1
|
Aligolighasemabadi F, Bakinowska E, Kiełbowski K, Sadeghdoust M, Coombs KM, Mehrbod P, Ghavami S. Autophagy and Respiratory Viruses: Mechanisms, Viral Exploitation, and Therapeutic Insights. Cells 2025; 14:418. [PMID: 40136667 PMCID: PMC11941543 DOI: 10.3390/cells14060418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Respiratory viruses, such as influenza virus, rhinovirus, coronavirus, and respiratory syncytial virus (RSV), continue to impose a heavy global health burden. Despite existing vaccination programs, these infections remain leading causes of morbidity and mortality, especially among vulnerable populations like children, older adults, and immunocompromised individuals. However, the current therapeutic options for respiratory viral infections are often limited to supportive care, underscoring the need for novel treatment strategies. Autophagy, particularly macroautophagy, has emerged as a fundamental cellular process in the host response to respiratory viral infections. This process not only supports cellular homeostasis by degrading damaged organelles and pathogens but also enables xenophagy, which selectively targets viral particles for degradation and enhances cellular defense. However, viruses have evolved mechanisms to manipulate the autophagy pathways, using them to evade immune detection and promote viral replication. This review examines the dual role of autophagy in viral manipulation and host defense, focusing on the complex interplay between respiratory viruses and autophagy-related pathways. By elucidating these mechanisms, we aim to highlight the therapeutic potential of targeting autophagy to enhance antiviral responses, offering promising directions for the development of effective treatments against respiratory viral infections.
Collapse
Affiliation(s)
- Farnaz Aligolighasemabadi
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr., St. John’s, NL A1B 3V6, Canada; (F.A.); (M.S.)
| | - Estera Bakinowska
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada; (E.B.); (K.K.)
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Kajetan Kiełbowski
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada; (E.B.); (K.K.)
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr., St. John’s, NL A1B 3V6, Canada; (F.A.); (M.S.)
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Saeid Ghavami
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr., St. John’s, NL A1B 3V6, Canada; (F.A.); (M.S.)
- Paul Albrechtsen Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Akademia Śląska, Ul Rolna 43, 40-555 Katowice, Poland
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
2
|
Huang C, Huang Y, Peng M, Zhong X, Tong J, Huang Y. The effect of different doses of simvastatin on autophagy and inflammation in asthmatic mice. Panminerva Med 2024; 66:449-450. [PMID: 37535045 DOI: 10.23736/s0031-0808.23.04922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Affiliation(s)
- Chaowen Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Yile Huang
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ming Peng
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Xueying Zhong
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Jinzhai Tong
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Yanming Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, Guangdong, China -
| |
Collapse
|
3
|
Wang X, Liu X, Wang Y, Yang K, Yeertai Y, Jia Q, Li L, Jiang K, Du G, Ling J. Chaihu Shugan Powder inhibits interstitial cells of cajal mitophagy through USP30 in the treatment of functional dyspepsia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117695. [PMID: 38163556 DOI: 10.1016/j.jep.2023.117695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chaihu Shugan Powder (CHSGP) has significant clinical efficacy in the treatment of functional dyspepsia (FD), but the specific mechanism requires further study. AIM OF STUDY The aim of this study was to investigate the therapeutic effect of CHSGP on FD rats and the underlying mechanism of the effect on interstitial cells of cajal (ICC) mitophagy. MATERIALS AND METHODS The tail-clamping stimulation method was utilized to establish an FD rat model in vivo. Gastric emptying rate and small intestinal propulsion rate test, H&E staining, and Immunohistochemistry were conducted to evaluate the therapeutic effects of CHSGP on FD rats. In vitro, the regulatory effect of CHSGP on CCCP-mediated ICC mitophagy was further investigated by CCK8, Transmission electron microscope, immunofluorescence co-staining, Quantitative polymerase chain reaction and Western blot to reveal the potential mechanisms of CHSGP inhibited ICC mitophagy. RESULTS Animal experiments provided evidence that CHSGP promoted gastric motility, increased ICC numbers, reduced Parkin expression, and elevated USP30 expression in FD rats. In vitro, further mechanism research demonstrated that CHSGP decreased LC3Ⅱ/LC3Ⅰ、PINK1、Parkin、PHB2 protein expression and increased USP30 protein expression. Furthermore, CHSGP increased Mfn2 protein expression by suppressing activation of the PINK1/Parkin pathway when USP30 is knocked down, consequently reducing CCCP-induced ICC mitophagy. CONCLUSIONS These results suggest that CHSGP may treat FD against CCCP-induced ICC mitophagy by the up-regulation of via PINK1/Parkin pathway.
