1
|
Chen X, Peng R, Peng D, Xiao J, Liu D, Li R. An update: is there a relationship between H. pylori infection and nonalcoholic fatty liver disease? why is this subject of interest? Front Cell Infect Microbiol 2023; 13:1282956. [PMID: 38145041 PMCID: PMC10739327 DOI: 10.3389/fcimb.2023.1282956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is thought to impact various extragastric diseases, including nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disease. Meanwhile, the pathogenesis of NAFLD needs further research, and effective treatment for this disease remains elusive. In this mini-review, we enumerate and ponder on the evidence demonstrating an association between H. pylori infection and NAFLD. Primarily, we delve into high-quality meta-analyses and clinical randomized controlled trials focusing on the association studies between the two. We also discuss clinical studies that present opposite conclusions. In addition, we propose a mechanism through which H. pylori infection aggravates NAFLD: inflammatory cytokines and adipocytokines, insulin resistance, lipid metabolism, intestinal barrier and microbiota, H. pylori outer membrane vesicles and H. pylori-infected cell-extracellular vesicles. This mini-review aims to further explore NAFLD pathogenesis and extragastric disease mechanisms caused by H. pylori infection.
Collapse
Affiliation(s)
- Xingcen Chen
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Ruyi Peng
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Dongzi Peng
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Jia Xiao
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Deliang Liu
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Rong Li
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
2
|
Liang X, Du W, Huang L, Xiang L, Pan W, Yang F, Zheng F, Xie Y, Geng L, Gong S, Xu W. Helicobacter pylori promotes gastric intestinal metaplasia through activation of IRF3-mediated kynurenine pathway. Cell Commun Signal 2023; 21:141. [PMID: 37328804 PMCID: PMC10273570 DOI: 10.1186/s12964-023-01162-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/07/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Metabolic reprogramming is a critical event for cell fate and function, making it an attractive target for clinical therapy. The function of metabolic reprogramming in Helicobacter pylori (H. pylori)-infected gastric intestinal metaplasia remained to be identified. METHODS Xanthurenic acid (XA) was measured in gastric cancer cells treated with H. pylori or H. pylori virulence factor, respectively, and qPCR and WB were performed to detect CDX2 and key metabolic enzymes expression. A subcellular fractionation approach, luciferase and ChIP combined with immunofluorescence were applied to reveal the mechanism underlying H. pylori mediated kynurenine pathway in intestinal metaplasia in vivo and in vitro. RESULTS Herein, we, for the first time, demonstrated that H. pylori contributed to gastric intestinal metaplasia characterized by enhanced Caudal-related homeobox transcription factor-2 (CDX2) and mucin2 (MUC2) expression, which was attributed to activation of kynurenine pathway. H. pylori promoted kynurenine aminotransferase II (KAT2)-mediated kynurenine pathway of tryptophan metabolism, leading to XA production, which further induced CDX2 expression in gastric epithelial cells. Mechanically, H. pylori activated cyclic guanylate adenylate synthase (cGAS)-interferon regulatory factor 3 (IRF3) pathway in gastric epithelial cells, leading to enhance IRF3 nuclear translocation and the binding of IRF3 to KAT2 promoter. Inhibition of KAT2 could significantly reverse the effect of H. pylori on CDX2 expression. Also, the rescue phenomenon was observed in gastric epithelial cells treated with H. pylori after IRF3 inhibition in vitro and in vivo. Most importantly, phospho-IRF3 was confirmed to be a clinical positive relationship with CDX2. CONCLUSION These finding suggested H. pylori contributed to gastric intestinal metaplasia through KAT2-mediated kynurenine pathway of tryptophan metabolism via cGAS-IRF3 signaling, targeting the kynurenine pathway could be a promising strategy to prevent gastric intestinal metaplasia caused by H. pylori infection. Video Abstract.
