1
|
Tian H, Yu JL, Chu X, Guan Q, Liu J, Liu Y. Unraveling the role of C1GALT1 in abnormal glycosylation and colorectal cancer progression. Front Oncol 2024; 14:1389713. [PMID: 38699634 PMCID: PMC11063370 DOI: 10.3389/fonc.2024.1389713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
C1GALT1 plays a pivotal role in colorectal cancer (CRC) development and progression through its involvement in various molecular mechanisms. This enzyme is central to the O-glycosylation process, producing tumor-associated carbohydrate antigens (TACA) like Tn and sTn, which are linked to cancer metastasis and poor prognosis. The interaction between C1GALT1 and core 3 synthase is crucial for the synthesis of core 3 O-glycans, essential for gastrointestinal health and mucosal barrier integrity. Aberrations in this pathway can lead to CRC development. Furthermore, C1GALT1's function is significantly influenced by its molecular chaperone, Cosmc, which is necessary for the proper folding of T-synthase. Dysregulation in this complex interaction contributes to abnormal O-glycan regulation, facilitating cancer progression. Moreover, C1GALT1 affects downstream signaling pathways and cellular behaviors, such as the epithelial-mesenchymal transition (EMT), by modifying O-glycans on key receptors like FGFR2, enhancing cancer cell invasiveness and metastatic potential. Additionally, the enzyme's relationship with MUC1, a mucin protein with abnormal glycosylation in CRC, highlights its role in cancer cell immune evasion and metastasis. Given these insights, targeting C1GALT1 presents a promising therapeutic strategy for CRC, necessitating further research to develop targeted inhibitors or activators. Future efforts should also explore C1GALT1's potential as a biomarker for early diagnosis, prognosis, and treatment response monitoring in CRC, alongside investigating combination therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Hong Tian
- Department of Oncology, Fourth People’s Hospital in Shenyang, China Medical University, Shenyang, China
| | - Jia-Li Yu
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Xiaoli Chu
- Department of Oncology, Fourth People’s Hospital in Shenyang, China Medical University, Shenyang, China
| | - Qi Guan
- Department of Oncology, Fourth People’s Hospital in Shenyang, China Medical University, Shenyang, China
| | - Juan Liu
- Department of Oncology, Fourth People’s Hospital in Shenyang, China Medical University, Shenyang, China
| | - Ying Liu
- Department of Oncology, Fourth People’s Hospital in Shenyang, China Medical University, Shenyang, China
| |
Collapse
|
2
|
Saleh RO, Ibrahim FM, Pallathadka H, Kaur I, Ahmad I, Ali SHJ, Redhee AH, Ghildiyal P, Jawad MA, Alsaadi SB. Nucleic acid vaccines-based therapy for triple-negative breast cancer: A new paradigm in tumor immunotherapy arena. Cell Biochem Funct 2024; 42:e3992. [PMID: 38551221 DOI: 10.1002/cbf.3992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Nucleic acid vaccines (NAVs) have the potential to be economical, safe, and efficacious. Furthermore, just the chosen antigen in the pathogen is the target of the immune responses brought on by NAVs. Triple-negative breast cancer (TNBC) treatment shows great promise for nucleic acid-based vaccines, such as DNA (as plasmids) and RNA (as messenger RNA [mRNA]). Moreover, cancer vaccines offer a compelling approach that can elicit targeted and long-lasting immune responses against tumor antigens. Bacterial plasmids that encode antigens and immunostimulatory molecules serve as the foundation for DNA vaccines. In the 1990s, plasmid DNA encoding the influenza A nucleoprotein triggered a protective and targeted cytotoxic T lymphocyte (CTL) response, marking the first instance of DNA vaccine-mediated immunity. Similarly, in vitro transcribed mRNA was first successfully used in animals in 1990. At that point, mice were given an injection of the gene encoding the mRNA sequence, and the researchers saw the production of a protein. We begin this review by summarizing our existing knowledge of NAVs. Next, we addressed NAV delivery, emphasizing the need to increase efficacy in TNBC.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Fatma M Ibrahim
- Community Health Nursing, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
- Geriatric Nursing, Mansoura University, Mansoura, Egypt
| | | | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Huseen Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, Iraq
| |
Collapse
|
3
|
You CZ, Xu H, Zhao FS, Dou J. A Validation Study of CD133 as a Reliable Marker for Identification of Colorectal Cancer Stem-Like Cells. Bull Exp Biol Med 2024; 176:369-375. [PMID: 38340198 DOI: 10.1007/s10517-024-06026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Indexed: 02/12/2024]
Abstract
Colorectal carcinoma (CRC) is maintained by putative colorectal cancer stem-like cells (CRC-CSCs) that are responsible for CRC metastasis and relapse. Targeting these CSCs can be an effective treatment of CRC. However, reliable identification of CRC-CSCs remains controversial due to the absence of specific markers. It is assumed that glycoprotein CD133 can serve as a useful marker for identification of CRC-CSCs. In this study, we employed CD133 as a marker to identify CRC-CSCs in human (LoVo, HCT116, and SW620) and mouse (CT26) CRC cell lines. In these lines, CD133+ cells were isolated and identified by magnetic-activated cell sorting and flow cytometry. Proliferation, colony formation, and drug resistance of CD133+ cells were analyzed in vitro, and their tumorigenicity was determined in vivo on mice. Proliferation, colony-forming ability, drug resistance, and tumorigenicity of CD133+ cells were higher than those of CD133- cells. Thus, cultured CD133+ cells had the characteristics of CSCs. Hence, glycoprotein CD133 is a reliable marker to identify CRC-CSCs. These results can be used for designing a novel therapeutic target in CRC treatment.