Collapse
Affiliation(s)
- Xiangxiang Wang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Xuejiao Liu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Yujiao Wang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Keming Yang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Yeliya Yeertai
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Qingling Jia
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Li Li
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Kailin Jiang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Guangli Du
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Jianghong Ling
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| |
Collapse
|
4
|
Rajizadeh MA, Najafipour H, Bejeshk MA. An Updated Comprehensive Review of Plants and Herbal Compounds with Antiasthmatic Effect. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:5373117. [PMID: 39263346 PMCID: PMC11390241 DOI: 10.1155/2024/5373117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/11/2023] [Accepted: 01/27/2024] [Indexed: 09/13/2024]
Abstract
Background Asthma is a common disease with rising prevalence worldwide, especially in industrialized countries. Current asthma therapy with traditional medicines lacks satisfactory success, hence the patients' search for alternative and complementary treatments for their diseases. Researchers have conducted many studies on plants with antiallergic and antiasthmatic effects in recent decades. Many of these plants are now used in clinics, and searching for their mechanism of action may result in creating new ideas for producing more effective drugs. Purpose The goal of this review was to provide a compilation of the findings on plants and their active agents with experimentally confirmed antiasthmatic effects. Study Design and Method. A literature search was conducted from 1986 to November 2023 in Scopus, Springer Link, EMBASE, Science Direct, PubMed, Google Scholar, and Web of Science to identify and report the accumulated knowledge on herbs and their compounds that may be effective in asthma treatment. Results The results revealed that 58 plants and 32 herbal extracted compounds had antiasthmatic activity. Also, 32 plants were shown to have anti-inflammatory and antioxidative effects or may act as bronchodilators and potentially have antiasthmatic effects, which must be investigated in future studies. Conclusion The ability of herbal medicine to improve asthma symptoms has been confirmed by clinical and preclinical studies, and such compounds may be used as a source for developing new antiasthmatic drugs. Moreover, this review suggests that many bioactive compounds have therapeutic potential against asthma.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Xu J, Yu Z, Liu X. Angiotensin-(1-7) suppresses airway inflammation and airway remodeling via inhibiting ATG5 in allergic asthma. BMC Pulm Med 2023; 23:422. [PMID: 37919667 PMCID: PMC10623740 DOI: 10.1186/s12890-023-02719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Angiotensin (Ang)-(1-7) can reduce airway inflammation and airway remodeling in allergic asthma. Autophagy-related 5 (ATG5) has attracted wide attentions in asthma. However, the effects of Ang-(1-7) on ATG5-mediated autophagy in allergic asthma are unclear. METHODS In this study, human bronchial epithelial cell (BEAS-2B) and human bronchial smooth muscle cell (HBSMC) were treated with different dose of Ang-(1-7) to observe changes of cell viability. Changes of ATG5 protein expression were measured in 10 ng/mL of interleukin (IL)-13-treated cells. Transfection of ATG5 small interference RNA (siRNA) or ATG5 cDNA in cells was used to analyze the effects of ATG5 on secretion of cytokines in the IL-13-treated cells. The effects of Ang-(1-7) were compared to the effects of ATG5 siRNA transfection or ATG5 cDNA transfection in the IL-13-treated cells. In wild-type (WT) mice and ATG5 knockout (ATG5-/-) mice, ovalbumin (OVA)-induced airway inflammation, fibrosis and autophagy were observed. In the OVA-induced WT mice, Ang-(1-7) treatment was performed to observe its effects on airway inflammation, fibrosis and autophagy. RESULTS The results showed that ATG5 protein level was decreased with Ang-(1-7) dose administration in the IL-13-treated BEAS-2B and IL13-treated HBSMC. Ang-(1-7) played similar results to ATG5 siRNA that it suppressed the secretion of IL-25 and IL-13 in the IL-13-treated BEAS-2B cells, and inhibited the expression of transforming growth factor (TGF)-β1 and α-smooth muscle actin (α-SMA) protein in the IL-13-treated HBSMC cells. ATG5 cDNA treatment significantly increased the secretion of IL-25 and IL-13 and expression of TGF-β1 and α-SMA protein in IL-13-treated cells. Ang-(1-7) treatment suppressed the effects of ATG5 cDNA in the IL-13-treated cells. In OVA-induced WT mice, Ang-(1-7) treatment suppressed airway inflammation, remodeling and autophagy. ATG5 knockout also suppressed the airway inflammation, remodeling and autophagy. CONCLUSIONS Ang-(1-7) treatment suppressed airway inflammation and remodeling in allergic asthma through inhibiting ATG5, providing an underlying mechanism of Ang-(1-7) for allergic asthma treatment.
