption, and loading efficiency (%) of FA-conjugated GO sheets (CHL-GO) were observed to be 300 nm, 58%, and 77%, respectively. The drug release study at different pH (i.e., 7.4 and 5.5) showed a slight deceleration at pH 7.4 over pH 5.5. The amount of drug released was very small at pH 7.4 in the first hour which progressively increased to 24% after 8 h. The rate of drug release was faster at pH 5.5; initially, 16% to 27% in the first 3 h, and finally it reached 73% after 9 h. These observations indicate that the drug is released more rapidly at acidic pH with a larger amount of drug-loading ability. The rate of drug release from the CHL-loaded GO was 25% and 75% after 24 h. The biotoxicity study in terms of % cell viability of CHL-free and CHL-loaded GO against human cervical adenocarcinoma cell line was found to have lower cytotoxicity of CHL-loaded nano-vesicles (IC50 = 18 μM) as compared to CHL-free (IC50 = 8 μM). It is concluded that a high drug-loading efficiency and controlled release with excellent biotoxicity of CHL-GO offers an excellent application in the biomedical field.
Collapse
Affiliation(s)
- Surabhi Kumari
- Bio-Nanotechnology Research Laboratory, Biophysics Unit, College of Basic Science & Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
| | - Anuj Nehra
- Bio-Nanotechnology Research Laboratory, Biophysics Unit, College of Basic Science & Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
- Department of Physics, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Kshitij Gupta
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute-Frederick, National Institute of Health, Post Office Box. Building 469, Room No. 216A, Frederick, MD 21702-1201, USA
| | - Anu Puri
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute-Frederick, National Institute of Health, Post Office Box. Building 469, Room No. 216A, Frederick, MD 21702-1201, USA
| | - Vinay Kumar
- Department of Physics, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Krishna Pal Singh
- Bio-Nanotechnology Research Laboratory, Biophysics Unit, College of Basic Science & Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
- Vice Chancellor Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly 243006, Uttar Pradesh, India
| | - Mukesh Kumar
- Department of Physics, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, Gurgaon 122505, Haryana, India
| | - Ashutosh Sharma
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
7
|
Singh G, Imtiyaz K, Saumya, Rizvi MA, Nenavathu BP. Verteporfin Loaded Graphitic Carbon Nitride Nanosheets for Combined Photo‐Chemotherapy. ChemistrySelect 2023. [DOI: 10.1002/slct.202204914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Geetanjali Singh
- Department of Applied Sciences and Humanities Indira Gandhi Delhi Technical University for Women, Kashmere Gate Delhi 110006 India
| | - Khalid Imtiyaz
- Department of Biosciences Jamia Millia Islamia University 110025 New Delhi India
| | - Saumya
- Department of Applied Sciences and Humanities Indira Gandhi Delhi Technical University for Women, Kashmere Gate Delhi 110006 India
| | - Moshahid A. Rizvi
- Department of Biosciences Jamia Millia Islamia University 110025 New Delhi India
| | - Bhavani P. Nenavathu
- Department of Applied Sciences and Humanities Indira Gandhi Delhi Technical University for Women, Kashmere Gate Delhi 110006 India
| |
Collapse
|
8
|
Cao J, Gao M, Wang J, Liu Y, Zhang X, Ping Y, Liu J, Chen G, Xu D, Huang X, Liu G. Construction of nano slow-release systems for antibacterial active substances and its applications: A comprehensive review. Front Nutr 2023; 10:1109204. [PMID: 36819707 PMCID: PMC9928761 DOI: 10.3389/fnut.2023.1109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
At present, nano-carrier materials with antibacterial activity are of great significance. Due to the widespread resistance of many pathogenic microorganisms, it has seriously threatened human health. The natural antimicrobial substances extracted from fruits and vegetables can significantly improve their stability combined with nano-carrier materials. The resistance of pathogenic microorganisms will be substantially reduced, greatly enhancing the effect of active antimicrobial substances. Nanotechnology has excellent research prospects in the food industry, antibacterial preservation, food additives, food packaging, and other fields. This paper introduces nano-carrier materials and preparation techniques for loading and encapsulating active antibacterial substances in detail by constructing a nano-release system for active antibacterial substances. The antibacterial effect can be achieved by protecting them from adverse external conditions and destroying the membrane of pathogenic microorganisms. The mechanism of the slow release of the bacteriostatic active substance is also described. The mechanism of carrier loading and release is mainly through non-covalent forces between the bacteriostatic active substance and the carrier material, such as hydrogen bonding, π-π stacking, van der Waals forces, electrostatic interactions, etc., as well as the loading and adsorption of the bacteriostatic active substance by the chemical assembly. Finally, its wide application in food and medicine is introduced. It is hoped to provide a theoretical basis and technical support for the efficient utilization and product development of bacteriostatic active substances.
