1
|
Kirdaite G, Denkovskij J, Mieliauskaite D, Pachaleva J, Bernotiene E. The Challenges of Local Intra-Articular Therapy. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1819. [PMID: 39597004 PMCID: PMC11596802 DOI: 10.3390/medicina60111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Fibroblast-like synoviocytes (FLSs) are among the main disease-driving players in most cases of monoarthritis (MonoA), oligoarthritis, and polyarthritis. In this review, we look at the characteristics and therapeutic challenges at the onset of arthritis and during follow-up management. In some cases, these forms of arthritis develop into autoimmune polyarthritis, such as rheumatoid arthritis (RA), whereas local eradication of the RA synovium could still be combined with systemic treatment using immunosuppressive agents. Currently, the outcomes of local synovectomies are well studied; however, there is still a lack of a comprehensive analysis of current local intra-articular treatments highlighting their advantages and disadvantages. Therefore, the aim of this study is to review local intra-articular therapy strategies. According to publications from the last decade on clinical studies focused on intra-articular treatment with anti-inflammatory molecules, a range of novel slow-acting forms of steroidal drugs for the local treatment of synovitis have been investigated. As pain is an essential symptom, caused by both inflammation and cartilage damage, various molecules acting on pain receptors are being investigated in clinical trials as potential targets for local intra-articular treatment. We also overview the new targets for local treatment, including surface markers and intracellular proteins, non-coding ribonucleic acids (RNAs), etc.
Collapse
Affiliation(s)
- Gailute Kirdaite
- Department of Personalised Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Jaroslav Denkovskij
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania (E.B.)
| | - Diana Mieliauskaite
- Department of Personalised Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Jolita Pachaleva
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania (E.B.)
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania (E.B.)
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, VilniusTech, Sauletekio al. 11, LT-10223 Vilnius, Lithuania
| |
Collapse
|
2
|
Kikuchi M, Murase H, Urata K, Ishige T, Nagata SI, Tozaki T, Kakoi H, Ishiguro-Oonuma T, Kizaki K. Evaluation of circulating miRNAs in mares approaching parturition. Domest Anim Endocrinol 2024; 89:106879. [PMID: 39191115 DOI: 10.1016/j.domaniend.2024.106879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
Circulating microRNAs (miRNAs) are stable in body fluids and can serve as biomarkers for various diseases and physiological states. Although pregnancy-related miRNAs have been identified in various mammals, studies on parturition-related circulating miRNAs in mares are limited. Therefore, this study aimed to identify parturition-related miRNAs and examine their potential applications in the prediction of parturition date. miRNAs were extracted from the plasma of Thoroughbred mares 30 days (295-326 days pregnant) and 5 (323-352 days pregnant) - 0 (328-357 days pregnant) days before parturition, followed by small RNA sequencing (small RNA-seq) and reverse transcription quantitative PCR (RT-qPCR). Additionally, we measured plasma progestin concentrations in mares using an enzyme-linked immunosorbent assay. Small RNA-seq data indicated that 18 miRNAs were affected by parturition proximity. Among the 18 miRNAs, two novel miRNAs and three known miRNAs (miR-361-3p, miR-483, and miR-99a) showed significant changes at 5-0 days before parturition compared with that at 30 days to parturition. Plasma progestin concentrations were higher at 5-3 days to parturition than at 30 days to parturition, and then decreased on the day of parturition. Conclusively, this study provides basic knowledge of parturition-related circulating miRNAs in mares, and identifies miRNAs that could potentially be used as biomarkers to predict parturition in mares.
Collapse
Affiliation(s)
- Mio Kikuchi
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi 320-0851, Japan; Graduate School of Veterinary Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Harutaka Murase
- Equine Science Division, Hidaka Training and Research Center, Japan Racing Association, 535-13 Nishicha, Urakawa, Hokkaido 057-0171, Japan
| | - Kenichi Urata
- Equine Science Division, Hidaka Training and Research Center, Japan Racing Association, 535-13 Nishicha, Urakawa, Hokkaido 057-0171, Japan
| | - Taichiro Ishige
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi 320-0851, Japan
| | - Shun-Ichi Nagata
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi 320-0851, Japan
| | - Teruaki Tozaki
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi 320-0851, Japan
| | - Hironaga Kakoi
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi 320-0851, Japan
| | - Toshina Ishiguro-Oonuma
- Graduate School of Veterinary Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Keiichiro Kizaki
- Graduate School of Veterinary Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
3
|
Zheng Y, Cai X, Ren F, Yao Y. The role of non-coding RNAs in fibroblast-like synoviocytes in rheumatoid arthritis. Int J Rheum Dis 2024; 27:e15376. [PMID: 39439368 DOI: 10.1111/1756-185x.15376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by synovial hyperplasia, and fibroblast-like synoviocytes (FLSs) constitute the majority of cells in the synovial tissue, playing a crucial role in the onset of RA. Dysregulation of FLSs function is a critical strategy in treating joint damage associated with RA. Non-coding RNAs, a class of RNA molecules that do not encode proteins, participate in the development of various diseases. This article aims to review the progress in the study of long non-coding RNAs, microRNAs, and circular RNAs in FLSs. Non-coding RNAs are involved in the pathogenesis of RA, directly or indirectly regulating FLSs' proliferation, migration, invasion, apoptosis, and inflammatory responses. Furthermore, non-coding RNAs also influence DNA methylation and osteogenic differentiation in FLSs. Therefore, non-coding RNAs hold promise as biomarkers for diagnosing RA. Targeting non-coding RNAs in FLSs locally represents a potential strategy for future therapies in RA.
