1
|
Wang F, Mu HF, Wang C, Tang Y, Si MY, Peng J. LncRNA PCAT6 promotes progression and metastasis of colonic neuroendocrine carcinoma via MAPK pathway. World J Gastrointest Oncol 2025; 17:96230. [PMID: 39958556 PMCID: PMC11755991 DOI: 10.4251/wjgo.v17.i2.96230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/18/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Colonic neuroendocrine carcinomas (NECs) are highly malignant and invasive with poor prognosis. Long noncoding RNAs (LncRNAs) participate in the tumorigenesis and metastasis of multiple cancers. AIM To detect the roles and mechanisms of lncRNA prostate cancer associated transcript 6 (PCAT6) in the progression of colonic NEC. METHODS Human NEC and adjacent normal samples were collected for immunohistochemistry staining of CgA and real-time quantitative polymerase chain reaction (RT-qPCR) of PCAT6 mRNA level. Subcutaneous xenograft tumor model and lung metastasis model were established in nude mice. The lung tissues were stained by hematoxylin and eosin to assess pulmonary metastasis. The expression of epithelial-mesenchymal transition (EMT)-related markers and pathway-related genes was measured by RT-qPCR and western blotting. CD56 expression was assessed by immunofluorescence staining. The biological functions of PCAT6 were examined by cell counting kit-8, colony formation assays, Transwell assays and wound healing assays. The interaction between PCAT6 and its potential downstream target was verified by luciferase reporter assays. RESULTS LncRNA PCAT6 was upregulated in human NEC samples and LCC-18 cells, and its high expression was positively correlated with poor prognosis in patients with colonic NEC. Additionally, the expression of PCAT6 was positively associated with the proliferation, migration, invasion, and EMT of LCC-18 cells. Moreover, PCAT6 facilitated tumor growth, lung metastasis and EMT in xenografts. Mechanistically, PCAT6 promoted the activation of MAPK to enhance the EMT in colonic NEC by targeting miR-326. CONCLUSION In conclusion, lncRNA PCAT6 accelerates the process of colonic NEC by activating ERK/p38 MAPK signaling through targeting miR-326. These results might provide useful information for exploring the potential therapeutic targets in colonic NEC.
Collapse
Affiliation(s)
- Fei Wang
- Department of General Surgery, Nanjing Tongren Hospital, Nanjing 211100, Jiangsu Province, China
| | - Hai-Feng Mu
- Department of General Surgery, Nanjing Tongren Hospital, Nanjing 211100, Jiangsu Province, China
| | - Chun Wang
- Department of General Surgery, Nanjing Tongren Hospital, Nanjing 211100, Jiangsu Province, China
| | - Yue Tang
- Department of General Surgery, Nanjing Tongren Hospital, Nanjing 211100, Jiangsu Province, China
| | - Ming-Yuan Si
- Department of Pathology, Nanjing Tongren Hospital, Nanjing 211100, Jiangsu Province, China
| | - Jing Peng
- Department of General Surgery, Nanjing Tongren Hospital, Nanjing 211100, Jiangsu Province, China
| |
Collapse
|
2
|
Zhao J, Xia Y, He J. Low fluid shear stress promotes chondrocyte proliferation and extracellular matrix secretion by downregulating mir-143-3p and activating the ERK5/KLF4 signaling pathway. Sci Rep 2024; 14:27737. [PMID: 39532925 PMCID: PMC11557884 DOI: 10.1038/s41598-024-78676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Low fluid shear stress (FSS, ≤ 2 dyn/cm2) has been shown to exert protective effects on chondrocytes, but the underlying molecular mechanisms remain unclear. This study aimed to elucidate the mechanisms by which FSS promotes chondrocyte proliferation and extracellular matrix (ECM) stability. We exposed SW1353 chondrocytes to low FSS (1.8 dyn/cm2, 60 min) and found that it led to a significant downregulation of microRNA-143-3p (miR-143-3p), which was associated with increased chondrocyte proliferation and ECM secretion, including type II collagen (COL2A1) and aggrecan. Further investigation revealed that miR-143-3p directly targeted ERK5, a key component of the ERK5/KLF4 signaling pathway. Overexpression of miR-143-3p suppressed ERK5/KLF4 pathway activation, resulting in reduced chondrocyte proliferation and ECM production. Our findings demonstrate that low FSS promotes chondrocyte proliferation and ECM secretion by downregulating miR-143-3p, leading to the activation of the ERK5/KLF4 signaling pathway. This study reveals a novel mechanism by which FSS regulates chondrocyte behavior and ECM secretion, highlighting the potential of FSS as a therapeutic target for cartilage-related diseases.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
| | - Yayi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China.