Collapse
Affiliation(s)
- Xinhua Liang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wenjun Du
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China
| | - Ling Huang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China
| | - Li Xiang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wenxu Pan
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China
| | - Fangying Yang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China
| | - Fengfeng Zheng
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian, 351100, China
| | - Yongwu Xie
- Department of Hematology, Zhuhai Center for Maternal and Child Health Care, Zhuhai, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China.
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China.
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Wanfu Xu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China.
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
3
|
Yang F, Li L, Zhou Y, Pan W, Liang X, Huang L, Huang J, Cheng Y, Geng L, Xu W, Gong S. Rabeprazole destroyed gastric epithelial barrier function through FOXF1/STAT3-mediated ZO-1 expression. Clin Exp Pharmacol Physiol 2023; 50:516-526. [PMID: 36897043 DOI: 10.1111/1440-1681.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/03/2023] [Accepted: 01/21/2023] [Indexed: 03/11/2023]
Abstract
Rabeprazole is a representative of proton pump inhibitors and widely used in anti-ulcer treatment. However, the effect of Rabeprazole on gut barrier function remains to be identified. In this study, we show that ZO-1 expression is decreased in patients receiving Rabeprazole by immunofluorescence (IF) analysis. Western blotting (WB) and real-time PCR (qPCR) results demonstrate that Rabeprazole treatment leads to a significant downregulation of ZO-1 expression through inhibition of the FOXF1/STAT3 pathway, leading to destroy barrier function, which illustrates a novel pathway that Rabeprazole regulates barrier function in gastric epithelial cells. Mechanistically, Rabeprazole treatment led to a downregulation of STAT3 and FOXF1 phosphorylation, leading to inhibit nuclear translocation and decrease the binding of STAT3 and FOXF1 to ZO-1 promoter, respectively. Most important, endogenous FOXF1 interacted with STAT3, and this interaction was dramatically abolished by Rabeprazole stimulation. Overexpression of STAT3 and FOXF1 in GES-1 cells reversed the inhibitory effect of Rabeprazole on ZO-1 expression, respectively. These finding extended the function of Rabeprazole and established a previously unappreciated mechanism by which the Rabeprazole/FOXF1/STAT3 axis facilitated ZO-1 expression to regulate barrier function, and a comprehensive consideration and evaluation was required in treatment of patients.
Collapse
Affiliation(s)
- Fangying Yang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Linkai Li
- Department of Pharmacy, Zhuhai Center for Maternal and Child Health Care, Zhuhai, China
| | - Yanhe Zhou
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenxu Pan
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Jinan University, Guangzhou, China
| | - Xinhua Liang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ling Huang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jing Huang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yang Cheng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wanfu Xu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Jinan University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Guo C, Zhang L, Zhao M, Ai Y, Liao W, Wan L, Liu Q, Li S, Zeng J, Ma X, Tang J. Targeting lipid metabolism with natural products: A novel strategy for gastrointestinal cancer therapy. Phytother Res 2023; 37:2036-2050. [PMID: 36748953 DOI: 10.1002/ptr.7735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/08/2023]
Abstract
Gastrointestinal cancer (GIC), including gastric cancer and colorectal cancer, is a common malignant tumor originating from gastrointestinal epithelial cells. Although the pathogenesis of GIC remains unclear, aberrant lipid metabolism has emerged as a hallmark of cancer. Several enzymes, proteins, and transcription factors are involved in lipid metabolism reprogramming in GIC, and their abnormal expression can promote lipid synthesis and accumulation of lipid droplets through numerous mechanisms, thereby affecting the growth, proliferation, and metastasis of GIC cells. Studies show that some natural compounds, including flavonoids, alkaloids, and saponins, can inhibit the de novo synthesis of lipids in GIC, reduce the level of lipid accumulation, and subsequently, inhibit the occurrence and development of GIC by regulating Sterol regulatory element-binding protein 1 (SREBP-1), adenosine monophosphate-activated protein kinase (AMPK), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), phosphatidylinositol-3-kinase/Akt and the mammalian target of rapamycin PI3K/Akt/mTOR, amongst other targets and pathways. Therefore, targeting tumor lipid metabolism is the focus of anti-gastrointestinal tumor therapy. Although most natural products require further high-quality studies to firmly establish their clinical efficacy, we review the potential of natural products in the treatment of GIC and summarize the application prospect of lipid metabolism as a new target for the treatment of GIC, hoping to provide a reference for drug development for gastrointestinal tumors.