Collapse
Affiliation(s)
- Jianfeng Xu
- Department of Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, No.20, Yuhuangding East Road, Zhifu District, Yantai, 264001, China
| | - Zhenyu Yu
- Department of Anesthesiology, Yantai Yuhuangding Hospital, Yantai, 246001, China
| | - Xueping Liu
- Department of Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, No.20, Yuhuangding East Road, Zhifu District, Yantai, 264001, China.
| |
Collapse
|
6
|
Liu L, Zhou L, Wang LL, Zheng PD, Zhang FQ, Mao ZY, Zhang HJ, Liu HG. Programmed Cell Death in Asthma: Apoptosis, Autophagy, Pyroptosis, Ferroptosis, and Necroptosis. J Inflamm Res 2023; 16:2727-2754. [PMID: 37415620 PMCID: PMC10321329 DOI: 10.2147/jir.s417801] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Bronchial asthma is a complex heterogeneous airway disease, which has emerged as a global health issue. A comprehensive understanding of the different molecular mechanisms of bronchial asthma may be an efficient means to improve its clinical efficacy in the future. Increasing research evidence indicates that some types of programmed cell death (PCD), including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis, contributed to asthma pathogenesis, and may become new targets for future asthma treatment. This review briefly discusses the molecular mechanism and signaling pathway of these forms of PCD focuses on summarizing their roles in the pathogenesis and treatment strategies of asthma and offers some efficient means to improve clinical efficacy of therapeutics for asthma in the near future.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling-Ling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Peng-Dou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Feng-Qin Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhen-Yu Mao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Huo-Jun Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Hui-Guo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
7
|
Dong H, Yang W, Li W, Zhu S, Zhu L, Gao P, Hao Y. New insights into autophagy in inflammatory subtypes of asthma. Front Immunol 2023; 14:1156086. [PMID: 37090692 PMCID: PMC10117973 DOI: 10.3389/fimmu.2023.1156086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Asthma is a heterogeneous airway disease characterized by airway inflammation and hyperresponsiveness. Autophagy is a self-degrading process that helps maintain cellular homeostasis. Dysregulation of autophagy is involved in the pathogenesis of many diseases. In the context of asthma, autophagy has been shown to be associated with inflammation, airway remodeling, and responsiveness to drug therapy. In-depth characterization of the role of autophagy in asthma can enhance the understanding of the pathogenesis, and provide a theoretical basis for the development of new biomarkers and targeted therapy for asthma. In this article, we focus on the relationship of autophagy and asthma, and discuss its implications for asthma pathogenesis and treatment.