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China.
| | - Jinwen He
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Sun X, Yuan Y, Li S, Gan L, Xu M, Li Q, Liu M, Hu K, Nan K, Zhang J, Dong Y, Lin Y, Zhang X, Hou P, Liu T. Prostate cancer-associated transcript 6 (PCAT6) promotes epithelial-mesenchymal transition and stemness and worsens prognosis in patients with colorectal cancer. Acta Biochim Biophys Sin (Shanghai) 2024; 56:866-878. [PMID: 38606479 PMCID: PMC11214952 DOI: 10.3724/abbs.2024031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 04/13/2024] Open
Abstract
Approximately 20% of colorectal cancer (CRC) patients are first diagnosed with metastatic colorectal cancer (mCRC) because they develop symptoms at an advanced stage. Despite advancements in treatment, patients with metastatic disease still experience inferior survival rates. Our objective is to investigate the association between long noncoding RNAs (lncRNAs) and prognosis and to explore their role in mCRC. In this study, we find that elevated expression of PCAT6 is independently linked to unfavourable survival outcomes in The Cancer Genome Atlas (TCGA) data, and this finding is further confirmed in CRC samples obtained from Fudan University Shanghai Cancer Center. Cell lines and xenograft mouse models are used to examine the impact of PCAT6 on tumor metastasis. Knockdown of PCAT6 is observed to impede the metastatic phenotype of CRC, as evidenced by functional assays, demonstrating the suppression of epithelial-mesenchymal transition (EMT) and stemness. Our findings show the significance of PCAT6 in mCRC and its potential use as a prognostic biomarker.
Collapse
Affiliation(s)
- Xun Sun
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Yitao Yuan
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Suyao Li
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Lu Gan
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
- Fudan Zhangjiang InstituteShanghai201203China
| | - Midie Xu
- Department of Pathology and Tissue BankFudan University Shanghai Cancer CenterShanghai200032China
| | - Qingguo Li
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Mengling Liu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Keshu Hu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Ke Nan
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Jiayu Zhang
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Yu Dong
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Yufu Lin
- Department of OncologyZhongshan Hospital (Xiamen)Fudan UniversityXiamen361015China
| | - Xiuping Zhang
- Xiamen Clinical Research Center for Cancer TherapyXiamen BranchZhongshan HospitalFudan UniversityXiamen361015China
| | - Pengcong Hou
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
- Shanghai Institute of Precision MedicineShanghai Ninth People’s HospitalShanghai Jiao Tong University School of MedicineShanghai200032China
| | - Tianshu Liu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
4
|
Wang SX, Xie XH. Identification of a novel signature based on M6a modification regulators related LncRNA for stratification of the prognosis of prostate cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:2340-2349. [PMID: 38156438 DOI: 10.1002/tox.24114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Prostate cancer emerges as a life-threatening disease that affects approximately 1.3 million patients of male population globally. Various studies established lncRNAs as a critical role in prostate cancer progression by regulating multiple epigenetic pathways. Therefore, it is imperative to disclose the involvement of lncRNAs in prostate cancer and their usability as prognostic markers for the disease. The model was constructed using Cox and LASSO analysis. The accuracy of model was evaluated using various cohorts. Furthermore, the study assessed the correlative relationship of the model with tumor immunity, immunotherapy, SNV mutation, and drug sensitivity, among other factors. We developed an accurate and stable prognostic model for prostate cancer patients by screening out 11 m6A regulators related lncRNAs and integrating pathological features and age through a nomogram model. The model had satisfactory accuracy and stability in stratification of clinical outcomes of prostate cancer patients, as demonstrated by AUC values (higher than 0.7) at 3, 5, and 7 years in both internal and external cohorts. Moreover, we performed PCA analysis to confirm m6A-related lncRNAs as the best modeling strategy. We developed a prognosis predicting model based on 11 selected m6A modification related lncRNA, which displayed satisfactory potency in multiple cohorts.