Collapse
Affiliation(s)
- Yongquan Zheng
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Fujia Ren
- Department of Pharmacy, Hangzhou Women's Hospital, Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Yu X, Ge J, Xie H, Qian J, Xia W, Wang Q, Zhou X, Zhou Y. MiR-483-3p promotes dental pulp stem cells osteogenic differentiation via the MAPK signaling pathway by targeting ARRB2. In Vitro Cell Dev Biol Anim 2024; 60:879-887. [PMID: 38833209 DOI: 10.1007/s11626-024-00929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Human dental pulp stem cells (DPSCs) have become an important component for bone tissue engineering and regenerative medicine due to their ability to differentiate into osteoblast precursors. Two miRNA chip datasets (GSE138180 and E-MTAB-3077) of DPSCs osteogenic differentiation were analyzed respectively to find the expression of miR-483-3p significantly increased in the differentiated groups. We further confirmed that miR-483-3p continued to overexpress during osteogenic differentiation of DPSCs, especially reaching its peak on the 7th day. Moreover, miR-483-3p could significantly promote the expression of osteogenic markers including RUNX2 and OSX, and activate MAPK signaling pathway by inducing phosphorylation of ERK, p38, and JNK. In addition, as a significant gene within the MAPK signaling pathway, ARRB2 was identified as the target gene of miR-483-3p by bioinformatic prediction and experimental verification. In conclusion, we identified miR-483-3p could promote osteogenic differentiation of DPSCs via the MAPK signaling pathway by targeting ARRB2.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthodontics and Periodontology, Affiliated Nantong Stomatological Hospital of Nantong University, 36 South Yuelong Road, Nantong, 226001, China
| | - Juan Ge
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Huimin Xie
- Department of Orthodontics and Periodontology, Affiliated Nantong Stomatological Hospital of Nantong University, 36 South Yuelong Road, Nantong, 226001, China
| | - Jialu Qian
- Department of Clinical Laboratory, The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Wenqian Xia
- Department of Orthodontics and Periodontology, Affiliated Nantong Stomatological Hospital of Nantong University, 36 South Yuelong Road, Nantong, 226001, China
| | - Qinghua Wang
- Laboratory Animal Center, Nantong University, Nantong, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.
| | - Yan Zhou
- Department of Orthodontics and Periodontology, Affiliated Nantong Stomatological Hospital of Nantong University, 36 South Yuelong Road, Nantong, 226001, China.
| |
Collapse
|
5
|
Saadh MJ, Ahmed HH, Singh A, Mustafa MA, Al Zuhairi RAH, Ghildiyal P, Jawad MJ, Alsaikhan F, Khalilollah S, Akhavan-Sigari R. Small molecule and big function: MicroRNA-mediated apoptosis in rheumatoid arthritis. Pathol Res Pract 2024; 261:155508. [PMID: 39116571 DOI: 10.1016/j.prp.2024.155508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune condition and chronic inflammatory disease, mostly affecting synovial joints. The complex pathogenesis of RA is supportive of high morbidity, disability, and mortality rates. Pathological changes a common characteristic in RA synovial tissue is attributed to the inadequacy of apoptotic pathways. In that regard, apoptotic pathways have been the center of attention in RA therapeutic approaches. As the regulators in the complex network of apoptosis, microRNAs (miRNAs) are found to be vital modulators in both intrinsic and extrinsic pathways through altering their regulatory genes. Indeed, miRNA, a member of the family of non-coding RNAs, are found to be an important player in not even apoptosis, but proliferation, gene expression, signaling pathways, and angiogenesis. Aberrant expression of miRNAs is implicated in attenuation and/or intensification of various apoptosis routes, resulting in culmination of human diseases including RA. Considering the need for more studies focused on the underlying mechanisms of RA in order to elevate the unsatisfactory clinical treatments, this study is aimed to delineate the importance of apoptosis in the pathophysiology of this disease. As well, this review is focused on the critical role of miRNAs in inducing or inhibiting apoptosis of RA-synovial fibroblasts and fibroblast-like synoviocytes and how this mechanism can be exerted for therapeutic purposes for RA.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | - Anamika Singh
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India; Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand- 831001, India.
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
6
|
Chasov V, Ganeeva I, Zmievskaya E, Davletshin D, Gilyazova E, Valiullina A, Bulatov E. Cell-Based Therapy and Genome Editing as Emerging Therapeutic Approaches to Treat Rheumatoid Arthritis. Cells 2024; 13:1282. [PMID: 39120313 PMCID: PMC11312096 DOI: 10.3390/cells13151282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints. Although much remains unknown about the pathogenesis of RA, there is evidence that impaired immune tolerance and the development of RA are related. And it is precisely the restoration of immune tolerance at the site of the inflammation that is the ultimate goal of the treatment of RA. Over the past few decades, significant progress has been made in the treatment of RA, with higher rates of disease remission and improved long-term outcomes. Unfortunately, despite these successes, the proportion of patients with persistent, difficult-to-treat disease remains high, and the task of improving our understanding of the basic mechanisms of disease development and developing new ways to treat RA remains relevant. This review focuses on describing new treatments for RA, including cell therapies and gene editing technologies that have shown potential in preclinical and early clinical trials. In addition, we discuss the opportunities and limitations associated with the use of these new approaches in the treatment of RA.