Collapse
Affiliation(s)
- Hongna Dong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Simin Zhu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Zhu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Peng Gao, ; Yuqiu Hao,
| | - Yuqiu Hao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Peng Gao, ; Yuqiu Hao,
| |
Collapse
|
8
|
Zheng J, Wu Q, Zhang L, Zou Y, Wang M, He L, Guo S. Anti-inflammatory activities of Qingfei oral liquid and its influence on respiratory microbiota in mice with ovalbumin-induced asthma. Front Pharmacol 2022; 13:911667. [PMID: 36081945 PMCID: PMC9445488 DOI: 10.3389/fphar.2022.911667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Dysbiosis of respiratory microbiota is closely related to the pathophysiological processes of asthma, including airway inflammation. Previous studies have shown that Qingfei oral liquid (QF) can alleviate airway inflammation and airway hyper-responsiveness in respiratory syncytial virus-infected asthmatic mice, but its effect on the respiratory microbiota is unknown. We therefore aimed to observe the effects of QF on airway inflammation and respiratory microbiota in ovalbumin (OVA)-induced asthmatic mice. We also explored the potential mechanism of QF in reducing airway inflammation by regulating respiratory microbiota. Hematoxylin and eosin as well as periodic acid-Schiff staining were performed to observe the effects of QF on lung pathology in asthmatic mice. Cytokine levels in bronchoalveolar lavage fluid (BALF) specimens were also measured. Changes in respiratory microbiota were analyzed using 16S rRNA gene sequencing, followed by taxonomical analysis. In order to verify the metagenomic function prediction results, the expression of key proteins related to the MAPK and NOD-like receptor signaling pathways in the lung tissues were detected by immunohistochemistry. The current study found that QF had a significant anti-inflammatory effect in the airways of asthmatic mice. This is mainly attributed to a reduction in lung pathology changes and regulating cytokine levels in BALF. Analysis of the respiratory microbiota in asthmatic mice showed that the abundance of Proteobacteria at the phylum level and Pseudomonas at the genus level increased significantly and QF could significantly regulate the dysbiosis of respiratory microbiota in asthmatic mice. Metagenomic functional prediction showed that QF can downregulate the MAPK and Nod-like receptor signaling pathways. Immunohistochemical results showed that QF could downregulate the expression of p-JNK, p-P38, NLRP3, Caspase-1, and IL-1β, which are all key proteins in the signaling pathway of lung tissue. Our study therefore concluded that QF may reduce airway inflammation in asthmatic mice by regulating respiratory microbiota, and to the possibly downregulate MAPK and Nod-like receptor signaling pathways as its underlying mechanism.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Wu
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Zhang
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ya Zou
- Department of Emergency Medicine, Putuo Hospital, Shanghai University of Traditional Medicine, Shanghai, China
| | - Meifen Wang
- Department of Pediatrics, Sanmen People’s Hospital, Taizhou, Zhejiang, China
| | - Li He
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Li He, ; Sheng Guo,
| | - Sheng Guo
- Department of Endocrine, Genetics and Metabolism, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Li He, ; Sheng Guo,
| |
Collapse
|
9
|
Carinci M, Palumbo L, Pellielo G, Agyapong ED, Morciano G, Patergnani S, Giorgi C, Pinton P, Rimessi A. The Multifaceted Roles of Autophagy in Infectious, Obstructive, and Malignant Airway Diseases. Biomedicines 2022; 10:biomedicines10081944. [PMID: 36009490 PMCID: PMC9405571 DOI: 10.3390/biomedicines10081944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Autophagy is a highly conserved dynamic process by which cells deliver their contents to lysosomes for degradation, thus ensuring cell homeostasis. In response to environmental stress, the induction of autophagy is crucial for cell survival. The dysregulation of this degradative process has been implicated in a wide range of pathologies, including lung diseases, representing a relevant potential target with significant clinical outcomes. During lung disease progression and infections, autophagy may exert both protective and harmful effects on cells. In this review, we will explore the implications of autophagy and its selective forms in several lung infections, such as SARS-CoV-2, Respiratory Syncytial Virus (RSV) and Mycobacterium tuberculosis (Mtb) infections, and different lung diseases such as Cystic Fibrosis (CF), Chronic Obstructive Pulmonary Disease (COPD), and Malignant Mesothelioma (MM).
Collapse
Affiliation(s)
- Marianna Carinci
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Laura Palumbo
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Giulia Pellielo
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Esther Densu Agyapong
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Giampaolo Morciano
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Via Fossato di Mortara, 70, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Via Fossato di Mortara, 70, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
10
|
Chen W, Li C, Liang W, Li Y, Zou Z, Xie Y, Liao Y, Yu L, Lin Q, Huang M, Li Z, Zhu X. The Roles of Optogenetics and Technology in Neurobiology: A Review. Front Aging Neurosci 2022; 14:867863. [PMID: 35517048 PMCID: PMC9063564 DOI: 10.3389/fnagi.2022.867863] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/21/2022] [Indexed: 01/07/2023] Open
Abstract
Optogenetic is a technique that combines optics and genetics to control specific neurons. This technique usually uses adenoviruses that encode photosensitive protein. The adenovirus may concentrate in a specific neural region. By shining light on the target nerve region, the photosensitive protein encoded by the adenovirus is controlled. Photosensitive proteins controlled by light can selectively allow ions inside and outside the cell membrane to pass through, resulting in inhibition or activation effects. Due to the high precision and minimally invasive, optogenetics has achieved good results in many fields, especially in the field of neuron functions and neural circuits. Significant advances have also been made in the study of many clinical diseases. This review focuses on the research of optogenetics in the field of neurobiology. These include how to use optogenetics to control nerve cells, study neural circuits, and treat diseases by changing the state of neurons. We hoped that this review will give a comprehensive understanding of the progress of optogenetics in the field of neurobiology.