Collapse
Affiliation(s)
- Cui Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lanlan Zhang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Maoyuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Ai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lina Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songtao Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Protein kinase C epsilon promotes de novo lipogenesis and tumor growth in prostate cancer cells by regulating the phosphorylation and nuclear translocation of pyruvate kinase isoform M2. Exp Cell Res 2023; 422:113427. [PMID: 36400183 DOI: 10.1016/j.yexcr.2022.113427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Protein kinase C epsilon (PKCε) belongs to a family of serine/threonine kinases that control cell proliferation, differentiation and survival. Aberrant PKCε activation and overexpression is a frequent feature of numerous cancers. However, its role in regulation of lipid metabolism in cancer cells remains elusive. Here we report a novel function of PKCε in regulating of prostate cancer cell proliferation by modulation of PKM2-mediated de novo lipogenesis. We show that PKCε promotes de novo lipogenesis and tumor cell proliferation via upregulation of lipogenic enzymes and lipid contents in prostate cancer cells. Mechanistically, PKCε interacts with NABD (1-388) domain of C-terminal deletion on pyruvate kinase isoform M2 (PKM2) and enhances the Tyr105 phosphorylation of PKM2, leading to its nuclear localization. Moreover, forced expression of mutant Tyr105 (Y105F) or PKM2 inhibition suppressed de novo lipogenesis and cell proliferation induced by overexpression of PKCε in prostate cancer cells. In a murine tumor model, inhibitor of PKM2 antagonizes lipogenic enzymes expression and prostate cancer growth induced by overexpression of PKCε in vivo. These data indicate that PKCε is a critical regulator of de novo lipogenesis, which may represent a potential therapeutic target for the treatment of prostate cancer.
Collapse
|
6
|
Cui MY, Yi X, Zhu DX, Wu J. The Role of Lipid Metabolism in Gastric Cancer. Front Oncol 2022; 12:916661. [PMID: 35785165 PMCID: PMC9240397 DOI: 10.3389/fonc.2022.916661] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Gastric cancer has been one of the most common cancers worldwide with extensive metastasis and high mortality. Chemotherapy has been found as a main treatment for metastatic gastric cancer, whereas drug resistance limits the effectiveness of chemotherapy and leads to treatment failure. Chemotherapy resistance in gastric cancer has a complex and multifactorial mechanism, among which lipid metabolism plays a vital role. Increased synthesis of new lipids or uptake of exogenous lipids can facilitate the rapid growth of cancer cells and tumor formation. Lipids form the structural basis of biofilms while serving as signal molecules and energy sources. It is noteworthy that lipid metabolism is capable of inducing drug resistance in gastric cancer cells by reshaping the tumor micro-environment. In this study, new mechanisms of lipid metabolism in gastric cancer and the metabolic pathways correlated with chemotherapy resistance are reviewed. In particular, we discuss the effects of lipid metabolism on autophagy, biomarkers treatment and drug resistance in gastric cancer from the perspective of lipid metabolism. In brief, new insights can be gained into the development of promising therapies through an in-depth investigation of the mechanism of lipid metabolism reprogramming and resensitization to chemotherapy in gastric cancer cells, and scientific treatment can be provided by applying lipid-key enzyme inhibitors as cancer chemical sensitizers in clinical settings.