Collapse
Affiliation(s)
- Vitaly Chasov
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Irina Ganeeva
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Ekaterina Zmievskaya
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Damir Davletshin
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Elvina Gilyazova
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Aygul Valiullina
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Emil Bulatov
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119048, Russia
| |
Collapse
|
7
|
Wang Z, Qin X, Yuan J, Yin H, Qu R, Zhong C, Ding W. MicroRNA-483-3p Inhibitor Ameliorates Sepsis-Induced Intestinal Injury by Attenuating Cell Apoptosis and Cytotoxicity Via Regulating HIPK2. Mol Biotechnol 2024; 66:233-240. [PMID: 37074551 DOI: 10.1007/s12033-023-00734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/24/2023] [Indexed: 04/20/2023]
Abstract
Sepsis is a life-threatening syndrome that can result in multi-organ dysfunction. MicroRNA (miR)-483-3p was previously demonstrated to be upregulated in sepsis patients; however, its specific functions in sepsis-triggered intestinal injury remain unclarified. Human intestinal epithelial NCM460 cell line was stimulated with lipopolysaccharide (LPS) to mimic sepsis-induced intestinal injury in vitro. Terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) staining was utilized for examining cell apoptosis. Western blotting and real time quantitative polymerase chain reaction (RT-qPCR) were used for detecting molecular protein and RNA levels. LPS-induced cytotoxicity was determined by measuring concentrations of lactate dehydrogenase (LDH), diamine oxidase (DAO) and fatty acid binding protein 2 (FABP2). Luciferase reporter assay was utilized for verifying the interaction between miR-483-3p and homeodomain interacting protein kinase 2 (HIPK2). Inhibiting miR-483-3p alleviates LPS-triggered NCM460 cell apoptosis and cytotoxicity. miR-483-3p targeted HIPK2 in LPS-stimulated NCM460 cells. Knockdown of HIPK2 reversed the above effects mediated by miR-483-3p inhibitor. Inhibiting miR-483-3p ameliorates LPS-triggered apoptosis and cytotoxicity by targeting HIPK2.
Collapse
Affiliation(s)
- Zhen Wang
- Department of General Practice, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Xuemei Qin
- Department of Critical Care Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Jin Yuan
- Department of Critical Care Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Hongzhen Yin
- Department of Critical Care Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Rui Qu
- Department of Critical Care Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Changshun Zhong
- Department of Critical Care Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Wei Ding
- Department of Burn and Plastic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, No 2, Zheshan West Rd, Wuhu, 241000, Anhui, China.
| |
Collapse
|
8
|
Peng Y, Zhang M, Hu J. Non-coding RNAs involved in fibroblast-like synoviocyte functioning in arthritis rheumatoid: From pathogenesis to therapy. Cytokine 2024; 173:156418. [PMID: 37952312 DOI: 10.1016/j.cyto.2023.156418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Rheumatoid arthritis (RA) is a polygenic autoimmune disorder with an uncertain etiology, primarily impacting the joints. Moreover, the disease may manifest beyond articular involvement, leading to extra-articular manifestations. Fibroblast-like synoviocytes (FLS) are cells of mesenchymal origin that possess crucial physiological significance within the synovium, contributing to the synthesis of specific constituents found in the synovial fluid and articular cartilage. Consequently, there has been a growing focus on FLS as a potential therapeutic target in the context of RA. Recent investigations have revealed that non-coding RNAs (ncRNAs) serve as pivotal regulators of FLS function, with their dysregulated expression patterns being detected within FLS populations. NcRNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), assume essential functions as regulators of gene expression at both the post-transcriptional and transcriptional levels, and also serve as guiding molecules for chromatin-modifying complexes. Majority of these ncRNAs contribute to various FLS activities including metastasis, proliferation, and cytokine production. In the current work, we comprehensively review the existing literature on ncRNAs, which play pivotal roles in FLS activity and the pathogenesis of RA. Furthermore, this study provides a comprehensive summary and description of the lncRNA/circRNA-miRNA-mRNA regulatory axes in FLS activity, along with potential implications for the RA development. As well, in the final section, we illustrated that therapeutic agents including herbal medicine, and exosomes by modulating ncRNAs regulate FLS activity.
Collapse
Affiliation(s)
- Yuwei Peng
- Rheumatology and Immunology, PingXiangPeople's Hospital, No. 8, Wugongshangzhong Avenue, Anyuan District, PiangXiang City, Jiangxi Province, 337000, China
| | - Meng Zhang
- Rheumatology and Immunology, PingXiangPeople's Hospital, No. 8, Wugongshangzhong Avenue, Anyuan District, PiangXiang City, Jiangxi Province, 337000, China
| | - Jiangkang Hu
- Rheumatology and Immunology, PingXiangPeople's Hospital, No. 8, Wugongshangzhong Avenue, Anyuan District, PiangXiang City, Jiangxi Province, 337000, China.
| |
Collapse
|
9
|
Shen KY, Dai XL, Li S, Huang F, Chen LQ, Luo P, Qu XL. Specific expression profile of follicular fluid-derived exosomal microRNAs in patients with diminished ovarian reserve. BMC Med Genomics 2023; 16:308. [PMID: 38037065 PMCID: PMC10688486 DOI: 10.1186/s12920-023-01756-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Diminished ovarian reserve (DOR) is defined as a reduction in ovarian reserve and oocyte quality. The pathophysiology of DOR has not been completely explained as of yet. Scholars have uncovered a large number of exosomes that have been detected in follicular fluid, and exosomal miRNAs have been proven to play a critical role in controlling ovarian disorders and follicle formation. We focused on the expression profile of follicular fluid-derived exosomal microRNAs (miRNAs) and attempted to understand if their role is connected to the pathomechanism of DOR. METHODS The follicular fluid-derived differentially expressed exosomal miRNAs (DEmiRs) between patients with DOR and those with normal ovarian function were investigated using the next-generation sequencing (NGS) method. The main metabolic and signaling pathways of DEmiRs were identified using the KEGG pathway database, disease ontology (DO) analysis, and gene ontology (GO) analysis. In the end, a Protein-Protein Interaction (PPI) network was built to search for exosomal miRNAs and their target genes that were potentially strongly connected with DOR. RESULTS In comparison to normal controls, 52 DEmiRs were discovered in follicular fluid-derived exosomes of DOR patients, of which 19 were up-regulated and 33 were down-regulated (|log2(fold change) |>2, P < 0.05). GO, DO analysis, and the KEGG pathway database revealed that many of these DEmiRs have broad biological roles that are connected to ovarian function and disorders. The top ten DEmiRs in terms of expression were then chosen for miRNA-mRNA interaction analysis. Totally, 8 experimentally supported miRNAs (hsa-miR-1246, hsa-miR-483-3p, hsa-miR-122-5p, hsa-miR-130b-3p, hsa-miR-342-3p, hsa-miR-625-3p, hsa-miR-675-3p, and hsa-miR-134-5p) and 126 target genes were filtrated by utilizing Cytoscape software. The module analysis findings of the PPI network showed that the main module cluster with a score > 6.0 (MCODE score = 15) had six hub genes, including IGFR, VEGFA, KRAS, ERBB2, RHOA, and PTEN (MCODE score = 11.472). CONCLUSION Our data suggested a special expression profile of follicular fluid-derived exosomal miRNAs in patients with DOR, which was probably correlated to ovarian dysfunction and follicle formation. These results may give a unique insight into a better understanding of the molecular process in the pathogenesis of DOR or other ovarian diseases.