Collapse
Affiliation(s)
- Sheng-Xiong Wang
- Department of Urology, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang-Hui Xie
- Department of Urology, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
5
|
Li X, Lei J, Shi Y, Peng Z, Gong M, Shu X. Developing a RiskScore Model based on Angiogenesis-related lncRNAs for Colon Adenocarcinoma Prognostic Prediction. Curr Med Chem 2024; 31:2449-2466. [PMID: 37961859 DOI: 10.2174/0109298673277243231108071620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
AIM We screened key angiogenesis-related lncRNAs based on colon adenocarcinoma (COAD) to construct a RiskScore model for predicting COAD prognosis and help reveal the pathogenesis of the COAD as well as optimize clinical treatment. BACKGROUND Regulatory roles of lncRNAs in tumor progression and prognosis have been confirmed, but few studies have probed into the role of angiogenesis-related lncRNAs in COAD. OBJECTIVE To identify key angiogenesis-related lncRNAs and build a RiskScore model to predict the survival probability of COAD patients and help optimize clinical treatment. METHODS Sample data were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. The HALLMARK pathway score in the samples was calculated using the single sample gene set enrichment analysis (ssGSEA) method. LncRNAs associated with angiogenesis were filtered by an integrated pipeline algorithm. LncRNA-based subtypes were classified by ConsensusClusterPlus and then compared with other established subtypes. A RiskScore model was created based on univariate Cox, least absolute shrinkage and selection operator (LASSO) regression and stepwise regression analysis. The Kaplan-Meier curve was drawn by applying R package survival. The time-dependent ROC curves were drawn by the timeROC package. Finally, immunotherapy benefits and drug sensitivity were analyzed using tumor immune dysfunction and exclusion (TIDE) software and pRRophetic package. RESULTS Pathway analysis showed that the angiogenesis pathway was a risk factor affecting the prognosis of COAD patients. A total of 66 lncRNAs associated with angiogenesis were screened, and three molecular subtypes (S1, S2, S3) were obtained. The prognosis of S1 and S2 was better than that of S3. Compared with the existing subtypes, the S3 subtype was significantly different from the other two subtypes. Immunoassay showed that immune cell scores of the S2 subtype were lower than those of the S1 and S3 subtypes, which also had the highest TIDE scores. We recruited 8 key lncRNAs to develop a RiskScore model. The high RiskScore group with inferior survival and higher TIDE scores was predicted to benefit limitedly from immunotherapy, but it may be more sensitive to chemotherapeutics. A nomogram designed by RiskScore signature and other clinicopathological characteristics shed light on rational predictive power for COAD treatment. CONCLUSION We constructed a RiskScore model based on angiogenesis-related lncRNAs, which could serve as potential prognostic predictors for COAD patients and may offer clues for the intervention of anti-angiogenic application. Our results may help evaluate the prognosis of COAD and provide better treatment strategies.
