1
|
Yuan B, Wang R, Gao Z, Mirzeei H, Xiang AD, Guo F. Silymarin plus doxorubicin exerts the anti-hepatocellular carcinoma effects via Wnt, apoptosis, autophagy and angiogenesis pathways. Mol Cell Probes 2025; 81:102022. [PMID: 40049299 DOI: 10.1016/j.mcp.2025.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND The biggest cause of death worldwide is liver cancer. Despite several initiatives and successes in treatment techniques, only a little improvement has been attained. In order to control this cancer, new therapeutic strategies are therefore required. Here, we evaluated the effects of doxorubicin and the milk thistle plant phytochemical Silymarin on liver cancer through apoptosis, autophagy, and Wnt signaling. METHODS Silymarin both alone and together with doxorubicin was administered to induce cytotoxicity in the H22 cell line. qRT-PCR and Western blot analyses, the genes related to autophagy, Wnt signals, and cell death were examined. RESULTS Doxorubicin and Silymarin both individually and combined dramatically slowed down H22 cells growth. Additionally, there was a significant drop in the Bcl-2 protein and a considerable rise in the caspase 8 and Bax proteins. LC3-I, LC3-II, and Beclin 1 have been all shown to be significantly elevated. Moreover, there was a substantial decrease in the expression of genes involved in the Wnt pathway, including cyclin D1, β-catenin, ZEB1, and Twist. The levels of AMPK were decreased in Silymarin with Doxorubicin alone and in combination, whereas VASP, VEGF, and HIF-1a were lowest. CONCLUSION Silymarin may enhance anti-tumor effects of doxorubicin through modulating autophagy, angiogenesis, and apoptosis, in-vitro.
Collapse
Affiliation(s)
- Baohong Yuan
- Department of General Surgery, Yan'An Hospital Affiliated to Kunming Medical University, The Key Laboratory of Tumour Immunological Prevention and Treatment of Yunnan Province, Kunming, 650051, China
| | - Ruotian Wang
- Department of General Surgery, Yan'An Hospital Affiliated to Kunming Medical University, The Key Laboratory of Tumour Immunological Prevention and Treatment of Yunnan Province, Kunming, 650051, China
| | - Zehai Gao
- Department of General Surgery II, The Affiliated Hospital of Yunnan University, Kunming, 650032, China
| | - Hameed Mirzeei
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - An-Dong Xiang
- Department of General Surgery II, The Affiliated Hospital of Yunnan University, Kunming, 650032, China.
| | - Feng Guo
- Clinical Skills Training Center, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
2
|
Saadh MJ, Ehymayed HM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Anbari HHA, Shallal MM, Alsaikhan F, Farhood B. Role of circRNAs in regulating cell death in cancer: a comprehensive review. Cell Biochem Biophys 2025; 83:109-133. [PMID: 39243349 DOI: 10.1007/s12013-024-01492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Despite multiple diagnostic and therapeutic advances, including surgery, radiation therapy, and chemotherapy, cancer preserved its spot as a global health concern. Prompt cancer diagnosis, treatment, and prognosis depend on the discovery of new biomarkers and therapeutic strategies. Circular RNAs (circRNAs) are considered as a stable, conserved, abundant, and varied group of RNA molecules that perform multiple roles such as gene regulation. There is evidence that circRNAs interact with RNA-binding proteins, especially capturing miRNAs. An extensive amount of research has presented the substantial contribution of circRNAs in various types of cancer. To fully understand the linkage between circRNAs and cancer growth as a consequence of various cell death processes, including autophagy, ferroptosis, and apoptosis, more research is necessary. The expression of circRNAs could be controlled to limit the occurrence and growth of cancer, providing a more encouraging method of cancer treatment. Consequently, it is critical to understand how circRNAs affect various forms of cancer cell death and evaluate whether circRNAs could be used as targets to induce tumor death and increase the efficacy of chemotherapy. The current study aims to review and comprehend the effects that circular RNAs exert on cell apoptosis, autophagy, and ferroptosis in cancer to investigate potential cancer treatment targets.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of dentist, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical technical college, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Surgical Dentistry and Dental Implantology, Tashkent State Dental Institute, Tashkent, Uzbekistan
- Department of Scientific affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Rafiyan M, Tootoonchi E, Golpour M, Davoodvandi A, Reiter RJ, Asemi R, Sharifi M, Rasooli Manesh SM, Asemi Z. Melatonin for gastric cancer treatment: where do we stand? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1265-1282. [PMID: 39287677 DOI: 10.1007/s00210-024-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Gastric cancer (GC) is the third leading reason of death in men and the fourth in women. Studies have documented an inhibitory function of melatonin on the proliferation, progression and invasion of GC cells. MicroRNAs (miRNAs) are small, non-coding RNAs that play an important function in regulation of biological processes and gene expression of the cells. Some studies reported that melatonin can suppress the progression of GC by regulating the exosomal miRNAs. Thus, melatonin represents a promising potential therapeutic agent for subjects with GC. Herein, we evaluate the existing data of both in vivo and in vitro studies to clarify the molecular processes involved in the therapeutic effects of melatonin in GC. The data emphasize the critical function of melatonin in several signaling ways by which it may inhibit cancer cell proliferation, decrease chemo-resistance, induce apoptosis as well as limit invasion, angiogenesis, and metastasis. This review provides a resource that identifies some of the mechanisms by which melatonin controls GC enlargement. In light of the findings, melatonin should be considered a novel and testable therapeutic mediator for GC treatment.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Tootoonchi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdieh Golpour
- Student Research Committee, Mazandarn University of Medical Sciences, Sari, Mazandaran, Iran
| | - Amirhossein Davoodvandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Sharma U, Sahni PK, Sharma B, Gupta M, Kaur D, Mathkor DM, Haque S, Khatoon S, Tuli HS, Mishra A, Ahmad F. Silymarin: a promising modulator of apoptosis and survival signaling in cancer. Discov Oncol 2025; 16:66. [PMID: 39836338 PMCID: PMC11751200 DOI: 10.1007/s12672-025-01800-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Cancer, one of the deadliest diseases, has remained the epicenter of biological research for more than seven decades. Yet all the efforts for a perfect therapeutic cure come with certain limitations. The use of medicinal plants and their phytochemicals as therapeutics has received much attention in recent years. Silymarin, a polyphenolic flavonoid with a variety of anti-cancerous properties, was isolated from the plant Silybum marianum. The present review centres on the function of silymarin in controlling important signalling pathways related to apoptosis and survival, such as the JAK/STAT pathway, PI3K/Akt/mTOR, Bcl-2/Bax, and Fas/FasL. It is emphasised that silymarin's capacity to target these pathways is a key mechanism behind its anticancer effects against a variety of malignancies. By upregulating pro-apoptotic and downregulating anti-apoptotic proteins, silymarin controls a series of events that result in tumor suppression and cell death in a variety of cancer types. The low bioavailability and limited therapeutic efficacy of silymarin are improved by the application of various nano-delivery systems. As efficient carriers, liposomes, polymeric micelles, lipid- and metal-based nanoparticles, increase the solubility and distribution of silymarin in target tissues. Lastly, a number of preclinical studies that provide a basis for upcoming therapeutic interventions are highlighted in the review, providing encouraging directions for additional research and advancement.