Collapse
Affiliation(s)
- Kai-Yuan Shen
- Department of Reproductive Medicine, Liuzhou People's Hospital, Liuzhou, Guangxi, 545006, People's Republic of China
- Liuzhou Key Laboratory of Reproductive and Genetic Metabolic Diseases, Liuzhou, Guangxi, 545006, People's Republic of China
| | - Xiao-Li Dai
- Research service office, Liuzhou People's Hospital, Liuzhou, Guangxi, 545006, People's Republic of China
| | - Shun Li
- Department of Reproductive Medicine, Liuzhou People's Hospital, Liuzhou, Guangxi, 545006, People's Republic of China
- Liuzhou Key Laboratory of Reproductive and Genetic Metabolic Diseases, Liuzhou, Guangxi, 545006, People's Republic of China
| | - Fen Huang
- Department of Reproductive Medicine, Liuzhou People's Hospital, Liuzhou, Guangxi, 545006, People's Republic of China
- Liuzhou Key Laboratory of Reproductive and Genetic Metabolic Diseases, Liuzhou, Guangxi, 545006, People's Republic of China
| | - Li-Qun Chen
- Department of Reproductive Medicine, Liuzhou People's Hospital, Liuzhou, Guangxi, 545006, People's Republic of China
| | - Ping Luo
- Department of Reproductive Medicine, Liuzhou People's Hospital, Liuzhou, Guangxi, 545006, People's Republic of China
- Liuzhou Key Laboratory of Reproductive and Genetic Metabolic Diseases, Liuzhou, Guangxi, 545006, People's Republic of China
| | - Xiao-Li Qu
- Department of Reproductive Medicine, Liuzhou People's Hospital, Liuzhou, Guangxi, 545006, People's Republic of China.
| |
Collapse
|
10
|
Xue Q, Zhang Q, Guo Z, Wu L, Chen Y, Chen Z, Yang K, Cao J. Therapeutic Hypothermia Inhibits Hypoxia-Induced Cardiomyocyte Apoptosis Via the MiR-483-3p/Cdk9 Axis. J Am Heart Assoc 2023; 12:e026160. [PMID: 36789845 PMCID: PMC10111479 DOI: 10.1161/jaha.122.026160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Background Therapeutic hypothermia has a beneficial effect on cardiac function after acute myocardial infarction, but the exact mechanism is still unclear. Recent research has suggested that microRNAs participate in acute myocardial infarction to regulate cardiomyocyte survival. This study aimed to explore the ability of hypothermia-regulated microRNA-483-3p (miR-483-3p) to inhibit hypoxia-induced myocardial infarction. Methods and Results Primary cardiomyocytes were cultured under hypoxia at 32 °C to mimic therapeutic hypothermia, and the differentially expressed microRNAs were determined by RNA sequencing. Therapeutic hypothermia recovered hypoxia-induced increases in apoptosis, decreases in ATP levels, and decreases in miR-483-3p expression. Overexpression of miR-483-3p exhibited effects similar to those of therapeutic hypothermia on hypoxia in the treatment of cardiomyocytes to associate with maintaining the mitochondrial membrane potential, and cyclin-dependent kinase 9 (Cdk9) was identified as a target gene with downregulated expression by miR-483-3p. Knockdown of Cdk9 also promoted cardiac survival, ATP production, and mitochondrial membrane potential stability under hypoxia. In vivo, the expression of miR-483-3p and Cdk9 was tested in the cardiac tissue of the mice with acute myocardial infarction, and the expression of miR-483-3p decreased and Cdk9 increased in the region of myocardial infarction. However, miR-483-3p was overexpressed with lentivirus, which suppressed apoptosis, infarct size (miR-483-3p, 22.00±4.04% versus negative control, 28.57±5.44%, P<0.05), and Cdk9 expression to improve cardiac contractility. Conclusions MiR-483-3p antagonizes hypoxia, leading to cardiomyocyte injury by targeting Cdk9, which is a new mechanism of therapeutic hypothermia.