Collapse
Affiliation(s)
- Xianguo Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Junping Lei
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441021, China
| | - Yongping Shi
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zuojie Peng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Minmin Gong
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441021, China
| | - Xiaogang Shu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| |
Collapse
|
6
|
Kim J, Kim Y, Lee B. Identification of Long Non-Coding RNA Profiles and Potential Therapeutic Agents for Fibrolamellar Carcinoma Based on RNA-Sequencing Data. Genes (Basel) 2023; 14:1709. [PMID: 37761849 PMCID: PMC10530820 DOI: 10.3390/genes14091709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Fibrolamellar carcinoma (FLC) is a rare type of liver cancer that primarily affects adolescents and young adults without prior liver disease or viral infections. Patients with FLC generally have non-specific symptoms, are often diagnosed at a later stage, and experience a higher frequency of metastases compared to patients with other liver cancers. A fusion transcript of DNAJB1 and PRKACA, which can lead to increased activity of PKA and cellular proliferation, has been identified in all FLC patients, but the exact mechanism through which FLC develops remains unclear. In this study, we investigated common lncRNA profiles in various FLC samples using bioinformatics analyses. METHODS We analyzed differentially expressed (DE) lncRNAs from three RNA sequencing datasets. Using lncRNAs and DE mRNAs, we predicted potential lncRNA target genes and performed Gene Ontology (GO) and KEGG analyses with the DE lncRNA target genes. Moreover, we screened for small-molecule compounds that could act as therapeutic targets for FLC. RESULTS We identified 308 DE lncRNAs from the RNA sequencing datasets. In addition, we performed a trans-target prediction analysis and identified 454 co-expressed pairs in FLC. The GO analysis showed that the lncRNA-related up-regulated mRNAs were enriched in the regulation of protein kinase C signaling and cAMP catabolic processes, while lncRNA-related down-regulated mRNAs were enriched in steroid, retinol, cholesterol, and xenobiotic metabolic processes. The analysis of small-molecule compounds for FLC treatment identified vitexin, chlorthalidone, triamterene, and amiloride, among other compounds. CONCLUSIONS We identified potential therapeutic targets for FLC, including lncRNA target genes as well as small-molecule compounds that could potentially be used as treatments. Our findings could contribute to furthering our understanding of FLC and providing potential avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Janghyun Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea (Y.K.)
| | - Young Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea (Y.K.)
| | - Bora Lee
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| |
Collapse
|
7
|
Yang L, Jia X, Fu Y, Tian J, Liu Y, Lin J. Creation of a Prognostic Model Using Cuproptosis-Associated Long Noncoding RNAs in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:9987. [PMID: 37373132 DOI: 10.3390/ijms24129987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Cuproptosis is an unusual form of cell death caused by copper accumulation in mitochondria. Cuproptosis is associated with hepatocellular carcinoma (HCC). Long noncoding RNAs (LncRNAs) have been shown to be effective prognostic biomarkers, yet the link between lncRNAs and cuproptosis remains unclear. We aimed to build a prognostic model of lncRNA risk and explore potential biomarkers of cuproptosis in HCC. Pearson correlations were used to derive lncRNAs co-expressed in cuproptosis. The model was constructed using Cox, Lasso, and multivariate Cox regressions. Kaplan-Meier survival analysis, principal components analysis, receiver operating characteristic curve, and nomogram analyses were carried out for validation. Seven lncRNAs were identified as prognostic factors. A risk model was an independent prognostic predictor. Among these seven lncRNAs, prostate cancer associated transcript 6 (PCAT6) is highly expressed in different types of cancer, activating Wnt, PI3K/Akt/mTOR, and other pathways; therefore, we performed further functional validation of PCAT6 in HCC. Reverse transcription-polymerase chain reaction results showed that PCAT6 was aberrantly highly expressed in HCC cell lines (HepG2 and Hep3B) compared to LO2 (normal hepatocytes). When its expression was knocked down, cells proliferated and migrated less. PCAT6 might be a potential biomarker for predicting prognosis in HCC.