Collapse
Affiliation(s)
- C Z You
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - H Xu
- Departments of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, China
| | - F S Zhao
- Departments of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, China
| | - J Dou
- Departments of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
4
|
Garza Treviño EN, Quiroz Reyes AG, Rojas Murillo JA, de la Garza Kalife DA, Delgado Gonzalez P, Islas JF, Estrada Rodriguez AE, Gonzalez Villarreal CA. Cell Therapy as Target Therapy against Colon Cancer Stem Cells. Int J Mol Sci 2023; 24:ijms24098163. [PMID: 37175871 PMCID: PMC10179203 DOI: 10.3390/ijms24098163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cells within tumors with properties, such as self-renewal, differentiation, and tumorigenicity. CSCs have been proposed as a plausible therapeutic target as they are responsible for tumor recurrence, metastasis, and conventional therapy resistance. Selectively targeting CSCs is a promising strategy to eliminate the propagation of tumor cells and impair overall tumor development. Recent research shows that several immune cells play a crucial role in regulating tumor cell proliferation by regulating different CSC maintenance or proliferation pathways. There have been great advances in cellular immunotherapy using T cells, natural killer (NK) cells, macrophages, or stem cells for the selective targeting of tumor cells or CSCs in colorectal cancer (CRC). This review summarizes the CRC molecular profiles that may benefit from said therapy and the main vehicles used in cell therapy against CSCs. We also discuss the challenges, limitations, and advantages of combining conventional and/or current targeted treatments in the late stages of CRC.
Collapse
Affiliation(s)
- Elsa N Garza Treviño
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico
| | - Adriana G Quiroz Reyes
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico
| | - Juan Antonio Rojas Murillo
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico
| | - David A de la Garza Kalife
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico
| | - Paulina Delgado Gonzalez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico
| | - Jose F Islas
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico
| | - Ana Esther Estrada Rodriguez
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Ignacio Morones Prieto 4500. Jesus M. Garza, San Pedro Garza García 66238, Nuevo León, Mexico
| | - Carlos A Gonzalez Villarreal
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Ignacio Morones Prieto 4500. Jesus M. Garza, San Pedro Garza García 66238, Nuevo León, Mexico
| |
Collapse
|
5
|
Xu H, Zhao F, Wu D, Zhang Y, Bao X, Shi F, Cai Y, Dou J. Eliciting effective tumor immunity against ovarian cancer by cancer stem cell vaccination. Biomed Pharmacother 2023; 161:114547. [PMID: 36933377 DOI: 10.1016/j.biopha.2023.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Advanced ovarian cancer (OC) patients have limited benefit from current relevant cytotoxic and targeted therapies following debulking surgery. Therefore, new therapeutic strategies are in urgent need. Immunotherapy has shown great potential in tumor treatment, especially in tumor vaccine development. The study objective was to evaluate the immune effects of cancer stem cells (CSCs) vaccines on OC. The CD44+CD117+CSCs were isolated from human OC HO8910 and SKOV3 cells using the magnetic cell sorting system; the cancer stem-like cells were selected from murine OC ID8 cell by no-serum formed sphere culture. The CSC vaccines were prepared by freezing and thawing these CSCs, which were then injected into mice followed by challenging the different OC cells. The in vivo antitumor efficacy of CSC immunization revealed the vaccines were capable of significantly provoking immune responses to autologous tumor antigens in vaccinated mice as the mice were found to have markedly inhibited tumor growth, prolonged survival, and decreased CSC counts in OC tissues when compared to mice without the CSC vaccination. The in vitro cytotoxicities of immunocytes toward SKOV3, HO8910 and ID8 cells indicated a significant killing efficacy compared with the controls. However, the antitumor efficacy was remarkably reduced whilst the mucin-1 expression in CSC vaccines was down-regulated by small interfering RNA. Overall, findings from this study provided the evidence that has deepened our understanding of CSC vaccine immunogenicity and anti-OC efficacy, particularly for the role of dominant antigen mucin-1. It is possible to turn the CSC vaccine into an immunotherapeutic approach against ovarian cancer.