Collapse
Affiliation(s)
- Qiqi Xue
- Department of Geriatrics Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| | - Qianru Zhang
- Department of Cardiology Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| | - Zhenzhen Guo
- Department of Cardiovascular Medicine Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| | - Liping Wu
- Department of Cardiac Imaging Center The First Affiliated Hospital, Auhui Medical University Hefei China
| | - Yafen Chen
- Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital, Fudan University Shanghai China
| | - Zhongli Chen
- State Key Laboratory of Cardiovascular Disease Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Ke Yang
- Department of Cardiovascular Medicine Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| | - Jiumei Cao
- Department of Geriatrics Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| |
Collapse
|
11
|
Hu C, Li S, Fu X, Zhao X, Peng J. LncRNA NR2F1-AS1 was involved in azacitidine resistance of THP-1 cells by targeting IGF1 with miR-483-3p. Cytokine 2023; 162:156105. [PMID: 36527891 DOI: 10.1016/j.cyto.2022.156105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The long noncoding RNAs' (lncRNAs) effect on cancer therapy resistance by targeting microRNA (miRNA) in the regulation of drug resistance genes has attracted more and more attention. This study attempted to explore the mechanism of "lncRNA NR2F1-AS1/miR-483-3p/IGF1″ axis in azacitidine resistance of THP-1 cells. METHODS THP-1 cells were treated with azacitidine to construct THP1-Aza cells. Cell number and morphological changes were observed by a microscope. CCK8, flow cytometry and transwell were used to detect cell proliferation, apoptosis, cycle, invasion and migration. The targeting relationships between NR2F1-AS1 and miR-483-3p, IGF1 and miR-483-3p were analyzed by dual-luciferase, respectively. RIP assay was applied to verify the interaction between NR2F1-AS1 and miR-483-3p. The relative mRNA expression levels of miR-483-3p, AKT1, PI3K, NR2F1-AS1 and IGF1 were detected by qRT-PCR. PI3K, p-PI3K, AKT, p-AKT and IGF1 protein expression were detected by western blot. RESULTS Compared with THP-1 cells, NR2F1-AS1 and IGF1 were highly expressed in THP1-Aza cells, and the miR-483-3p expression was significantly decreased in THP1-Aza cells. Knockdown of NR2F1-AS1 increased apoptosis and G1 phase, and reduced cells growth, invasion and migration ability of THP1-Aza cells. Dual-luciferase demonstrated that NR2F1-AS1 could bind to miR-483-3p, and miR-483-3p could bind to IGF1. RIP assay verified the interaction between NR2F1-AS1 and miR-483-3p. Compared with the si-NR2F1-AS1 group, miR-483-3p inhibitor or oe-IGF1 treatment reduced the apoptosis and cell cycle, and increased the cell growth, invasion and migration ability of THP-1-Aza cells. CONCLUSION LncRNA NR2F1-AS1 affects the sensitivity of THP-1 cells to azacitidine resistance by regulating the miR-483-3p/IGF1 axis, which may be a potential target for the treatment of acute monocytic leukemia.
Collapse
Affiliation(s)
- Changmei Hu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shujun Li
- Department of Haematology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Xiao Fu
- Department of Haematology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Xielan Zhao
- Department of Haematology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Jie Peng
- Department of Haematology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
12
|
Zhou W, Ma X, Jia X, Zheng J, Yan L, Fu Y. Construction and comprehensive analysis of the biological network related to rheumatoid arthritis-related interstitial lung disease. Int J Rheum Dis 2023; 26:132-144. [PMID: 36261881 DOI: 10.1111/1756-185x.14466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/22/2022] [Accepted: 10/01/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Interstitial lung disease (ILD) is a severe manifestation of rheumatoid arthritis (RA), which is characterized by low survival time post-diagnosis. Thus, it is important to explore the role of gene regulation related with ILD. METHOD Constructed a RA-ILD-related long chain noncoding RNA - messenger RNA (lncRNA-mRNA) network (ILD-LMN), based on ILD- and RA-related genes. We analyzed the topological properties of the resulting network. RESULT The results for network modularization and functional analysis showed that ILD-LMN performed basic and specific functions in ILD pathology. Furthermore, differential expression and correlation analysis of hub nodes revealed highly correlated competitive endogenous RNA regulatory relationships with important roles in pathological regulation. Following this, statistical analysis of disease-related single nucleotide polymorphisms (SNPs) in hub lncRNAs revealed that some of transcription factor-related SNPs were significantly associated with the expression of lncRNA. In fact, these SNPs exhibited significant differential expression in disease and normal samples. CONCLUSION These results suggest that ILD-LMN has important implications in the study of disease. Altogether, the study of RA- and ILD-related lncRNA and genes on the basis of biological network would assist in providing better treatment opportunities for ILD patients. Additionally, it would promote further research on treatment of the disease.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Rheumatology, Liaocheng People's Hospital, Liaocheng, China
| | - Xianghui Ma
- Department of Rheumatology, Dongying People's Hospital, Dongying, China
| | - Xiaodong Jia
- Department of the Key Laboratory of Ophthalmology, Liaocheng People's Hospital, Liaocheng, China
| | - Juan Zheng
- Department of the Key Laboratory of Ophthalmology, Liaocheng People's Hospital, Liaocheng, China
| | - Lili Yan
- Department of the Key Laboratory of Ophthalmology, Liaocheng People's Hospital, Liaocheng, China
| | - Yanfa Fu
- Department of Rheumatology, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
13
|
Xu X, Luo H, Chen Q, Wang Z, Chen X, Li X, Chen H, Wang M, Xu Y, Dai M, Wang J, Huang X, Wu B, Li Y. Detecting potential mechanism of vitamin D in treating rheumatoid arthritis based on network pharmacology and molecular docking. Front Pharmacol 2022; 13:1047061. [DOI: 10.3389/fphar.2022.1047061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022] Open
Abstract
Aim: Vitamin D plays a vital role in Rheumatoid arthritis (RA). However, the mechanism of vitamin D and rheumatism is still unclear. Therefore, a strategy based on network pharmacology and molecular docking was used to explore the mechanism of vitamin D and RA.Methods: The targets of RA were obtained from the GeneCards database and Therapeutic Targets Database, and the targets of vitamin D were obtained from the Drugbank database and STITCH database. Next, overlapping genes were identified by Venny, and further Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and molecular docking analyses were performed.Results: A total of 1,139 targets of RA and 201 targets of vitamin D were obtained. A total of 76 overlapping genes were identified by Venny. The enrichment analysis showed that cell proliferation, immune response, and apoptotic process were the critical biological processes of vitamin D in treating RA. Antifolate resistance, osteoclast differentiation, and the nuclear factor-kappa B (NF-κB) signalling pathway are fundamental mechanisms of vitamin D in treating RA. According to further molecular docking, ALB, TNF, CASP3, and TP53 may be important punctuation points or diagnostic markers for future RA treatment.Conclusion: By analysing overlapping genes of diseases and drugs, this study confirmed that ALB, TNF, CASP3, and TP53 may be essential markers or diagnostic markers for future RA treatment.