Collapse
Affiliation(s)
| | | | | | - Jun Wu
- *Correspondence: Jun Wu, ; Dan-Xia Zhu,
| |
Collapse
|
7
|
Key Molecules of Fatty Acid Metabolism in Gastric Cancer. Biomolecules 2022; 12:biom12050706. [PMID: 35625633 PMCID: PMC9138239 DOI: 10.3390/biom12050706] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023] Open
Abstract
Fatty acid metabolism is closely linked to the progression of gastric cancer (GC), a very aggressive and life-threatening tumor. This study examines linked molecules, such as Sterol Regulatory Element-Binding Protein 1 (SREBP1), ATP Citrate Lyase (ACLY), Acetyl-CoA Synthases (ACSs), Acetyl-CoA Carboxylase (ACC), Fatty Acid Synthase (FASN), Stearoyl-CoA Desaturase 1 (SCD1), CD36, Fatty Acid Binding Proteins (FABPs), and Carnitine palmitoyltransferase 1 (CPT1), as well as their latest studies and findings in gastric cancer to unveil its core mechanism. The major enzymes of fatty acid de novo synthesis are ACLY, ACSs, ACC, FASN, and SCD1, while SREBP1 is the upstream molecule of fatty acid anabolism. Fatty acid absorption is mediated by CD36 and FABPs, and fatty acid catabolism is mediated by CPT1. If at all possible, we will discover novel links between fatty acid metabolism and a prospective gastric cancer target.
Collapse
|
8
|
Huang J, Fan P, Liu M, Weng C, Fan G, Zhang T, Duan X, Wu Y, Tang L, Yang G, Liu Y. Famotidine promotes inflammation by triggering cell pyroptosis in gastric cancer cells. BMC Pharmacol Toxicol 2021; 22:62. [PMID: 34686215 PMCID: PMC8539739 DOI: 10.1186/s40360-021-00533-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/15/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Cell pyroptosis has been characterized by cell swelling and pro-inflammatory factors release to aggravate inflammatory reaction., such as interlukin-1 beta (IL-1β) and interlukin18 (IL-18). However, the function of famotidine, an antagonist of histamine H2-receptor antagonists, in cell pyroptosis remained unknown. METHODS Real-time quantitative PCR (qPCR), western blotting (WB), LDH release assay and enzyme linked immunosorbent assay (Elisa) combined with inhibitor were performed to analyze the effect of famotidine on cell pyroptosis-related gene expression. RESULTS In this study, we found that famotidine (300 μm) treatment led to a phenomenon of cell pyroptosis as confirmed by LDH assay. Further results showed that famotidine triggered cell pyroptosis in gastric cancer cells by activation of NLPR3 inflammasomes including ASC, Caspase-1 and NLRP, leading to enhanced IL-18, not IL-1β, mature and secretion. What's more, the results also showed GSDME, not GSDMD, was increased in response to famotidine stimulation in BGC823 and AGS cells. Mechanically, phosphorylation of ERK1/2 was drastically enhanced in present with famotidine treatment, while inhibition of ERK1/2 activity by U0126 could reverse the promotion of famotidine in IL-18 secretion. CONCLUSION These findings revealed a novel role of famotidine in cell pyroptosis in patients with gastric cancer, a comprehensive consideration is needed in treatment of gastric cancer.