Collapse
Affiliation(s)
- Jiayong Cao
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China,State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Mingkun Gao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Jian Wang
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China,*Correspondence: Jian Wang, ✉
| | - Yuan Liu
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China
| | - Xuan Zhang
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China
| | - Yi Ping
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia Liu
- Internal Trade Food Science Research Institute Co., Ltd, Beijing, China
| | - Ge Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Donghui Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China,Donghui Xu, ✉
| | - Xiaodong Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Guangyang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China,Guangyang Liu, ✉
| |
Collapse
|
9
|
Kahraman E, Erdol Aydin N, Nasun-Saygili G. Optimization of 5-FU adsorption on gelatin incorporated graphene oxide nanocarrier and application for antitumor activity. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Song Y, Tan X, Gao Y. Platelet-biomimetic nanoparticles for in vivo targeted photodynamic therapy of breast cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1383-1397. [PMID: 35321618 DOI: 10.1080/09205063.2022.2056942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nanocarrier-based photodynamic therapy (PDT) has emerged as a promising treatment in cancer therapy. However, the PDT therapeutic efficacy is limited by the lack of specificity, limited intracellular cytotoxic reactive oxygen species (ROS) generation, and the immunosuppressive tumor microenvironment. Herein, a platelet membrane (Pm) decorated and chlorin e6 loaded liposome (Pm/Lps/Ce6) is developed to improve specific tumor-targeting capability and antitumor responses. Pm/Lps/Ce6 could efficiently improve the cellular internalization of Ce6. Under 660-nm laser irradiation, enough ROS was produced to suppress the growth of tumor cells in vitro. In vivo, the Pm decoration increased cellular uptake of the Ce6 loaded liposome in cancer cells by the tumor-targeting and immune escape capacity and produced a satisfactory inhibitory effect on breast cancer. Our study provides a biomimetic strategy via the biological properties of Pm to improve the antitumor performance of photodynamic therapy for treating breast cancer.
Collapse
Affiliation(s)
- Yangyang Song
- Department of Nursing Platform for Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xue Tan
- Department of Operation Room, The First Hospital of Jilin University, Changchun, China
| | - Yanan Gao
- Department of Nursing Platform for Breast Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Khursheed R, Dua K, Vishwas S, Gulati M, Jha NK, Aldhafeeri GM, Alanazi FG, Goh BH, Gupta G, Paudel KR, Hansbro PM, Chellappan DK, Singh SK. Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives. Pharmacotherapy 2022; 150:112951. [PMID: 35447546 DOI: 10.1016/j.biopha.2022.112951] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
Abstract
The current advancements in nanotechnology are as an outcome of the development of engineered nanoparticles. Various metallic nanoparticles have been extensively explored for various biomedical applications. They attract lot of attention in biomedical field due to their significant inert nature, and nanoscale structures, with size similar to many biological molecules. Their intrinsic characteristics which include electronic, optical, physicochemical and, surface plasmon resonance, that can be changed by altering certain particle characteristics such as size, shape, environment, aspect ratio, ease of synthesis and functionalization properties have led to numerous applications in various fields of biomedicine. These include targeted drug delivery, sensing, photothermal and photodynamic therapy, imaging, as well as the modulation of two or three applications. The current article also discusses about the various properties of metallic nanoparticles and their applications in cancer imaging and therapeutics. The associated bottlenecks related to their clinical translation are also discussed.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34 Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | | | - Fayez Ghadeer Alanazi
- Lemon Pharmacies, Eastern region, Kingdom of Saudi Arabia, Hafr Al Batin 39957, Saudi Arabia
| | - Bey Hing Goh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Philip M Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
12
|
Shafiee A, Iravani S, Varma RS. Graphene and graphene oxide with anticancer applications: Challenges and future perspectives. MedComm (Beijing) 2022; 3:e118. [PMID: 35281783 PMCID: PMC8906468 DOI: 10.1002/mco2.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/22/2023] Open
Abstract
Graphene-based materials have shown immense pertinence for sensing/imaging, gene/drug delivery, cancer therapy/diagnosis, and tissue engineering/regenerative medicine. Indeed, the large surface area, ease of functionalization, high drug loading capacity, and reactive oxygen species induction potentials have rendered graphene- (G-) and graphene oxide (GO)-based (nano)structures promising candidates for cancer therapy applications. Various techniques namely liquid-phase exfoliation, Hummer's method, chemical vapor deposition, chemically reduced GO, mechanical cleavage of graphite, arc discharge of graphite, and thermal fusion have been deployed for the production of G-based materials. Additionally, important criteria such as biocompatibility, bio-toxicity, dispersibility, immunological compatibility, and inflammatory reactions of G-based structures need to be systematically assessed for additional clinical and biomedical appliances. Furthermore, surface properties (e.g., lateral dimension, charge, corona influence, surface structure, and oxygen content), concentration, detection strategies, and cell types are vital for anticancer activities of these structures. Notably, the efficient accumulation of anticancer drugs in tumor targets/tissues, controlled cellular uptake properties, tumor-targeted drug release behavior, and selective toxicity toward the cells are crucial criteria that need to be met for developing future anticancer G-based nanosystems. Herein, important challenges and future perspectives of cancer therapy using G- and GO-based nanosystems have been highlighted, and the recent advancements are deliberated.