Collapse
|
14
|
Zhang S, Shen Z, Chao G, Du X, Zhang W, Jin D, Liu Y. Circ_0004712 Silencing Suppresses the Aggressive Changes of Rheumatoid Arthritis Fibroblast-Like Synoviocytes by Targeting miR-633/TRAF6 Axis. Biochem Genet 2022; 61:521-537. [PMID: 35984539 DOI: 10.1007/s10528-022-10265-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
Circular RNA_0004712 (circ_0004712) is reported to be up-regulated in rheumatoid arthritis (RA) patients. Nevertheless, its role and mechanism in RA pathology remain to be clarified. RNA and protein expression was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot assay. Cell viability, proliferation, apoptosis, migration, and inflammation were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, 5-ethynyl-20-deoxyuridine assay, flow cytometry, scratch test, and enzyme-linked immunosorbent assay. The target correlation between microRNA-633 (miR-633) and circ_0004712 or TNF receptor associated factor 6 (TRAF6) was verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. Circ_0004712 was up-regulated in RA synovial tissues and RA fibroblast-like synoviocytes (RA-FLSs). Circ_0004712 silencing suppressed the viability, proliferation, migration and inflammatory response and facilitated the apoptosis of RA-FLSs. miR-633 was confirmed to be a direct target of circ_0004712, and miR-633 knockdown reversed circ_0004712 silencing-mediated protective effects on the dysfunction and inflammation of RA-FLSs. TRAF6 was a direct target of miR-633, and miR-633 overexpression suppressed the aggressive changes of RA-FLSs by down-regulating TRAF6. Circ_0004712 could up-regulate TRAF6 expression by sponging miR-633 in RA-FLSs. Circ_0004712 interference inactivated nuclear factor (NF)-κB signaling by targeting miR-633/TRAF6 axis. Circ_0004712 silencing inhibited the aggressive changes of RA-FLSs by targeting miR-633/TRAF6 axis and NF-κB signaling, which provided new targets for RA therapy.
Collapse
Affiliation(s)
- Shihui Zhang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, No.555 Youyi Dong Lu, Nanshaomen, Xi'an City, Xi'an 710054, Shaanxi, China
| | - Zhizhong Shen
- Department of Emergency, The First Affiliated Hospital of Xinxiang Medical University, Weihui City, 453100, Henan, China
| | - Gao Chao
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, No.555 Youyi Dong Lu, Nanshaomen, Xi'an City, Xi'an 710054, Shaanxi, China
| | - Xiaolong Du
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, No.555 Youyi Dong Lu, Nanshaomen, Xi'an City, Xi'an 710054, Shaanxi, China
| | - Wentao Zhang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, No.555 Youyi Dong Lu, Nanshaomen, Xi'an City, Xi'an 710054, Shaanxi, China
| | - Dan Jin
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Xi'an 710054, Shaanxi, China
| | - Yafei Liu
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, No.555 Youyi Dong Lu, Nanshaomen, Xi'an City, Xi'an 710054, Shaanxi, China.
| |
Collapse
|
15
|
Niu X, Song H, Xiao X, Yang Y, Huang Q, Yu J, Yu J, Liu Y, Han T, Zhang D, Li W. Tectoridin ameliorates proliferation and inflammation in TNF-α-induced HFLS-RA cells via suppressing the TLR4/NLRP3/NF-κB signaling pathway. Tissue Cell 2022; 77:101826. [DOI: 10.1016/j.tice.2022.101826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
|
16
|
Chang C, Xu L, Zhang R, Jin Y, Jiang P, Wei K, Xu L, Shi Y, Zhao J, Xiong M, Guo S, He D. MicroRNA-Mediated Epigenetic Regulation of Rheumatoid Arthritis Susceptibility and Pathogenesis. Front Immunol 2022; 13:838884. [PMID: 35401568 PMCID: PMC8987113 DOI: 10.3389/fimmu.2022.838884] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/02/2022] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in regulating the transcriptome and development of rheumatoid arthritis (RA). Currently, a comprehensive map illustrating how miRNAs regulate transcripts, pathways, immune system differentiation, and their interactions with terminal cells such as fibroblast-like synoviocytes (FLS), immune-cells, osteoblasts, and osteoclasts are still laking. In this review, we summarize the roles of miRNAs in the susceptibility, pathogenesis, diagnosis, therapeutic intervention, and prognosis of RA. Numerous miRNAs are abnormally expressed in cells involved in RA and regulate target genes and pathways, including NF-κB, Fas-FasL, JAK-STAT, and mTOR pathways. We outline how functional genetic variants of miR-499 and miR-146a partly explain susceptibility to RA. By regulating gene expression, miRNAs affect T cell differentiation into diverse cell types, including Th17 and Treg cells, thus constituting promising gene therapy targets to modulate the immune system in RA. We summarize the diagnostic and prognostic potential of blood-circulating and cell-free miRNAs, highlighting the opportunity to combine these miRNAs with antibodies to cyclic citrullinated peptide (ACCP) to allow accurate diagnosis and prognosis, particularly for seronegative patients. Furthermore, we review the evidence implicating miRNAs as promising biomarkers of efficiency and response of, and resistance to, disease-modifying anti-rheumatic drugs and immunotherapy. Finally, we discuss the autotherapeutic effect of miRNA intervention as a step toward the development of miRNA-based anti-RA drugs. Collectively, the current evidence supports miRNAs as interesting targets to better understand the pathogenetic mechanisms of RA and design more efficient therapeutic interventions.