Collapse
Affiliation(s)
- Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Praveen Kumar Sahni
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Bunty Sharma
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Damandeep Kaur
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Darin Mansor Mathkor
- Department of Nursing, College of Nursing and Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
| | - Shafiul Haque
- Department of Nursing, College of Nursing and Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
- Universidad Espiritu Santo, Samborondon, Ecuador
| | - Sabiha Khatoon
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Astha Mishra
- Department of Optometry, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
5
|
Keshavarz M, Ghorbani M, Shamsizadeh F, Namdari H, Salimi V, Rezaei F. Effects and Mechanisms of Silibinin on Influenza A/H1N1 Pathogenesis in a Mouse Model. J Trop Med 2025; 2025:6618423. [PMID: 39850538 PMCID: PMC11756948 DOI: 10.1155/jotm/6618423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/25/2025] Open
Abstract
Silymarin is a polyphenolic flavonoid extracted from milk thistle. It has potent immunomodulatory effects and can inhibit the replication of influenza A virus (IAV). The present study aimed to determine the inflammatory and anti-inflammatory cytokine secretion patterns in mice before and after silibinin treatment. For this, bronchoalveolar lavage (BAL) fluids were collected from the thoracic cavity 5 days after the intervention, and viral quantification was performed using TaqMan Real-time PCR. Enzyme-linked immunosorbent assay (ELISA) was used to evaluate IFN-γ and IL-10 levels in serum and BAL samples. Finally, pathological damage to lung tissue was assessed by pathologists. The results reveal that silibinin pretreatment exhibits a dose-dependent immunomodulatory effect on IFN-γ and IL-10 levels. After the virus challenge, silibinin reduced immune cell infiltration in mouse BAL fluid. These data similarly suggest a remarkable immunomodulatory effect of silibinin. Silibinin also decreased lung damage following the virus challenge in the post-treatment group, but its lung protective properties seem to be due to a different mechanism than when it was administered before infection. Finally, high doses of silibinin (post-treatment) significantly reduced viral load in BAL fluid compared to the virus challenge group. These results support the idea that therapies aimed at moderating immune and inflammatory responses are essential to decrease the mortality rate caused by IAV infection. Silibinin has strong immunomodulatory properties, can inhibit IAV infection, and reduces lung tissue damage in a dose-dependent manner.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Ghorbani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Shamsizadeh
- Department of Parasitology and Mycology, School of Paramedicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- School of Public Health, National Influenza Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Boira C, Chapuis E, Lapierre L, Tiguemounine J, Scandolera A, Reynaud R. Silybum marianum Extract: A Highly Effective Natural Alternative to Retinoids to Prevent Skin Aging Without Side Effects. J Cosmet Dermatol 2025; 24:e16613. [PMID: 39692756 PMCID: PMC11743331 DOI: 10.1111/jocd.16613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Vitamin A, or retinol, is one of the most effective antiaging molecules, but it presents issues with photo-sensitivity and irritation. Alternatives are emerging, but have so far been less effective. OBJECTIVE Here, we present a Silibum marianum extract (SME) as a retinol-like ingredient providing both safety and efficacy. SME was compared to the reference compound, retinol, and to the main alternative, bakuchiol. METHODS Skin explants from a 58-year-old donor were treated with pure retinol (0.1%), bakuchiol (0.2%), or SME (0.8%). After 5 days, collagen and hyaluronic acid levels were analyzed. A placebo-controlled study involving 57 volunteers was also conducted, with products applied twice daily for 56 days. Results were measured by AEVA-HE and VISA. RESULTS Levels of collagen III were significantly increased by SME, by 23% and 16% compared to bakuchiol and retinol respectively. Compared to bakuchiol, SME treatment increased hyaluronic acid production by 36%. In clinical tests, SME had a significantly stronger anti-wrinkle effect than bakuchiol-reducing the number of wrinkles on the forehead by 21% and their circumference by 17%-producing effects similar to retinol, and better than bakuchiol. In the self-assessment, 43% of volunteers reported discomfort while using retinol compared to 0% for the SME formulation. By enhancing levels of collagen III-the youth collagen-and hyaluronic acid in the skin, SME paves the way for the maturation of collagen I fibrils and skin plumping. CONCLUSION With its stronger efficacy compared to bakuchiol and enhanced safety profile compared to retinol, SME may be the next generation of natural alternatives to retinoids.
Collapse
Affiliation(s)
- Cloe Boira
- Science and TechnologyGivaudan France SASPomacleFrance
| | | | | | | | | | | |
Collapse
|
7
|
Abad-Gil L, Gismera MJ, Sevilla MT, Procopio JR. Determination of the Major Bioactive Component of Silybum marianum in Nutricosmetics by a HPLC Method With Amperometric Detection and UAE Pretreatment. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39551534 DOI: 10.1002/pca.3478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
INTRODUCTION Nutricosmetics derived from Silybum marianum, known for their anti-inflammatory and hepatoprotective properties, necessitate accurate quantification of silybin, a key bioactive component. OBJECTIVES This study aims to develop a novel high-performance liquid chromatography (HPLC) method with amperometric detection (HPLC-ECD) for the precise determination of silybin. An ultrasound-assisted extraction (UAE) procedure is also established for solid sample preparation prior to chromatographic analysis. MATERIALS AND METHODS Chromatographic separation of silybin was performed on a C18 column and using methanol-0.035 M potassium phosphate (pH 4.0) at 1.0 mL min-1 flow rate as mobile phase in gradient mode. The electrochemical detection (ECD) of silybin was carried out on a glassy carbon electrode (GCE) at +1.10 V versus Ag/AgCl. The UAE procedure for silybin extraction from solid samples was performed by 15 min sonication in an ultrasonic bath (80 kHz and 100% power) at room temperature. RESULTS Under the optimal chromatographic conditions, silybin diastereoisomers (silybin A and silybin B) can be separated from other S. marianum flavonolignans in less than 20 min, with a detection limit (LOD) of 0.060 mg L-1 and a reproducibility (RSD) of 5%. This method was successfully applied to analyze silymarin-containing products with recoveries close to 100%. CONCLUSIONS This work presents the first HPLC method for silybin determination using an amperometric detector with a GCE. The LOD is competitive in comparison with previously published HPLC-DAD methods. This HPLC-ECD method allows silybin diastereoisomers identification without interferences of other flavonolignans present in silymarin extracts.
Collapse
Affiliation(s)
- Lucía Abad-Gil
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - M Jesús Gismera
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - M Teresa Sevilla
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús R Procopio
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Pereira-Filho JL, Mendes AGG, Campos CDL, Moreira IV, Monteiro CRAV, Soczek SHDS, Fernandes ES, Carvalho RC, Monteiro-Neto V. A Comprehensive Review on the Antibacterial, Antifungal, Antiviral, and Antiparasitic Potential of Silybin. Antibiotics (Basel) 2024; 13:1091. [PMID: 39596784 PMCID: PMC11591437 DOI: 10.3390/antibiotics13111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Silybin, a flavonolignan extracted from the seeds of the plant species Silybum marianum (L.) Gaertn., has a variety of pharmacological activities, including antimicrobial activity against several microorganisms of clinical interest. This review analyzes the existing studies on silybin's antimicrobial activity and possible mechanisms of action. Silybin has been shown to inhibit the growth of Gram-positive and Gram-negative bacteria, as well as some fungi, viruses, and protozoa. In general, possible mechanisms of antimicrobial action include the inhibition of efflux pumps, prevention of biofilm formation, reduction of the expression of virulence factors, induction of apoptosis-like effects, and plasma membrane damage, as well as the inhibition of nucleic acid and protein synthesis. Silybin has been shown to have synergistic effects when combined with conventional antibiotics against both drug-sensitive and drug-resistant microorganisms. However, the low bioavailability observed for this flavonolignan has been a challenge to its clinical use. In this context, nanotechnology has been used to increase silybin's bioavailability while enhancing its antimicrobial activity. Furthermore, certain structural modifications have been able to enhance its antimicrobial activity in comparison to that of the natural molecule. Overall, this review provides insights into the scientific understanding of the mechanism of action of silybin and its desired properties for the effective treatment of infections.