Collapse
Affiliation(s)
- Hui Xu
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing 210009, China; Department of Gynecology & Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Di Wu
- Department of Gynecology & Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yunxia Zhang
- Department of Gynecology & Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xueyang Bao
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Fangfang Shi
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yunlang Cai
- Department of Gynecology & Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
6
|
Liu J, Xu Y, Xu T, Liu Y, Liu J, Chai J, Yang Y, Hu P, Li M, Jia Q, Zhang C. MUC1 promotes cancer stemness and predicts poor prognosis in osteosarcoma. Pathol Res Pract 2023; 242:154329. [PMID: 36680928 DOI: 10.1016/j.prp.2023.154329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Osteosarcoma (OS) is one of the most common primary bone malignancy. Combining chemotherapy and surgical treatment significantly improved clinical outcomes for osteosarcoma patients. Osteosarcoma stem cells (OSCs) are often more malignant than differentiated cancer cells and are a key determinant of responses to chemotherapy and radiation therapy, therefore, the removal of OSCs could be an effective therapeutic strategy. Myxoprotein 1 (MUC1) is aberrantly overexpressed in many human cancers and it promotes cancer stemness through activation of pluripotency networks. In this study, we observed elevated MUC1 in osteosarcoma and a depressed prognosis in patients with high MUC1 expression profiles. Our observations also revealed that MUC1 promoted OS stemness and tumor metastasis both in vivo and in vitro. These data led us to hypothesize that MUC1 may be a therapeutic target for patients with OS.
Collapse
Affiliation(s)
- Jian Liu
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yixi Xu
- Department of Hand Surgery, No.971 Hospital of the PLA Navy, Qingdao, China
| | - Tianqi Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yixiong Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jin Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jia Chai
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yanru Yang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Peizhen Hu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Endocrinology, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| | - Chen Zhang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
7
|
Marimuthu S, Rauth S, Ganguly K, Zhang C, Lakshmanan I, Batra SK, Ponnusamy MP. Mucins reprogram stemness, metabolism and promote chemoresistance during cancer progression. Cancer Metastasis Rev 2021; 40:575-588. [PMID: 33813658 PMCID: PMC9635594 DOI: 10.1007/s10555-021-09959-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
Mucins are high-molecular-weight glycoproteins dysregulated in aggressive cancers. The role of mucins in disease progression, tumor proliferation, and chemotherapy resistance has been studied extensively. This article provides a comprehensive review of mucin's function as a physical barrier and the implication of mucin overexpression in impeded drug delivery to solid tumors. Mucins regulate the epithelial to mesenchymal transition (EMT) of cancer cells via several canonical and non-canonical oncogenic signaling pathways. Furthermore, mucins play an extensive role in enriching and maintaining the cancer stem cell (CSC) population, thereby sustaining the self-renewing and chemoresistant cellular pool in the bulk tumor. It has recently been demonstrated that mucins regulate the metabolic reprogramming during oncogenesis and cancer progression, which account for tumor cell survival, proliferation, and drug-resistance. This review article focuses on delineating mucin's role in oncogenic signaling and aberrant regulation of gene expressions, culminating in CSC maintenance, metabolic rewiring, and development of chemoresistance, tumor progression, and metastasis.
Collapse
Affiliation(s)
- Saravanakumar Marimuthu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Chunmeng Zhang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
8
|
Cancer Stem Cells-Key Players in Tumor Relapse. Cancers (Basel) 2021; 13:cancers13030376. [PMID: 33498502 PMCID: PMC7864187 DOI: 10.3390/cancers13030376] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor relapse and treatment failure are unfortunately common events for cancer patients, thus often rendering cancer an uncurable disease. Cancer stem cells (CSCs) are a subset of cancer cells endowed with tumor-initiating and self-renewal capacity, as well as with high adaptive abilities. Altogether, these features contribute to CSC survival after one or multiple therapeutic approaches, thus leading to treatment failure and tumor progression/relapse. Thus, elucidating the molecular mechanisms associated with stemness-driven resistance is crucial for the development of more effective drugs and durable responses. This review will highlight the mechanisms exploited by CSCs to overcome different therapeutic strategies, from chemo- and radiotherapies to targeted therapies and immunotherapies, shedding light on their plasticity as an insidious trait responsible for their adaptation/escape. Finally, novel CSC-specific approaches will be described, providing evidence of their preclinical and clinical applications.
Collapse
|