Collapse
Affiliation(s)
- Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Runrun Zhang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yehua Jin
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Momiao Xiong
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center, Houston, TX, United States
| | - Shicheng Guo
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
17
|
Han JJ, Wang XQ, Zhang XA. Functional Interactions Between lncRNAs/circRNAs and miRNAs: Insights Into Rheumatoid Arthritis. Front Immunol 2022; 13:810317. [PMID: 35197980 PMCID: PMC8858953 DOI: 10.3389/fimmu.2022.810317] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases that affect synovitis, bone, cartilage, and joint. RA leads to bone and cartilage damage and extra-articular disorders. However, the pathogenesis of RA is still unclear, and the lack of effective early diagnosis and treatment causes severe disability, and ultimately, early death. Accumulating evidence revealed that the regulatory network that includes long non-coding RNAs (lncRNAs)/circular RNAs (circRNAs), micro RNAs (miRNAs), and messenger RNAs (mRNA) plays important roles in regulating the pathological and physiological processes in RA. lncRNAs/circRNAs act as the miRNA sponge and competitively bind to miRNA to regulate the expression mRNA in synovial tissue, FLS, and PBMC, participate in the regulation of proliferation, apoptosis, invasion, and inflammatory response. Thereby providing new strategies for its diagnosis and treatment. In this review, we comprehensively summarized the regulatory mechanisms of lncRNA/circRNA-miRNA-mRNA network and the potential roles of non-coding RNAs as biomarkers and therapeutic targets for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Juan-Juan Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| | - Xin-An Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| |
Collapse
|
18
|
Wang H, Mou H, Xu X, Liu C, Zhou G, Gao B. LncRNA KCNQ1OT1 (potassium voltage-gated channel subfamily Q member 1 opposite strand/antisense transcript 1) aggravates acute kidney injury by activating p38/NF-κB pathway via miR-212-3p/MAPK1 (mitogen-activated protein kinase 1) axis in sepsis. Bioengineered 2021; 12:11353-11368. [PMID: 34783627 PMCID: PMC8810185 DOI: 10.1080/21655979.2021.2005987] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury (AKI), a common complication of sepsis, is characterized by a rapid loss of renal excretory function. A variety of etiologies and pathophysiological processes may contribute to AKI. Previously, mitogen-activated protein kinase 1 (MAPK1) was reported to regulate cellular processes in various sepsis-associated diseases. The current study aimed to further explore the biological function and regulatory mechanism of MAPK1 in sepsis-induced AKI. In our study, MAPK1 exhibited high expression in the serum of AKI patients. Functionally, knockdown of MAPK1 suppressed inflammatory response, cell apoptosis in response of lipopolysaccharide (LPS) induction in HK-2 cells. Moreover, MAPK1 deficiency alleviated renal inflammation, renal dysfunction, and renal injury in vivo. Mechanistically, MAPK1 could activate the downstream p38/NF-κB pathway. Moreover, long noncoding RNA potassium voltage-gated channel subfamily Q member 1 opposite strand/antisense transcript 1 (KCNQ1OT1) was identified to serve as a competing endogenous RNA for miR-212-3p to regulate MAPK1. Finally, rescue assays indicated that the inhibitory effect of KCNQ1OT1 knockdown on inflammatory response, cell apoptosis, and p38/NF-κB pathway was reversed by MAPK1 overexpression in HK-2 cells. In conclusion, KCNQ1OT1 aggravates acute kidney injury by activating p38/NF-κB pathway via miR-212-3p/MAPK1 axis in sepsis. Therefore, KCNQ1OT may serve as a potential biomarker for the prognosis and diagnosis of AKI patients.
Collapse
Affiliation(s)
- Haixia Wang
- Department of Critical Care Medicine, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Hongbin Mou
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Xiaolan Xu
- Department of Critical Care Medicine, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Changhua Liu
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Gang Zhou
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Bo Gao
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| |
Collapse
|
19
|
Ali SA, Peffers MJ, Ormseth MJ, Jurisica I, Kapoor M. The non-coding RNA interactome in joint health and disease. Nat Rev Rheumatol 2021; 17:692-705. [PMID: 34588660 DOI: 10.1038/s41584-021-00687-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Non-coding RNAs have distinct regulatory roles in the pathogenesis of joint diseases including osteoarthritis (OA) and rheumatoid arthritis (RA). As the amount of high-throughput profiling studies and mechanistic investigations of microRNAs, long non-coding RNAs and circular RNAs in joint tissues and biofluids has increased, data have emerged that suggest complex interactions among non-coding RNAs that are often overlooked as critical regulators of gene expression. Identifying these non-coding RNAs and their interactions is useful for understanding both joint health and disease. Non-coding RNAs regulate signalling pathways and biological processes that are important for normal joint development but, when dysregulated, can contribute to disease. The specific expression profiles of non-coding RNAs in various disease states support their roles as promising candidate biomarkers, mediators of pathogenic mechanisms and potential therapeutic targets. This Review synthesizes literature published in the past 2 years on the role of non-coding RNAs in OA and RA with a focus on inflammation, cell death, cell proliferation and extracellular matrix dysregulation. Research to date makes it apparent that 'non-coding' does not mean 'non-essential' and that non-coding RNAs are important parts of a complex interactome that underlies OA and RA.