Collapse
Affiliation(s)
- José Lima Pereira-Filho
- Centro de Ciências da Saúde, Universidade Federal do Maranhão—UFMA, São Luís 65080-805, MA, Brazil; (J.L.P.-F.); (A.G.G.M.); (C.D.L.C.); (I.V.M.); (C.R.A.V.M.); (R.C.C.)
| | - Amanda Graziela Gonçalves Mendes
- Centro de Ciências da Saúde, Universidade Federal do Maranhão—UFMA, São Luís 65080-805, MA, Brazil; (J.L.P.-F.); (A.G.G.M.); (C.D.L.C.); (I.V.M.); (C.R.A.V.M.); (R.C.C.)
| | - Carmem Duarte Lima Campos
- Centro de Ciências da Saúde, Universidade Federal do Maranhão—UFMA, São Luís 65080-805, MA, Brazil; (J.L.P.-F.); (A.G.G.M.); (C.D.L.C.); (I.V.M.); (C.R.A.V.M.); (R.C.C.)
| | - Israel Viegas Moreira
- Centro de Ciências da Saúde, Universidade Federal do Maranhão—UFMA, São Luís 65080-805, MA, Brazil; (J.L.P.-F.); (A.G.G.M.); (C.D.L.C.); (I.V.M.); (C.R.A.V.M.); (R.C.C.)
| | - Cinara Regina Aragão Vieira Monteiro
- Centro de Ciências da Saúde, Universidade Federal do Maranhão—UFMA, São Luís 65080-805, MA, Brazil; (J.L.P.-F.); (A.G.G.M.); (C.D.L.C.); (I.V.M.); (C.R.A.V.M.); (R.C.C.)
| | - Suzany Hellen da Silva Soczek
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.d.S.S.); (E.S.F.)
- Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Elizabeth Soares Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.d.S.S.); (E.S.F.)
- Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Rafael Cardoso Carvalho
- Centro de Ciências da Saúde, Universidade Federal do Maranhão—UFMA, São Luís 65080-805, MA, Brazil; (J.L.P.-F.); (A.G.G.M.); (C.D.L.C.); (I.V.M.); (C.R.A.V.M.); (R.C.C.)
| | - Valério Monteiro-Neto
- Centro de Ciências da Saúde, Universidade Federal do Maranhão—UFMA, São Luís 65080-805, MA, Brazil; (J.L.P.-F.); (A.G.G.M.); (C.D.L.C.); (I.V.M.); (C.R.A.V.M.); (R.C.C.)
| |
Collapse
|
9
|
Dehelean C, Alexa E, Marcovici I, Iftode A, Lazar G, Simion A, Chis V, Pirnau A, Pinzaru SC, Boeriu E. Synthesis, characterization, and in vitro-in ovo toxicological screening of silibinin fatty acids conjugates as prodrugs with potential biomedical applications. BIOMOLECULES & BIOMEDICINE 2024; 24:1735-1750. [PMID: 38907734 PMCID: PMC11496873 DOI: 10.17305/bb.2024.10600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
Silibinin (SIL), the most active phytocompound from Silybum marianum (L.), exerts many biological effects but has low stability and bioavailability. To overcome these drawbacks, the current research proposed the synthesis of silibilin oleate (SIL-O) and silibilin linoleate (SIL-L) derivatives as prodrugs with potentially optimized properties for biomedical applications, and the establishment of their in vitro-in ovo safety profiles. The physicochemical characterization of the obtained compounds using density functional theory (DFT) calculations, and Raman and 1H liquid-state nuclear magnetic resonance (NMR) spectroscopy confirmed the formation of SIL-O and SIL-L complexes. Computational predictions revealed that these lipophilic derivatives present a lower drug-likeness score (-29.96 for SIL-O and -23.55 for SIL-L) compared to SIL, but an overall positive drug score (0.07) and no risk for severe adverse effects. SIL-O and SIL-L showed no cytotoxicity or impairment in cell migration at low concentrations, but at the highest concentration (100 μM), they displayed distinct toxicological profiles. SIL-L was more cytotoxic (on cardiomyoblasts - H9c2(2-1), hepatocytes - HepaRG, and keratinocytes - HaCaT) than SIL-O or SIL, significantly inhibiting cell viability (<60%), altering cellular morphology, reducing cell confluence (<70%), and inducing prominent apoptotic-like nuclear features. At the concentration of 100 μM, SIL-O presented an irritation score (IS) of 0.61, indicating a lack of irritant effect on the chorioallantoic membrane (CAM), while SIL-L was classified as a slight irritant with an IS of 1.99. These findings outline a more favorable in vitro and in ovo biocompatibility for SIL-O compared to SIL L, whose applications are dosage limited due to potential toxicity.
Collapse
Affiliation(s)
- Cristina Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Ersilia Alexa
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Timisoara, Romania
| | - Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Andrada Iftode
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Geza Lazar
- “Ioan Ursu” Institute of the Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
- RDI Institute of Applied Natural Sciences, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Andrea Simion
- “Ioan Ursu” Institute of the Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
- National Institute of Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Vasile Chis
- “Ioan Ursu” Institute of the Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Adrian Pirnau
- National Institute of Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Simona Cinta Pinzaru
- “Ioan Ursu” Institute of the Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
- RDI Institute of Applied Natural Sciences, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Estera Boeriu
- Faculty of Medicine, Department of Pediatrics, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Department of Oncology and Hematology, “Louis Turcanu” Emergency Clinical Hospital for Children, Timisoara, Romania
| |
Collapse
|
10
|
Jaffar HM, Bader ul Ain H, Tufail T, Hanif A, Malik T. Impact of silymarin-supplemented cookies on liver enzyme and inflammatory markers in non-alcoholic fatty liver disease patients. Food Sci Nutr 2024; 12:7273-7286. [PMID: 39479680 PMCID: PMC11521666 DOI: 10.1002/fsn3.4348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 11/02/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing public health concern characterized by fat accumulation and severe disorders like nonalcoholic steatohepatitis (NASH), which are influenced by obesity, inflammatory processes, and metabolic pathways. This research investigates the potential of silymarin-supplemented cookies in managing NAFLD by evaluating their impact on liver enzyme activity, inflammatory markers, and lipid profiles. A clinical trial in Lahore, Pakistan, involved 64 NAFLD patients. Participants were divided into placebo and three treatment groups, with the latter receiving silymarin-supplemented cookies for 3 months. The study assessed liver enzyme levels and inflammatory markers, at baseline and after the intervention, utilizing statistical analyses to evaluate differences. The lipid profile and renal function test (RFT) were also measured at baseline and after 3 months in each group for safety assessment. After 3 months, the treatment groups indicated more significant decreases in liver enzymes compared to the placebo group (p ≤ .05). Treatment 3 showed significant reductions in alanine aminotransferase (ALT) (64.39-49.38 U/L) and aspartate aminotransferase (AST) (61.53-45.38 U/L). Treatment 3 also showed improvements in alkaline phosphatase (ALP) levels and the AST/ALT ratio. Additionally, the treatment group demonstrated a significant reduction in inflammatory markers. Treatment 3 showed a significant decrease in C-reactive protein (CRP) (6.32-3.39 mg/L) and erythrocyte sedimentation rate (ESR) (38.72-23.86 mm/h), indicating that individuals with NAFLD may benefit from the intervention's potential benefits in lowering inflammation. The study revealed that an intervention significantly improved the inflammatory markers, liver enzymes, and lipid profiles of NAFLD participants, suggesting potential benefits for liver health.