Collapse
Affiliation(s)
- Jin Huang
- Department of Medical Oncology, the First affiliated Hospital of University of Science and Technology of China(West), Heifei, Anhui, China
| | - Pingsheng Fan
- Department of Medical Oncology, the First affiliated Hospital of University of Science and Technology of China(West), Heifei, Anhui, China
| | - Miao Liu
- Department of Medical Oncology, the First affiliated Hospital of University of Science and Technology of China(West), Heifei, Anhui, China
| | - Chengtao Weng
- Department of Medical Oncology, the First affiliated Hospital of University of Science and Technology of China(West), Heifei, Anhui, China
| | - Gaofei Fan
- Department of Medical Oncology, the First affiliated Hospital of University of Science and Technology of China(West), Heifei, Anhui, China
| | - Tengyue Zhang
- Department of Medical Oncology, the First affiliated Hospital of University of Science and Technology of China(West), Heifei, Anhui, China
| | - Xiaohong Duan
- Department of Medical Oncology, the First affiliated Hospital of University of Science and Technology of China(West), Heifei, Anhui, China
| | - Yang Wu
- Department of Medical Oncology, the First affiliated Hospital of University of Science and Technology of China(West), Heifei, Anhui, China
| | - Lili Tang
- Department of Medical Oncology, the First affiliated Hospital of University of Science and Technology of China(West), Heifei, Anhui, China
| | - Guohong Yang
- Department of Medical Oncology, the First affiliated Hospital of University of Science and Technology of China(West), Heifei, Anhui, China
| | - Yabei Liu
- Department of Medical Oncology, the First affiliated Hospital of University of Science and Technology of China(West), Heifei, Anhui, China.
| |
Collapse
|
9
|
Xie J, Fan L, Xiong L, Chen P, Wang H, Chen H, Zhao J, Xu Z, Geng L, Xu W, Gong S. Rabeprazole inhibits inflammatory reaction by inhibition of cell pyroptosis in gastric epithelial cells. BMC Pharmacol Toxicol 2021; 22:44. [PMID: 34266494 PMCID: PMC8283986 DOI: 10.1186/s40360-021-00509-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/07/2021] [Indexed: 01/04/2023] Open
Abstract
Background Helicobacter pylori (H. pylori) is a common pathogen in development of peptic ulcers with pyroptosis. Rabeprazole, a critical component of standard triple therapy, has been widely used as the first-line regimen for H. pylori infectious treatment. The aim of this study to explore the function of Rabeprazole on cell pyroptosis in vitro. Methods The clinical sample from patients diagnosed with or without H. pylori-infection were collected to analyze by Immunohistochemistry (IHC). Real-time quantitative PCR (qPCR), western blot (WB) and enzyme linked immunosorbent assay (Elisa) were performed to analyze the effect of Rabeprazole on cell pyroptosis, including LDH, IL-1β and IL-18. Results In this study, we showed that Rabeprazole regulated a phenomenon of cell pyroptosis as confirmed by lactate dehydrogenase (LDH) assay. Further results showed that Rabeprazole inhibited cell pyroptosis in gastric epithelial cells by alleviating GSDMD-executed pyroptosis, leading to decrease IL-1β and IL-18 mature and secretion, which is attributed to NLRP3 inflammasome activation inhibition. Further analysis showed that ASC, NLRP3 and Caspase-1, was significantly repressed in response to Rabeprazole stimulation, resulting in decreasing cleaved-caspase-1 expression. Most important, NLRP3 and GSDMD is significantly increased in gastric tissue of patients with H. pylori infection. Conclusion These findings revealed a critical role of Rabeprazole in cell pyroptosis in patients with H. pylori infection, suggesting that targeting cell pyroptosis is an alternative strategy in improving H. pylori treatment.