Collapse
Affiliation(s)
- Lihong Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China
| | - Xiao Jia
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China
| | - Yueyue Fu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China
| | - Jiao Tian
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China
| | - Yijin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China
| |
Collapse
|
8
|
LncRNA PCAT6 promotes proliferation, migration, invasion, and epithelial-mesenchymal transition of lung adenocarcinoma cell by targeting miR-545-3p. Mol Biol Rep 2023; 50:3557-3568. [PMID: 36787056 PMCID: PMC10042954 DOI: 10.1007/s11033-023-08259-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Lung cancer is a high incidence cancer on a worldwide basis and has become a major public health problem. Lung adenocarcinoma (LUAD) makes up approximately half of all lung cancers and is a threat to human health. Long non-coding RNAs (lncRNAs) is an important regulator of the development and progression of lung adenocarcinoma. In this manuscript we examined the role and potential mechanism of lncRNA PCAT6 in the development of LUAD. METHODS AND RESULTS Differences in lncRNA PCAT6 levels between LUAD samples and normal samples were first explored in the GEPIA database. We found that lncRNA PCAT6 expression was elevated, which was also validated in lung adenocarcinoma tissues and cell lines. Using western blotting, CCK-8, EdU, wound healing and transwell assays, we found that knockdown of lncRNA PCAT6 inhibited EMT, proliferation, migration, and invasion of LUAD cells. We noted a predicted a binding site for lncRNA PCAT6 and miR-545-3p through conducting bioinformatic analyses, and their binding was subsequently verified by a dual-luciferase reporter assay. Rescue experiments confirmed that miR-545-3p inhibitor partially abolished the inhibition function of lncRNA PCAT6 knockdown on LUAD cells. In addition, we predicted the downstream target genes of miR-545-3p and verified them by RT-qPCR. We found that EGFR was reduced in the silence of lncRNA PCAT6 and upregulated after miR-545-3p inhibition. CONCLUSION This study demonstrates that lncRNA PCAT6 promotes a more aggressive LUAD phenotype by sponging miR-545-3p. This finding may provide new ideas for the treatment of lung cancer.
Collapse
|
9
|
lncRNA SSTR5-AS1 Predicts Poor Prognosis and Contributes to the Progression of Esophageal Cancer. DISEASE MARKERS 2023; 2023:5025868. [PMID: 36726845 PMCID: PMC9886483 DOI: 10.1155/2023/5025868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 01/24/2023]
Abstract
Esophageal cancer (ESCA), as a common cancer worldwide, is a main cause of cancer-related mortality. Long noncoding RNAs (lncRNAs) have been shown in an increasing number of studies to be capable of playing an important regulatory function in human malignancies. Our study is aimed at delving into the prognostic value and potential function of lncRNA SSTR5-AS1 (SSTR5-AS1) in ESCA. The gene expression data of 182 ESCA samples from TCGA and 653 nontumor specimens from GTEx. The expressions of SSTR5-AS1 were analyzed. We investigated whether there was a correlation between the expression of SSTR5-AS1 and the clinical aspects of ESCA. In order to compare survival curves, the Kaplan-Meier method together with the log-rank test was utilized. The univariate and multivariate Cox regression models were used to analyze the data in order to determine the SSTR5-AS1 expression's significance as a prognostic factor in ESCA patients. In order to investigate the level of SSTR5-AS1 expression in ESCA cells, RT-PCR was utilized. CCK-8 trials served as a model for the loss-of-function tests. In this study, we found that the expressions of SSTR5-AS1 were increased in ESCA specimens compared with nontumor specimens. According to the ROC assays, high SSTR5-AS1 expression had an AUC value of 0.7812 (95% CI: 0.7406 to 0.8217) for ESCA. Patients who had a high level of SSTR5-AS1 expression had a lower overall survival rate than those who had a low level of SSTR5-AS1 expression. In addition, multivariate analysis suggested that SSTR5-AS1 was an independent predictor of overall survival for ESCA patients. Moreover, RT-PCR experiments indicated that SSTR5-AS1 expression was distinctly increased in three ESCA cells compared with HET1A cells. CCK-8 experiments indicated that silence of SSTR5-AS1 distinctly inhibited the proliferation of ESCA cells. Overall, ESCA patients with elevated SSTR5-AS1 had a worse chance of survival, suggesting it could be used as a prognostic and diagnostic biomarker for ESCA.