Collapse
Affiliation(s)
- Hafiza Madiha Jaffar
- Faculty of Allied Health SciencesUniversity Institute of Diet & Nutritional Sciences, University of LahoreLahorePakistan
| | - Huma Bader ul Ain
- Faculty of Allied Health SciencesUniversity Institute of Diet & Nutritional Sciences, University of LahoreLahorePakistan
| | - Tabussam Tufail
- Faculty of Allied Health SciencesUniversity Institute of Diet & Nutritional Sciences, University of LahoreLahorePakistan
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Asif Hanif
- Allied Health SciencesThe University of LahoreLahorePakistan
| | - Tabarak Malik
- Department of Biomedical SciencesJimma UniversityJimmaEthiopia
- Present address:
Division of Research & DevelopmentLovely Professional UniversityPhagwaraPunjab144001India
| |
Collapse
|
11
|
Kamel NM, El-Sayed SS, El-Said YAM, El-Kersh DM, Hashem MM, Mohamed SS. Unlocking milk thistle's anti-psoriatic potential in mice: Targeting PI3K/AKT/mTOR and KEAP1/NRF2/NF-κB pathways to modulate inflammation and oxidative stress. Int Immunopharmacol 2024; 139:112781. [PMID: 39059101 DOI: 10.1016/j.intimp.2024.112781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Silybum marianum, known as milk thistle (MT), is traditionally used to manage liver diseases. This study aimed to investigate the role of MT extract topical application as a potential treatment for imiquimod (IMQ)-induced psoriatic lesions in mice with particular emphasis on phosphoinositol-3 Kinase (PI3K)/ protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) and Kelch-like ECH-associated protein 1 (KEAP1)/ nuclear factor erythroid-2-related factor (NRF2)/ nuclear factor-kappa B (NF-κB) molecular cascades involvement. To address this aim, forty male Swiss albino mice were subdivided into four groups (n = 10 mice/group): control, IMQ model, standard group where mice were treated topically with IMQ, then the anti-psoriatic mometasone cream, and MT extract-treated group where mice were treated topically with IMQ followed by MT extract. In most measured parameters, MT extract, rich in silymarin, exhibited potent anti-psoriatic activity comparable to the standard cortisone treatment. MT extract mitigated dorsal skin erythema, scaling, and epidermal thickening, reflected by lowering the Psoriasis Area Severity Index (PASI) score. Moreover, it alleviated IMQ-induced splenomegaly. Mechanistically, the PI3K/AKT/mTOR pathway was the main functional pathway behind such improvements, where it was significantly inhibited by MT extract application. This led to NRF2 activation via KEAP1 downregulation with subsequent anti-inflammatory effect proven by reducing NF-κB, interleukin (IL)-23, and IL-17A and antioxidant ability proven by boosting the antioxidant glutathione and heme oxygenase-1. Such improvements were confirmed by alleviating the histopathological alteration. Thus, MT extract could be a promising therapeutic agent for psoriasis treatment by inhibiting PI3K/AKT/mTOR cascade, along with NRF2 signaling activation.
Collapse
Affiliation(s)
- Nada M Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Sarah S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Yasmin A M El-Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Dina M El-Kersh
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Suez Desert Road, Cairo, 11873, Egypt.
| | - Mona M Hashem
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Sarah S Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
12
|
Arghidash F, Javid-Naderi MJ, Gheybi F, Gholamhosseinian H, Kesharwani P, Sahebkar A. Exploring the multifaceted effects of silymarin on melanoma: Focusing on the role of lipid-based nanocarriers. J Drug Deliv Sci Technol 2024; 99:105950. [DOI: 10.1016/j.jddst.2024.105950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Zhang X, Liu M, Wang Z, Wang P, Kong L, Wu J, Wu W, Ma L, Jiang S, Ren W, Du L, Ma W, Liu X. A review of the botany, phytochemistry, pharmacology, synthetic biology and comprehensive utilization of Silybum marianum. Front Pharmacol 2024; 15:1417655. [PMID: 39055491 PMCID: PMC11269164 DOI: 10.3389/fphar.2024.1417655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Silybum marianum (L.) Gaertn, a herbaceous plant with a long history in traditional medicine for the treatment of hepatobiliary diseases, particularly in Europe, which has attracted attention for its remarkable therapeutic effect. This review systematically summarizes the research progress in the botany, phytochemistry, pharmacology, comprehensive utilization and synthetic biology of S. marianum. Up to now, more than 20 types of flavonolignan components have been isolated from S. marianum. In addition, the rearch on fatty acids and triterpenoids is also constantly improving. Among them, silybin is the most active compound in flavonolignans components. Its pharmacological effects in vivo and in vitro include anti-inflammatory, antioxidant, anti-tumour, hypoglycaemic, neuroprotective and immunoregulatory properties. The use of coniferyl alcohol and taxifolin as substrates to produce silybin and isosilybin under the action of enzyme catalysis is the commonly used biosynthetic pathway of silymarin, which provides support for a comprehensive analysis of the synthetic pathway of silymarin. In addition to medicinal use, the extracts of plants also have broad application prospects in the production of food, healthcare products, cosmetics and other aspects. In addition, the chemical composition, pharmacological mechanism and synthetic biology of S. marianum need to be further studied, which is very important for its clinical efficacy and resource development.
Collapse
Affiliation(s)
- Xiaozhuang Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meiqi Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhen Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Panpan Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lingyang Kong
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jianhao Wu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Wu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lengleng Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shan Jiang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weichao Ren
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Likun Du
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiubo Liu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, China
| |
Collapse
|
14
|
Chen Z, Gao W, Feng X, Zhou G, Zhang M, Zeng L, Hu X, Liu Z, Song H. A comparative study on the preparation and evaluation of solubilizing systems for silymarin. Drug Deliv Transl Res 2024; 14:1616-1634. [PMID: 37964172 DOI: 10.1007/s13346-023-01476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
Silymarin (SM) exhibits clinical efficacy in treating liver injuries, cirrhosis, and chronic hepatitis. However, its limited water solubility and low bioavailability hinder its therapeutic potential. The primary objective of this study was to compare the in vitro and in vivo characteristics of the four distinct SM solubilization systems, namely SM solid dispersion (SM-SD), SM phospholipid complex (SM-PC), SM sulfobutyl ether-β-cyclodextrin inclusion complex (SM-SBE-β-CDIC) and SM self-microemulsifying drug delivery system (SM-SMEDDS) to provide further insights into their potential for enhancing the solubility and bioavailability of SM. The formation of SM-SD, SM-PC, and SM-SBE-β-CDIC was thoroughly characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffractometry (PXRD) techniques to analyze the changes in their microscopic structure, molecular structure, and crystalline state. The particle size and polydispersity index (PDI) of SM-SMEDDS were 71.6 ± 1.57 nm, and 0.13 ± 0.03, respectively. The self-emulsifying time of SM-SMEDDS was 3.0 ± 0.3 min. SM-SMEDDS exhibited an improved in vitro dissolution rate and demonstrated the highest relative bioavailability compared to pure SM, SM-SD, SM-PC, SM-SBE-β-CDIC, and Legalon®. Consequently, SMEDDS shows promise as a drug delivery system for orally administered SM, offering enhanced solubility and bioavailability.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Wenhao Gao
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Xianquan Feng
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Guizhi Zhou
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
- School of Pharmacy, Fujian University of Chinese Traditional Medicine, Fuzhou, 350108, China
| | - Minxin Zhang
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Lingjun Zeng
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Xiaomu Hu
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Zhihong Liu
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China.
| | - Hongtao Song
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China.