Collapse
Affiliation(s)
- Jing Xie
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Long Fan
- Department of Pharmacy. Zhuhai Maternal and Child Health Hospital, Zhuhai, China
| | - Liya Xiong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Peiyu Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Hongli Wang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Huan Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Junhong Zhao
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Zhaohui Xu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wanfu Xu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China. .,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Sitang Gong
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China. .,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China. .,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Hipólito A, Martins F, Mendes C, Lopes-Coelho F, Serpa J. Molecular and Metabolic Reprogramming: Pulling the Strings Toward Tumor Metastasis. Front Oncol 2021; 11:656851. [PMID: 34150624 PMCID: PMC8209414 DOI: 10.3389/fonc.2021.656851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis is a major hurdle to the efficient treatment of cancer, accounting for the great majority of cancer-related deaths. Although several studies have disclosed the detailed mechanisms underlying primary tumor formation, the emergence of metastatic disease remains poorly understood. This multistep process encompasses the dissemination of cancer cells to distant organs, followed by their adaptation to foreign microenvironments and establishment in secondary tumors. During the last decades, it was discovered that these events may be favored by particular metabolic patterns, which are dependent on reprogrammed signaling pathways in cancer cells while they acquire metastatic traits. In this review, we present current knowledge of molecular mechanisms that coordinate the crosstalk between metastatic signaling and cellular metabolism. The recent findings involving the contribution of crucial metabolic pathways involved in the bioenergetics and biosynthesis control in metastatic cells are summarized. Finally, we highlight new promising metabolism-based therapeutic strategies as a putative way of impairing metastasis.
Collapse
Affiliation(s)
- Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Filipa Martins
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Cindy Mendes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Filipa Lopes-Coelho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| |
Collapse
|
11
|
Talebi M, Hamidian E, Niasari-Naslaji F, Rahmani S, Hosseini FS, Boumi S, Montazer MN, Asadi M, Amanlou M. Synthesis, molecular docking, and biological evaluation of nitroimidazole derivatives as potent urease inhibitors. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02727-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Zhou Y, Chen S, Yang F, Zhang Y, Xiong L, Zhao J, Huang L, Chen P, Ren L, Li H, Liang D, Wu P, Chen H, Chen J, Gong S, Xu W, Geng L. Rabeprazole suppresses cell proliferation in gastric epithelial cells by targeting STAT3-mediated glycolysis. Biochem Pharmacol 2021; 188:114525. [PMID: 33744226 DOI: 10.1016/j.bcp.2021.114525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
The dysregulation of glycolysis leads to serials of disease. Rabeprazole is a representative of proton pump inhibitors and widely used in anti-ulcer treatment. However, the function of Rabeprazole on glycolysis in gastric epithelial cells remained to be identified. In this study, 30(Helicobacter pylori)H. pylori-negative cases and 26H. pylori-positive cases treated with Rabeprazole were recruited. The qPCR and Western blotting results showed that Rabeprazole suppressed cell proliferation by inhibition of HK2-mediated glycolysis in BGC823 cells, leading to decrease glucose uptake and lactate production in a dose-dependent way. Furthermore, the phosphorylation of signal transducer and activator of transcription 3 (STAT3) was drastically reduced in response to Rabeprazole stimulation, leading to attenuate STAT3 nuclear translocation. Luciferase and Chromatin immunoprecipitation (ChIP) analysis showed that Rabeprazole treatment led to a significant inhibition of the binding of STAT3 to the promoter of the HK2 gene, repressing transcriptional activation of HK2. Moreover, the ectopic expression of STAT3 in BGC823 cells resulted in recovery of HK2 transactivation and cell proliferation in Rabeprazole-treated cells. Most importantly, HK2 expression was significantly increased in H. pylori-infected gastric mucosa. These findings suggested that Rabeprazole inhibited cell proliferation by targeting STAT3/HK2 signaling-mediated glucose metabolism in gastric epithelial cells. Therefore, targeting HK2 is an alternative strategy in improving the treatment of patients with H. pylori infection.
Collapse
Affiliation(s)
- Yanhe Zhou
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Sidong Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Fangying Yang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yuhua Zhang
- Department of Pediatrics, Putian medical district, The 900th Hospital of Joint Logistic Support Force, PLA, Putian 351164, China
| | - Liya Xiong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Junhong Zhao
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ling Huang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Peiyu Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Lu Ren
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Huiwen Li
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Defeng Liang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Peiqun Wu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Huan Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jiayu Chen
- Department of Neonatal Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Sitang Gong
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| | - Wanfu Xu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| | - Lanlan Geng
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| |
Collapse
|