Collapse
|
10
|
Almeida A, Gabriel M, Firlej V, Martin‐Jaular L, Lejars M, Cipolla R, Petit F, Vogt N, San‐Roman M, Dingli F, Loew D, Destouches D, Vacherot F, de la Taille A, Théry C, Morillon A. Urinary extracellular vesicles contain mature transcriptome enriched in circular and long noncoding RNAs with functional significance in prostate cancer. J Extracell Vesicles 2022; 11:e12210. [PMID: 35527349 PMCID: PMC9081490 DOI: 10.1002/jev2.12210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Long noncoding (lnc)RNAs modulate gene expression alongside presenting unexpected source of neoantigens. Despite their immense interest, their ability to be transferred and control adjacent cells is unknown. Extracellular Vesicles (EVs) offer a protective environment for nucleic acids, with pro and antitumourigenic functions by controlling the immune response. In contrast to extracellular nonvesicular RNA, few studies have addressed the full RNA content within human fluids' EVs and have compared them with their tissue of origin. Here, we performed Total RNA-Sequencing on six Formalin-Fixed-Paraffin-Embedded (FFPE) prostate cancer (PCa) tumour tissues and their paired urinary (u)EVs to provide the first whole transcriptome comparison from the same patients. UEVs contain simplified transcriptome with intron-free cytoplasmic transcripts and enriched lnc/circular (circ)RNAs, strikingly common to an independent 20 patients' urinary cohort. Our full cellular and EVs transcriptome comparison within three PCa cell lines identified a set of overlapping 14 uEV-circRNAs characterized as essential for prostate cell proliferation in vitro and 28 uEV-lncRNAs belonging to the cancer-related lncRNA census (CLC2). In addition, we found 15 uEV-lncRNAs, predicted to encode 768 high-affinity neoantigens, and for which three of the encoded-ORF produced detectable unmodified peptides by mass spectrometry. Our dual analysis of EVs-lnc/circRNAs both in urines' and in vitro's EVs provides a fundamental resource for future uEV-lnc/circRNAs phenotypic characterization involved in PCa.
Collapse
Affiliation(s)
- Anna Almeida
- CNRS UMR3244Sorbonne UniversityPSL UniversityInstitut Curie, Centre de RechercheParisFrance
- Departement de Recherche TranslationnellePSL UniversityInstitut Curie, Centre de RechercheParisFrance
| | - Marc Gabriel
- CNRS UMR3244Sorbonne UniversityPSL UniversityInstitut Curie, Centre de RechercheParisFrance
| | - Virginie Firlej
- AP‐HPHôpital H. MondorPlateforme de Ressources BiologiquesCréteilFrance
- Univ Paris Est CreteilUR TRePCaCréteilFrance
| | - Lorena Martin‐Jaular
- INSERM U932PSL UniversityInstitut Curie, Centre de RechercheParisFrance
- Curie Core Tech Extracellular VesiclesInstitut Curie, Centre de RechercheParisFrance
| | - Matthieu Lejars
- CNRS UMR3244Sorbonne UniversityPSL UniversityInstitut Curie, Centre de RechercheParisFrance
| | - Rocco Cipolla
- CNRS UMR3244Sorbonne UniversityPSL UniversityInstitut Curie, Centre de RechercheParisFrance
| | - Floriane Petit
- Tumour BiologyINSERM U820, Sorbonne Université, PSL University, Institut CurieCentre de RechercheParisFrance
| | - Nicolas Vogt
- CNRS UMR3244Sorbonne UniversityPSL UniversityInstitut Curie, Centre de RechercheParisFrance
| | - Mabel San‐Roman
- CNRS UMR3215, Sorbonne Université, PSL University, Institut CurieCentre de RechercheParisFrance
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse ProtéomiquePSL Research University, Institut Curie Centre de RechercheParisFrance
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse ProtéomiquePSL Research University, Institut Curie Centre de RechercheParisFrance
| | | | | | | | - Clotilde Théry
- INSERM U932PSL UniversityInstitut Curie, Centre de RechercheParisFrance
- Curie Core Tech Extracellular VesiclesInstitut Curie, Centre de RechercheParisFrance
| | - Antonin Morillon
- CNRS UMR3244Sorbonne UniversityPSL UniversityInstitut Curie, Centre de RechercheParisFrance
| |
Collapse
|