| |
Collapse
|
15
|
Imam SS, Alshammari SO, Alshehri S, Mahdi WA, Al-Agamy MH. Formulation of silymarin surface modified vesicles: In vitro characterization to cell viability assessment. Saudi Pharm J 2024; 32:102072. [PMID: 38726227 PMCID: PMC11079526 DOI: 10.1016/j.jsps.2024.102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Silymarin (SLR) is a poorly water-soluble bioactive compound with a wide range of therapeutic activities. Nanosized silymarin vesicles (F1-F6) were prepared by the solvent evaporation rehydration method. The silymarin vesicles were evaluated for vesicle size, surface charge, entrapment efficiency, and drug release studies. The optimized SLR lipid vesicle (F3) was further modified with the addition of the cationic polymer chitosan. After that, the modified vesicle (F3C1) was assessed for permeation flux, antimicrobial activity, cell viability, and molecular docking studies. The silymarin vesicles showed nanometric size (<250 nm), low polydispersibility index (<0.05), negative surface charge, and high SLR entrapment (85-95 %). The drug release study result demonstrated a maximum drug release of 91.2 ± 2.8 %. After adding chitosan to the surface, there was a significant change in the size, polydispersibility index, surface charge (positive), and encapsulation efficiency. The drug release was found to be prolonged, and the permeation flux was also increased in comparison to free SLR. A comparative antimicrobial result was observed in comparison to the free SLR and standard drug. The cell viability assay also demonstrated a low IC50 value for F3C1 against the cell line.
Collapse
Affiliation(s)
- Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Owaid Alshammari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed H. Al-Agamy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Jaffar HM, Al‐Asmari F, Khan FA, Rahim MA, Zongo E. Silymarin: Unveiling its pharmacological spectrum and therapeutic potential in liver diseases-A comprehensive narrative review. Food Sci Nutr 2024; 12:3097-3111. [PMID: 38726410 PMCID: PMC11077231 DOI: 10.1002/fsn3.4010] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 05/12/2024] Open
Abstract
Liver diseases, encompassing conditions such as cirrhosis, present a substantial global health challenge with diverse etiologies, including viral infections, alcohol consumption, and non-alcoholic fatty liver disease (NAFLD). The exploration of natural compounds as therapeutic agents has gained traction, notably the herbal remedy milk thistle (Silybum marianum), with its active extract, silymarin, demonstrating remarkable antioxidant and hepatoprotective properties in extensive preclinical investigations. It can protect healthy liver cells or those that have not yet sustained permanent damage by reducing oxidative stress and mitigating cytotoxicity. Silymarin, a natural compound with antioxidant properties, anti-inflammatory effects, and antifibrotic activity, has shown potential in treating liver damage caused by alcohol, NAFLD, drug-induced toxicity, and viral hepatitis. Legalon® is a top-rated medication with excellent oral bioavailability, effective absorption, and therapeutic effectiveness. Its active component, silymarin, has antioxidant and hepatoprotective properties, Eurosil 85® also, a commercial product, has lipophilic properties enhanced by special formulation processes. Silymarin, during clinical trials, shows potential improvements in liver function, reduced mortality rates, and alleviation of symptoms across various liver disorders, with safety assessments showing low adverse effects. Overall, silymarin emerges as a promising natural compound with multifaceted hepatoprotective properties and therapeutic potential in liver diseases.
Collapse
Affiliation(s)
- Hafiza Madiha Jaffar
- University Institute of Diet & Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Fahad Al‐Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food SciencesKing Faisal UniversityAl‐AhsaSaudi Arabia
| | - Faima Atta Khan
- University Institute of Diet & Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
- Department of Food Science, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Abdul Rahim
- Department of Food Science, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
- Department of Food Science & Nutrition, Faculty of Medicine and Allied Health SciencesTimes InstituteMultanPakistan
| | - Eliasse Zongo
- Laboratoire de Recherche et d'Enseignement en Santé et Biotechnologies AnimalesUniversité Nazi BONIBobo DioulassoBurkina Faso
| |
Collapse
|
17
|
Mohammadi S, Ashtary-Larky D, Asbaghi O, Farrokhi V, Jadidi Y, Mofidi F, Mohammadian M, Afrisham R. Effects of silymarin supplementation on liver and kidney functions: A systematic review and dose-response meta-analysis. Phytother Res 2024; 38:2572-2593. [PMID: 38475999 DOI: 10.1002/ptr.8173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/12/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024]
Abstract
It is suggested that supplementation with silymarin (SIL) has beneficial impacts on kidney and liver functions. This systematic review and dose-response meta-analysis assessed the impact of SIL administration on certain hepatic, renal, and oxidative stress markers. A systematic search was conducted in various databases to identify relevant trials published until January 2023. Randomized controlled trials (RCTs) that evaluated the effects of SIL on kidney and liver markers were included. A random-effects model was used for the analysis and 41 RCTs were included. The pooled results indicated that SIL supplementation led to a significant reduction in serum levels of alkaline phosphatase, alanine transaminase, creatinine, and aspartate aminotransferase, along with a substantial elevation in serum glutathione in the SIL-treated group compared to their untreated counterparts. In addition, there was a nonsignificant decrease in serum levels of gamma-glutamyl transferase, malondialdehyde (MDA), total bilirubin, albumin (Alb), total antioxidant capacity, and blood urea nitrogen. Sub-group analyses revealed a considerable decline in MDA and Alb serum values among SIL-treated participants with liver disease in trials with a longer duration (≥12 weeks). These findings suggest that SIL may ameliorate certain liver markers with potential hepatoprotective effects, specifically with long-term and high-dose supplementation. However, its nephroprotective effects and impact on oxidative stress markers were not observed. Additional high-quality RCTs with longer durations are required to determine the clinical efficacy of SIL supplementation on renal and oxidative stress markers.
Collapse
Affiliation(s)
- Shooka Mohammadi
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vida Farrokhi
- Department of Hematology, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Jadidi
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mofidi
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Mohammadian
- Department of Exercise Physiology, Islamic Azad University of Ahvaz, Ahvaz, Iran
| | - Reza Afrisham
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Kelleher SL, Burkinshaw S, Kuyooro SE. Polyphenols and Lactation: Molecular Evidence to Support the Use of Botanical Galactagogues. Mol Nutr Food Res 2024; 68:e2300703. [PMID: 38676329 DOI: 10.1002/mnfr.202300703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Botanicals and herbal supplements contain a diverse array of polyphenols that may affect mammary gland function and promote galactagogue activity. This scoping review is conducted to identify scientific literature elucidating how polyphenols affect mammary gland biology and cellular mechanisms critical for lactation. A literature search of PubMed and Medline reviews relevant studies in dairy animals, rodent models, and cultured mammary epithelial cells that are published from January 2010 until July 2023, to ascertain effects of polyphenols on mechanisms regulating milk production and composition. The PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Review) strategy is applied and 80 studies on polyphenols and their implications on milk production and composition are included in this review. Limited information delineating effects of polyphenols on the molecular pathways that affect lactation are found, although available information suggests modulation of Stat5 signaling/differentiation, Stat3 signaling/remodeling, mTOR and insulin signaling/energy production, and nuclear factor kappa beta (NFκβ) signaling/oxidative stress and inflammation may play roles. A profound lack of mechanistic information underscores the critical need for further research to understand the impact of botanical supplements and polyphenols on milk production and composition in humans to establish maternal nutritional guidelines to support lactation and breastfeeding goals.