Collapse
Affiliation(s)
- Wenqing Chen
- Department of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| | - Wanmin Liang
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Yunqi Li
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Zhuoheng Zou
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Yunxuan Xie
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Yangzeng Liao
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Lin Yu
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Qianyi Lin
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Meiying Huang
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Xiao Zhu
- Department of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
11
|
Fan H, He J, Bai Y, He Q, Zhang T, Zhang J, Yang G, Xu Z, Hu J, Yao G. Baicalin improves the functions of granulosa cells and the ovary in aged mice through the mTOR signaling pathway. J Ovarian Res 2022; 15:34. [PMID: 35300716 PMCID: PMC8932175 DOI: 10.1186/s13048-022-00965-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
Background The mammalian follicle is the basic functional unit of the ovary, and its normal development is required to obtaining oocytes capable of fertilization. As women get older or decline in ovarian function due to certain pathological factors, the growth and development of follicles becomes abnormal, which ultimately leads to infertility and other related female diseases. Kuntai capsules are currently used in clinical practice to improve ovarian function, and they contain the natural compound Baicalin, which is a natural compound with important biological activities. At present, the role and mechanism of Baicalin in the development of ovarian follicles is unclear. Methods Human primary granulosa cells collected from follicular fluid, and then cultured and treated with Baicalin or its normal control, assessed for viability, subjected to RT-PCR, western blotting, flow cytometry, and hormone analyses. The estrus cycle and oocytes of CD-1 mice were studied after Baicalin administration and compared with controls. Ovaries were collected from the mice and subjected to hematoxylin-eosin staining and immunohistochemistry analysis. Results We showed that Baicalin had a dose-dependent effect on granulosa cells cultured in vitro. A low concentration of Baicalin (for example, 10 μM) helped to maintain the viability of granulosa cells; however, at a concentration exceeding 50 μM, it exerted a toxic effect. A low concentration significantly improved the viability of granulosa cells and inhibited cell apoptosis, which may be related to the resultant upregulation of Bcl-2 expression and downregulation of Bax and Caspase 3. By constructing a hydrogen peroxide-induced cell oxidative stress damage model, we found that Baicalin reversed the cell damage caused by hydrogen peroxide. In addition, Baicalin increased the secretion of estradiol and progesterone by upregulating P450arom and stAR. The results of the in vivo experiment showed that the intragastric administration of Baicalin to aged mice improved the estrous cycle and oocyte quality. Furthermore, we observed that Baicalin enhanced the viability of granulosa cells through the mTOR pathway, which in turn improve ovarian function. Conclusion These results indicate that Baicalin could improve the viability of ovarian granulosa cells and the secretion of steroid hormones and thus could help to improve degenerating ovarian function and delay ovarian aging. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-00965-7.