Collapse
Affiliation(s)
- Ali Shafiee
- Department of ChemistryCape Breton UniversitySydneyCanada
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical SciencesIsfahan University of Medical SciencesIsfahanIran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research InstitutePalacky University in OlomoucOlomoucCzech Republic
| |
Collapse
|
13
|
Wang B, Guo H, Xu H, Chen Y, Zhao G, Yu H. The Role of Graphene Oxide Nanocarriers in Treating Gliomas. Front Oncol 2022; 12:736177. [PMID: 35155223 PMCID: PMC8831729 DOI: 10.3389/fonc.2022.736177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Gliomas are the most common primary malignant tumors of the central nervous system, and their conventional treatment involves maximal safe surgical resection combined with radiotherapy and temozolomide chemotherapy; however, this treatment does not meet the requirements of patients in terms of survival and quality of life. Graphene oxide (GO) has excellent physical and chemical properties and plays an important role in the treatment of gliomas mainly through four applications, viz. direct killing, drug delivery, immunotherapy, and phototherapy. This article reviews research on GO nanocarriers in the treatment of gliomas in recent years and also highlights new ideas for the treatment of these tumors.
Collapse
Affiliation(s)
- Bin Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Hanfei Guo
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Haiyang Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Gang Zhao, ; Hongquan Yu,
| | - Hongquan Yu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Gang Zhao, ; Hongquan Yu,
| |
Collapse
|
14
|
Mohammadi A, Hosseinipour M, Abdolvand H, Najafabadi SAA, Sahraneshin Samani F. Improvement in bioavailability of curcumin within the castor‐oil based polyurethane nanocomposite through its conjugation on the surface of graphene oxide nanosheets. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | - Seyed Ahmad Ayati Najafabadi
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine Isfahan University of Medical Sciences Isfahan Iran
| | - Fazel Sahraneshin Samani
- Department of Stem Cells and Developmental Biology Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| |
Collapse
|
15
|
Synthesis and drug delivery performance of gelatin-decorated magnetic graphene oxide nanoplatform. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Loading harmine on nanographene changes the inhibitory effects of free harmine against MCF-7 and fibroblast cells. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02714-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Jampilek J, Kralova K. Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1059. [PMID: 33668271 PMCID: PMC7956197 DOI: 10.3390/ma14051059] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Carbon is one of the most abundant elements on Earth. In addition to the well-known crystallographic modifications such as graphite and diamond, other allotropic carbon modifications such as graphene-based nanomaterials and carbon nanotubes have recently come to the fore. These carbon nanomaterials can be designed to help deliver or target drugs more efficiently and to innovate therapeutic approaches, especially for cancer treatment, but also for the development of new diagnostic agents for malignancies and are expected to help combine molecular imaging for diagnosis with therapies. This paper summarizes the latest designed drug delivery nanosystems based on graphene, graphene quantum dots, graphene oxide, reduced graphene oxide and carbon nanotubes, mainly for anticancer therapy.
Collapse
Affiliation(s)
- Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
18
|
Sajjadi M, Nasrollahzadeh M, Jaleh B, Soufi GJ, Iravani S. Carbon-based nanomaterials for targeted cancer nanotherapy: recent trends and future prospects. J Drug Target 2021; 29:716-741. [PMID: 33566719 DOI: 10.1080/1061186x.2021.1886301] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon-based nanomaterials are becoming attractive materials due to their unique structural dimensions and promising mechanical, electrical, thermal, optical and chemical characteristics. Carbon nanotubes, graphene, graphene oxide, carbon and graphene quantum dots have numerous applications in diverse areas, including biosensing, drug/gene delivery, tissue engineering, imaging, regenerative medicine, diagnosis, and cancer therapy. Cancer remains one of the major health problems all over the world, and several therapeutic approaches are focussed on designing targeted anticancer drug delivery nanosystems by applying benign and less hazardous resources with high biocompatibility, ease of functionalization, remarkable targeted therapy issues, and low adverse effects. This review highlights the recent development on these carbon based-nanomaterials in the field of targeted cancer therapy and discusses their possible and promising diagnostic and therapeutic applications for the treatment of cancers.
Collapse
Affiliation(s)
- Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | | | - Babak Jaleh
- Department of Physics, Bu-Ali Sina University, Hamedan, Iran
| | | | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|