Collapse
Affiliation(s)
- Shannon L Kelleher
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Serena Burkinshaw
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Seun Elizabeth Kuyooro
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
19
|
Mota J, Faria-Silva C, Resendes A, Santos MI, Carvalheiro MC, Lima A, Simões S. Silymarin inhibits dermal gelatinolytic activity and reduces cutaneous inflammation. Nat Prod Res 2024:1-12. [PMID: 38684022 DOI: 10.1080/14786419.2024.2347452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Milk thistle (Silybum marianum) is well-known for its antioxidant activity due to the presence of silymarin. Albeit some studies show a potential for skin inflammation, its activity against dermal MMP-9 and MMP-2 remains to be studied. Silymarin isolated from an S. marianum herbal extract was tested for gelatinase inhibition in the presence of isolated MMP-9 and in dermal adenocarcinome HaCaT cells. Silymarin was then further tested in vivo, using a cutaneous inflammation mice model mediated by reactive oxygen species. Silymarin was able to significantly inhibit gelatinolytic activity in vitro without impairing cell growth and viability. Furthermore, inhibition was more pronounced in cells than with the isolated gelatinase, suggesting an additional effect upon metabolic pathways. In vivo, silymarin was able to reduce ear edema up to 74% and attenuated histological lesions. Results highlight silymarin potential for application in skin inflammatory disorders via gelatinase inhibition.
Collapse
Affiliation(s)
- Joana Mota
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - Catarina Faria-Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Resendes
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Maria Isabel Santos
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - Manuela Colla Carvalheiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Lima
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - Sandra Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
20
|
Khawaja G, El-Orfali Y. Silibinin's Effects against Methotrexate-Induced Hepatotoxicity in Adjuvant-Induced Arthritis Rat Model. Pharmaceuticals (Basel) 2024; 17:431. [PMID: 38675395 PMCID: PMC11054686 DOI: 10.3390/ph17040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Methotrexate (MTX) is the first drug of choice to treat several diseases, including rheumatoid arthritis. However, its administration is accompanied by severe side effects, most commonly hepatotoxicity. Hence, alternative therapies with a lower toxicity and fewer side effects are needed. This study aimed to investigate the antioxidant and hepatoprotective effects of silibinin (SIL, natural agent) against MTX-induced hepatotoxicity in an adjuvant-induced arthritis (AIA) rat model. Arthritic rats were treated with SIL (100 mg/kg) and/or methotrexate (2 mg/kg). Non-arthritic rats, arthritic untreated rats, and arthritic rats who received the vehicle were followed in parallel. SIL alleviated the systemic consequences of arthritis by restoring lost weight, decreasing the erythrocyte sedimentation rate, and ameliorating joint damage, which was evident both micro- and macroscopically. Additionally, SIL prevented the histopathological alterations in the liver and significantly reduced the liver damage caused by MTX and AIA, as shown by a decrease in the markers of liver damage (ALT and AST). Furthermore, SIL relieved the oxidative stress induced by AIA and MTX in liver tissue by decreasing the lipid peroxidation (MDA) levels and enhancing the antioxidant defense system (GSH levels; catalase and superoxide dismutase (SOD) activities). In conclusion, our results suggest that SIL is a potent antioxidant and hepatoprotective agent in arthritic rats. It markedly attenuated the progression and severity of the arthritic disease and eased the oxidative stress in liver tissue by improving the pro-oxidant/antioxidant balance.
Collapse
Affiliation(s)
- Ghada Khawaja
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon;
| | - Youmna El-Orfali
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon;
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| |
Collapse
|
21
|
Mohammadi S, Asbaghi O, Afrisham R, Farrokhi V, Jadidi Y, Mofidi F, Ashtary-Larky D. Impacts of Supplementation with Silymarin on Cardiovascular Risk Factors: A Systematic Review and Dose-Response Meta-Analysis. Antioxidants (Basel) 2024; 13:390. [PMID: 38671838 PMCID: PMC11047742 DOI: 10.3390/antiox13040390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
It has been suggested that silymarin (SIL) supplementation has positive effects on cardiovascular health and reduces the risk of cardiometabolic syndrome (CMS). This systematic review and dose-response meta-analysis assessed the impacts of SIL administration on cardiovascular risk factors. A systematic search of multiple databases was performed to identify eligible controlled trials published up to January 2023. The analysis used a random-effects model and included 33 trials with 1943 participants. It was revealed that SIL supplementation led to a notable reduction in serum levels of fasting blood glucose (FBG) (weighted mean difference (WMD): -21.68 mg/dL, 95% CI: -31.37, -11.99; p < 0.001), diastolic blood pressure (DBP) (WMD: -1.25 mmHg; 95% CI: -2.25, -0.26; p = 0.013), total cholesterol (TC) (WMD: -13.97 mg/dL, 95% CI: -23.09, -4.85; p = 0.003), triglycerides (TG) (WMD: -26.22 mg/dL, 95% CI: -40.32, -12.12; p < 0.001), fasting insulin (WMD: -3.76 mU/mL, 95% CI: -4.80, -2.72; p < 0.001), low-density lipoprotein (LDL) (WMD: -17.13 mg/dL, 95% CI: -25.63, -8.63; p < 0.001), and hemoglobin A1C (HbA1c) (WMD: -0.85%, 95% CI: -1.27, -0.43; p < 0.001) in the SIL-treated groups compared to their untreated counterparts. In addition, there were no substantial differences in body mass index (BMI), systolic blood pressure (SBP), C-reactive protein (CRP), body weight, and high-density lipoprotein (HDL) between the two groups. These outcomes suggest that SIL consumption reduces certain CMS risk factors and has favorable impacts on lipid and glycemic profiles with potential hypotensive effects. These findings should be supported by additional trials with larger sample sizes and longer durations.
Collapse
Affiliation(s)
- Shooka Mohammadi
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| | - Reza Afrisham
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran 14176-13151, Iran; (R.A.); (Y.J.)
| | - Vida Farrokhi
- Department of Hematology, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Yasaman Jadidi
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran 14176-13151, Iran; (R.A.); (Y.J.)
| | - Fatemeh Mofidi
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| |
Collapse
|
22
|
Hamed RA, Talib WH. Targeting cisplatin resistance in breast cancer using a combination of Thymoquinone and Silymarin: an in vitro and in vivo study. PHARMACIA 2024; 71:1-19. [DOI: 10.3897/pharmacia.71.e117997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Background: Breast cancer (BC) is considered the most diagnosed cancer among women globally. This is because of its high possibility of metastasis and high resistance to chemotherapy. Cisplatin is a platinum-based antitumor agent that is used to treat various types of cancer. However, the main obstacle to using this drug is drug resistance. Drug resistance is a cause of most relapses of cancer which eventually lead to death. Nowadays, combining natural products is a trend to overcome drug resistance. Thymoquinone (TQ) is a natural phytochemical that exists mainly in blackseed. It has been used in medicine for decades, especially as an anticancer agent. Silymarin is a milk thistle compound that exhibits anticancer, hepatoprotective, and neuroprotective activity. Hence, the combination of TQ and silymarin could be a probable solution to treat cancer and reduce chemoresistance.
Methods: This study tested this combination on cisplatin-sensitive (EMT6/P) and cisplatin-resistant (EMT6/CPR) mouse mammary cell lines. Apoptotic and antiproliferative activity was assessed for TQ and silymarin in vitro using caspase-3 and [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] (MTT) assays, respectively. An in vivo study was performed to evaluate the effect of TQ and silymarin combination in mice inoculated with EMT6/P and EMT6/CPR cells. The safety profile was also examined using creatinine and liver enzyme assays.
Results: In vitro, the TQ and silymarin combination synergized in both cell lines. Also, this combination caused apoptosis induction at a higher rate than the single treatment in both cell lines. In vivo, TQ and silymarin combination resulted in a remarkable reduction in tumor size and enhanced the cure rate in mice implanted with EMT6/P and EMT6/CPR cell lines. According to the safety profile results, TQ and silymarin combination was safe.