Collapse
Affiliation(s)
- Huiying Fan
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiahuan He
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yucheng Bai
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qina He
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tongwei Zhang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junya Zhang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guang Yang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ziwen Xu
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingyi Hu
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guidong Yao
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
12
|
Lin L, An L, Chen H, Feng L, Lu M, Liu Y, Chu C, Shan J, Xie T, Wang X, Wang S. Integrated Network Pharmacology and Lipidomics to Reveal the Inhibitory Effect of Qingfei Oral Liquid on Excessive Autophagy in RSV-Induced Lung Inflammation. Front Pharmacol 2021; 12:777689. [PMID: 34925035 PMCID: PMC8672039 DOI: 10.3389/fphar.2021.777689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/12/2021] [Indexed: 01/27/2023] Open
Abstract
Background: Respiratory syncytial virus (RSV) can cause varying degrees of lung inflammation in children. Qingfei Oral Liquid (QF) is effective in treating childhood RSV-induced lung inflammation (RSV-LI) in clinics, but its pharmacological profiles and mechanisms remain unclear. Methods: This study combined network Pharmacology, lipidomics, pharmacodynamics, and pathway validation to evaluate the therapeutic mechanisms of QF. Using Cytoscape (v3.8.2) and enrichment analyses from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), a global view of the putative compound-target-pathway network was created. The corresponding lipidomic profiles were then used to detect differently activated lipids, revealing the metabolic pathway, using ultra-high-performance liquid chromatography linked to hybrid Quadrupole-Exactive Orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap MS). Meanwhile, the in vivo efficiency of QF, the enrichment pathway, and the excessive autophagy inhibition mechanisms were validated in RSV-infected mice models. Results: The network pharmacology results demonstrated 117 active compounds acted directly upon 101 core targets of QF against RSV-LI. The most significantly enriched pathway was the PI3K/Akt/mTOR signaling pathway (p < 0.05). In addition, untargeted lipidomics were performed, and it was revealed that higher lung levels of DAG 30:0, DAG 30:5, DAG 32:0, DAG 16:0_18:0, DAG 17:0_17:0, DAG 34:1, DAG 36:0, DAG 36:1 in the RSV-LI group were decreased after QF administration (FDR < 0.05, FC > 1.2). Lipin-1, a key enzyme in DAG synthesis, was increased in the RSV-LI mouse model. Animal experiments further validated that QF inhibited the PI3K/Akt/mTOR signaling pathway, with lower lung levels of phosphorylated PI3K, AKT and mTOR, as well as its related proteins of lipin-1 and VPS34 (p < 0.01). Finally, pharmacodynamic investigations indicated that QF reduced airway inflammation caused by excessive autophagy by decreasing lung levels of RSV F and G proteins, Beclin-1, Atg5, and LC3B II, IL-1 and TNF-α (p < 0.05). Conclusion: Lipidomic-based network pharmacology, along with experimental validation, may be effective approaches for illustrating the therapeutic mechanism of QF in the treatment of RSV-LI.
Collapse
Affiliation(s)
- Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Li An
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Chen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Feng
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengjiang Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuling Liu
- Department of Pediatrics, Nanjing Pukou District Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Chu Chu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaorong Wang
- Department of Clinical Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
13
|
Fang L, Pei J, Mao S, Wu L, Jiang S. Traditional Chinese medicine injection for the treatment of viral pneumonia in children: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e25506. [PMID: 33879684 PMCID: PMC8078279 DOI: 10.1097/md.0000000000025506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND In recent years, more and more reports are focused on the application of traditional Chinese medicine injection (TCMJ) for the treatment of viral pneumonia. There are about 200 million cases of viral pneumonia worldwide every year, half of which are children. At present, many kinds of TCMJ are created for the treatment of viral pneumonia in children, with good therapeutic effects. However, there are many kinds of TCMJ, and the treatment advantages are different, thus bringing difficulties to the selection of clinical drugs. In order to provide evidence-based evidence support for the clinical selection of TCMJ for the treatment of viral pneumonia in children, this study selected the commonly used TCMJ for clinical treatment of viral pneumonia for meta-analysis to evaluate its efficacy. METHODS The Chinese Biomedical Literature Database, China National Knowledge Infrastructure, Wanfang Data, Viper information databases, Cochran library Web of Science, PubMed, MEDLINE and EMBASE will be searched. The literature will be searched, with language restriction in English and Chinese. The related reference will be retrieved as well. Two reviewers will independently extract data and perform quality assessment of included studies. Review Manager 5.3 will be applied to conduct this meta-analysis. RESULTS The results of this systematic review and meta-analysis will be published in a peer-reviewed journal once we finish this study. CONCLUSIONS This study provides reliable evidence-based evidence for the efficacy of TCMJ in the treatment of viral pneumonia in children. ETHICS AND DISSEMINATION We will not be allowed to publish private information from individuals. This kind of systematic review should not harm the rights of participants. No ethical approval was required. The results can be published in peer-reviewed journals or at relevant conferences. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/795MB.
Collapse
|