Collapse
Affiliation(s)
- Shabana A Ali
- Bone and Joint Center, Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, USA. .,Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA.
| | - Mandy J Peffers
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Michelle J Ormseth
- Department of Research and Development, Veterans Affairs Medical Center, Nashville, TN, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Huang J, Fu X, Chen X, Li Z, Huang Y, Liang C. Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis. Front Immunol 2021; 12:686155. [PMID: 34305919 PMCID: PMC8299711 DOI: 10.3389/fimmu.2021.686155] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic poly-articular chronic autoimmune joint disease that mainly damages the hands and feet, which affects 0.5% to 1.0% of the population worldwide. With the sustained development of disease-modifying antirheumatic drugs (DMARDs), significant success has been achieved for preventing and relieving disease activity in RA patients. Unfortunately, some patients still show limited response to DMARDs, which puts forward new requirements for special targets and novel therapies. Understanding the pathogenetic roles of the various molecules in RA could facilitate discovery of potential therapeutic targets and approaches. In this review, both existing and emerging targets, including the proteins, small molecular metabolites, and epigenetic regulators related to RA, are discussed, with a focus on the mechanisms that result in inflammation and the development of new drugs for blocking the various modulators in RA.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xuekun Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xinxin Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuhong Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
21
|
miR-483-3p Promotes IL-33 Production from Fibroblast-Like Synoviocytes by Regulating ERK Signaling in Rheumatoid Arthritis. Inflammation 2021; 44:2302-2308. [PMID: 34160728 DOI: 10.1007/s10753-021-01503-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Our previous studies have identified miR-483-3p to be highly expressed in synoviocytes from patients with rheumatoid arhtirits (RA); however, its effects on inflammation of RA fibroblast-like synoviocytes (FLSs) have remained unclear. The expression of miR-483-3p and cytokines in RA FLSs was detected using quantitative real-time polymerase chain reaction. Enzyme-linked immunosorbent was conducted to determine interleukin (IL)-33 production from RA FLSs. Western blotting was employed to quantify the levels of p-ERK and total ERK. Overexpressed miR-483-3p significantly increased the mRNA and protein expression of IL-33, but not of IL-27 or IL-34, in RA FLSs, whereas miR-483-3p suppression showed the opposite effects. Furthermore, miR-483-3p upregulation activated the ERK signaling pathway. The ERK signaling inhibitor PD98059 partly reversed the elevation of IL-33 levels mediated by miR-483-3p overexpression. Our results reveal that miR-483-3p promotes IL-33 expression by regulating the ERK signaling pathway in RA FLSs. Thus, miR-483-3p may be a potential effective target for RA treatment.
Collapse
|
22
|
Ghafouri-Fard S, Abak A, Mohaqiq M, Shoorei H, Taheri M. The Interplay Between Non-coding RNAs and Insulin-Like Growth Factor Signaling in the Pathogenesis of Neoplasia. Front Cell Dev Biol 2021; 9:634512. [PMID: 33768092 PMCID: PMC7985092 DOI: 10.3389/fcell.2021.634512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factors (IGFs) are polypeptides with similar sequences with insulin. These factors regulate cell growth, development, maturation, and aging via different processes including the interplay with MAPK, Akt, and PI3K. IGF signaling participates in the pathogenesis of neoplasia, insulin resistance, diabetes mellitus, polycystic ovarian syndrome, cerebral ischemic injury, fatty liver disease, and several other conditions. Recent investigations have demonstrated the interplay between non-coding RNAs and IGF signaling. This interplay has fundamental roles in the development of the mentioned disorders. We designed the current study to search the available data about the role of IGF-associated non-coding RNAs in the evolution of neoplasia and other conditions. As novel therapeutic strategies have been designed for modification of IGF signaling, identification of the impact of non-coding RNAs in this pathway is necessary for the prediction of response to these modalities.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mohaqiq
- School of Advancement, Centennial College, Ashtonbee Campus, Toronto, ON, Canada
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Biranjd University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Zhao F, Xu Y, Ouyang Y, Wen Z, Zheng G, Wan T, Sun G. Silencing of miR-483-5p alleviates postmenopausal osteoporosis by targeting SATB2 and PI3K/AKT pathway. Aging (Albany NY) 2021; 13:6945-6956. [PMID: 33621956 PMCID: PMC7993743 DOI: 10.18632/aging.202552] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022]
Abstract
Postmenopausal osteoporosis (PMOP) poses a significant threat to women's health worldwide. However, detailed molecular mechanism and therapeutic strategy for PMOP remain insufficient. Accumulating evidence suggests that miR-48-5p is implicated in the pathogenesis of osteoporosis. The present study aimed to determine the role and mechanism of miR-483-5p in PMOP. Results from PMOP patients demonstrated that miR-483-5p was up-regulated and SATB2 was down-regulated. Luciferase reporter assay identified SATB2 as a direct target gene of miR-483-5p. Experiments in MC3T3-E1 cells indicated that miR-483-5p mimic markedly inhibited cell viability as well as the expressions of OPG, RUNX2 and BMP2. And miR-483-5p inhibitor, SATB2-overexpressed lentiviruses (Lv-SATB2) or LY294002 (PI3K/AKT inhibitor) significantly reversed the above results. Similarly, PI3K/AKT signaling was activated by miR-483-5p mimic, and was inhibited in miR-483-5p inhibitor, Lv-SATB2 or LY294002 treated cells. In vivo experiments showed that miR-483-5p inhibitor significantly increased the bone mineral density and biomechanical parameters of femurs in ovariectomized (OVX) rats by targeting SATB2. In addition, the osteogenic differentiation and PI3K/AKT signaling were also regulated by miR-483-5p-SATB2 axis. Taken together, our findings indicated that miR-483-5p contributed to the pathogenesis of PMOP by inhibiting SATB2 and activating PI3K/AKT pathway. MiR-483-5p/SATB2 could be selected as a potential therapeutic target for PMOP.
Collapse
Affiliation(s)
- Fujiang Zhao
- Department of Orthopaedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Yier Xu
- Laboratory of Pharmacology, Research and Development Center of Harbin Pharmaceutical Group, Harbin 150025, China
| | - Yulong Ouyang
- Medical College of Nanchang University, Nanchang 330006, China
| | - Zhexu Wen
- Medical College of Nanchang University, Nanchang 330006, China
| | - Guihao Zheng
- Medical College of Nanchang University, Nanchang 330006, China
| | - Ting Wan
- Medical College of Nanchang University, Nanchang 330006, China
| | - Guicai Sun
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|