Conclusion: In conclusion, the combination of TQ and silymarin provides a promising solution in treating BC resistant to cisplatin by inducing apoptosis. Further studies are needed to define the exact anticancer mechanisms of this combination.
Collapse
|
23
|
Pan E, Xin Y, Li X, Ping K, Li X, Sun Y, Xu X, Dong J. Immunoprotective effect of silybin through blocking p53-driven caspase-9-Apaf-1-Cyt c complex formation and immune dysfunction after difenoconazole exposure in carp spleen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19396-19408. [PMID: 38358624 DOI: 10.1007/s11356-024-32392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
As a broad-spectrum and efficient triazole fungicide, difenoconazole is widely used, which not only pollutes the environment but also exerts toxic effects on non-target organisms. The spleen plays an important role in immune protection as an important secondary lymphoid organ in carp. In this study, we assessed the protective impact of silybin as a dietary additive on spleen tissues of carp during exposure to difenoconazole. Sixty carp were separated into four groups for this investigation including control group, difenoconazole group, silybin group, and silybin and difenoconazole group. By hematoxylin-eosin staining, dihydroethidium staining, immunohistochemical staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, quantitative real-time PCR assay, Western blot analysis, biochemical assays, and immune function indicator assays, we found that silybin could prevent difenoconazole-induced spleen tissue damage, oxidative stress, and immune dysfunction, and inhibited apoptosis of carp spleen tissue cells by suppressing the formation of p53-driven caspase-9-apoptotic protease activating factor-1-cytochrome C complex. The results suggested that silybin as a dietary additive could improve spleen tissue damage and immune dysfunction induced by difenoconazole in aquaculture carp.
Collapse
Affiliation(s)
- Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yue Xin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Kaixin Ping
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ying Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xuhui Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
24
|
Surai PF, Surai A, Earle-Payne K. Silymarin and Inflammation: Food for Thoughts. Antioxidants (Basel) 2024; 13:98. [PMID: 38247522 PMCID: PMC10812610 DOI: 10.3390/antiox13010098] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Inflammation is a vital defense mechanism, creating hostile conditions for pathogens, preventing the spread of tissue infection and repairing damaged tissues in humans and animals. However, when inflammation resolution is delayed or compromised as a result of its misregulation, the process proceeds from the acute phase to chronic inflammation, leading to the development of various chronic illnesses. It is proven that redox balance disturbances and oxidative stress are among major factors inducing NF-κB and leading to over-inflammation. Therefore, the anti-inflammatory properties of various natural antioxidants have been widely tested in various in vitro and in vivo systems. Accumulating evidence indicates that silymarin (SM) and its main constituent silibinin/silybin (SB) have great potential as an anti-inflammation agent. The main anti-inflammatory mechanism of SM/SB action is attributed to the inhibition of TLR4/NF-κB-mediated signaling pathways and the downregulated expression of pro-inflammatory mediators, including TNF-α, IL-1β, IL-6, IL-12, IL-23, CCL4, CXCL10, etc. Of note, in the same model systems, SM/SB was able to upregulate anti-inflammatory cytokines (IL-4, IL-10, IL-13, TGF-β, etc.) and lipid mediators involved in the resolution of inflammation. The inflammatory properties of SM/SB were clearly demonstrated in model systems based on immune (macrophages and monocytes) and non-immune (epithelial, skin, bone, connective tissue and cancer) cells. At the same time, the anti-inflammatory action of SM/SB was confirmed in a number of in vivo models, including toxicity models, nonalcoholic fatty liver disease, ischemia/reperfusion models, stress-induced injuries, ageing and exercising models, wound healing and many other relevant model systems. It seems likely that the anti-inflammatory activities of SM/SB are key elements on the health-promoting properties of these phytochemicals.
Collapse
Affiliation(s)
- Peter F. Surai
- Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
- Biochemistry and Physiology Department, Saint-Petersburg State University of Veterinary Medicine, 196084 St. Petersburg, Russia
- Faculty of Veterinary Medicine, Sumy National Agrarian University, 40021 Sumy, Ukraine
- Faculty of Technology of Grain and Grain Business, Odessa National Technological University, 65039 Odessa, Ukraine
| | | | - Katie Earle-Payne
- NHS Greater Glasgow and Clyde, Renfrewshire Health and Social Care Centre, 10 Ferry Road, Renfrew PA4 8RU, UK
| |
Collapse
|
25
|
Zhang G, Wang L, Zhao L, Yang F, Lu C, Yan J, Zhang S, Wang H, Li Y. Silibinin Induces Both Apoptosis and Necroptosis with Potential Anti-tumor Efficacy in Lung Cancer. Anticancer Agents Med Chem 2024; 24:1327-1338. [PMID: 39069713 DOI: 10.2174/0118715206295371240724092314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The incidence of lung cancer is steadily on the rise, posing a growing threat to human health. The search for therapeutic drugs from natural active substances and elucidating their mechanism have been the focus of anti-tumor research. OBJECTIVE Silibinin (SiL) has been shown to be a natural product with a wide range of pharmacological activities, including anti-tumour activity. In our work, SiL was chosen as a possible substance that could inhibit lung cancer. Moreover, its effects on inducing tumor cell death were also studied. METHODS CCK-8 analysis and morphological observation were used to assess the cytotoxic impacts of SiL on lung cancer cells in vitro. The alterations in mitochondrial membrane potential (MMP) and apoptosis rate of cells were detected by flow cytometry. The level of lactate dehydrogenase (LDH) release out of cells was measured. The expression changes of apoptosis or necroptosis-related proteins were detected using western blotting. Protein interactions among RIPK1, RIPK3, and MLKL were analyzed using the co-immunoprecipitation (co-IP) technique. Necrosulfonamide (Nec, an MLKL inhibitor) was used to carry out experiments to assess the changes in apoptosis following the blockade of cell necroptosis. in vitro, SiL was evaluated for its antitumor effects using LLC tumor-bearing mice with mouse lung cancer. RESULTS With an increased dose of SiL, the proliferation ability of A549 cells was considerably inhibited, and the accompanying cell morphology changed. The results of flow cytometry showed that after SiL treatment, MMP levels decreased, and the proportion of cells undergoing apoptosis increased. There was an increase in cleaved caspase-9, caspase-3, and PARP, with a down-regulation of Bcl-2 and an up-regulation of Bax. In addition, the amount of LDH released from the cells increased following SiL treatment, accompanied by augmented expression and phosphorylation levels of necroptosis-related proteins (MLKL, RIPK1, and RIPK3), and the co-IP assay further confirmed the interactions among these three proteins, indicating the necrosome formation induced by SiL. Furthermore, Nec increased the apoptotic rate of SiL-treated cells and aggravated the cytotoxic effect of SiL, indicating that necroptosis blockade could switch cell death to apoptosis and increase the inhibitory effect of SiL on A549 cells. In LLC-bearing mice, gastric administration of SiL significantly inhibited tumor growth, and H&E staining showed significant damage to the tumour tissue. The results of the IHC showed that the expression of RIPK1, RIPK3, and MLKL was more pronounced in the tumor tissue. CONCLUSIONS This study confirmed the dual effect of SiL, as it can induce both biological processes, apoptosis and necroptosis, in lung cancer. SiL-induced apoptosis involved the mitochondrial pathway, as indicated by changes in caspase-9, Bcl-2, and Bax. Necroptosis may be activated due to the changes in the expression of associated proteins in tumour cells and tissues. It has been observed that blocking necroptosis by SiL increased cell death efficiency. This study helps clarify the anti-tumor mechanism of SiL against lung cancer, elucidating its role in the dual induction of apoptosis and necroptosis. Our work provides an experimental basis for the research on cell death induced by SiL and reveals its possible applications for improving the management of lung cancer.
Collapse
Affiliation(s)
- Guoqing Zhang
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
| | - Li Wang
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, P.R. China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, P.R. China
| | - Limei Zhao
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
| | - Fang Yang
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
| | - Chunhua Lu
- Medical Experimental Center, The First People's Hospital of Nanning, Nanning, Guangxi, 530021, P.R. China
| | - Jianhua Yan
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
| | - Song Zhang
- Department of Gastroenterology, General Hospital of Central Theater Command, Wuhan, Hubei, 430070, P.R. China
| | - Haiping Wang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, P.R. China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, P.R. China
| | - Yixiang Li
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
| |
Collapse
|
26
|
Shirode DS, Raut DJ, Sarasawat N. Effect of Niosomal Encapsulation of Quercetin and Silymarin and their Combination on Dimethylnitrosoamine-induced and Phenobarbital promoted Hepatocellular Carcinoma in Rat Model. Curr Drug Discov Technol 2024; 21:e250124226254. [PMID: 38279723 DOI: 10.2174/0115701638278205231231153851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Hepatocellular carcinoma is a particularly dangerous and severe kind of liver cancer. Many anticancer drugs fail to complete the treatment of hepatocellular carcinoma without any side effects. There should be appropriate and without side effective treatments for hepatocellular carcinoma. OBJECTIVE The objective of the current study was to evaluate how quercetin and silymarin in a niosomal formulation affected hepatocyte carcinoma caused by diethylnitrosamine. METHODS Five groups were created from the thirty male rats. Normal control (untreated group), tumor group (administered dimethylnitrosoamine 200 mg/kg), treatment group I (administered 50 mg/kg of niosomal encapsulated quercetin), treatment group II (administered 50 mg/kg of niosomal encapsulated silymarin), and treatment group III (administered 50 mg/kg of niosomal encapsulated quercetin + silymarin). Then, biochemical estimation, serum analysis, and histopathological examination were carried out. RESULTS Treatment group III, treated with niosomal encapsulation of a combination of quercetin + silymarin 50 mg/kg, demonstrated the significant restoration of alpha-fetoprotein and carcinoembryonic antigen and also antioxidants like superoxide dismutase and nitric oxide. The histopathological examination showed improved liver architecture in this group compared to other treatment groups. CONCLUSION Our findings revealed that a potent anticancer effect was observed in treatment group III as niosomal formulation increased the bioavailability of the drug within the body. In order to completely understand the underlying processes and evaluate the therapeutic effectiveness of these chemicals in the therapy of hepatocellular carcinoma, further investigation and clinical trials are required.
Collapse
Affiliation(s)
- Devendra S Shirode
- Department of Pharmacology, Dr. D. Y. Patil College of Pharmacy Akurdi, Pune 411044, Maharashtra, India
| | - Dinesh J Raut
- Department of Pharmacology, Dr. D. Y. Patil College of Pharmacy Akurdi, Pune 411044, Maharashtra, India
| | - Nikita Sarasawat
- Department of Pharmacology, Dr. D. Y. Patil College of Pharmacy Akurdi, Pune 411044, Maharashtra, India
| |
Collapse
|
27
|
Roshani M, Rezaian-Isfahni A, Lotfalizadeh MH, Khassafi N, Abadi MHJN, Nejati M. Metal nanoparticles as a potential technique for the diagnosis and treatment of gastrointestinal cancer: a comprehensive review. Cancer Cell Int 2023; 23:280. [PMID: 37981671 PMCID: PMC10657605 DOI: 10.1186/s12935-023-03115-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023] Open
Abstract
Gastrointestinal (GI) cancer is a major health problem worldwide, and current diagnostic and therapeutic approaches are often inadequate. Various metallic nanoparticles (MNPs) have been widely studied for several biomedical applications, including cancer. They may potentially overcome the challenges associated with conventional chemotherapy and significantly impact the overall survival of GI cancer patients. Functionalized MNPs with targeted ligands provide more efficient localization of tumor energy deposition, better solubility and stability, and specific targeting properties. In addition to enhanced therapeutic efficacy, MNPs are also a diagnostic tool for molecular imaging of malignant lesions, enabling non-invasive imaging or detection of tumor-specific or tumor-associated antigens. MNP-based therapeutic systems enable simultaneous stability and solubility of encapsulated drugs and regulate the delivery of therapeutic agents directly to tumor cells, which improves therapeutic efficacy and minimizes drug toxicity and leakage into normal cells. However, metal nanoparticles have been shown to have a cytotoxic effect on cells in vitro. This can be a concern when using metal nanoparticles for cancer treatment, as they may also kill healthy cells in addition to cancer cells. In this review, we provide an overview of the current state of the field, including preparation methods of MNPs, clinical applications, and advances in their use in targeted GI cancer therapy, as well as the advantages and limitations of using metal nanoparticles for the diagnosis and treatment of gastrointestinal cancer such as potential toxicity. We also discuss potential future directions and areas for further research, including the development of novel MNP-based approaches and the optimization of existing approaches.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arya Rezaian-Isfahni
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Negar Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hassan Jafari Najaf Abadi
- Research Center for Health Technology Assessment and Medical Informatics, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
28
|
Zhang P, Fan L, Zhang D, Zhang Z, Wang W. In Vitro Anti-Tumor and Hypoglycemic Effects of Total Flavonoids from Willow Buds. Molecules 2023; 28:7557. [PMID: 38005279 PMCID: PMC10673267 DOI: 10.3390/molecules28227557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Salix babylonica L. is a species of willow tree that is widely cultivated worldwide as an ornamental plant, but its medicinal resources have not yet been reasonably developed or utilized. Herein, we extracted and purified the total flavonoids from willow buds (PTFW) for component analysis in order to evaluate their in vitro anti-tumor and hypoglycemic activities. Through Q-Orbitrap LC-MS/MS analysis, a total of 10 flavonoid compounds were identified (including flavones, flavan-3-ols, and flavonols). The inhibitory effects of PTFW on the proliferation of cervical cancer HeLa cells, colon cancer HT-29 cells, and breast cancer MCF7 cells were evaluated using an MTT assay. Moreover, the hypoglycemic activity of PTFW was determined by investigating the inhibitory effects of PTFW on α-amylase and α-glucosidase. The results indicated that PTFW significantly suppressed the proliferation of HeLa cells, HT-29 cells, and MCF7 cells, with IC50 values of 1.432, 0.3476, and 2.297 mg/mL, respectively. PTFW, at different concentrations, had certain inhibitory effects on α-amylase and α-glucosidase, with IC50 values of 2.94 mg/mL and 1.87 mg/mL, respectively. In conclusion, PTFW at different doses exhibits anti-proliferation effects on all three types of cancer cells, particularly on HT-29 cells, and also shows significant hypoglycemic effects. Willow buds have the potential to be used in functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Peng Zhang
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China; (L.F.); (D.Z.)
| | - Lulu Fan
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China; (L.F.); (D.Z.)
| | - Dongyan Zhang
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China; (L.F.); (D.Z.)
| | - Zehui Zhang
- College of Laboratory Animal Medicine and Science, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China;
| | - Weili Wang
- Liao Ning Institute for Drug Control, Shenyang 110031, China
| |
Collapse
|
29
|
Su J, Yu M, Wang H, Wei Y. Natural anti-inflammatory products for osteoarthritis: From molecular mechanism to drug delivery systems and clinical trials. Phytother Res 2023; 37:4321-4352. [PMID: 37641442 DOI: 10.1002/ptr.7935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/31/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects millions globally. The present nonsteroidal anti-inflammatory drug treatments have different side effects, leading researchers to focus on natural anti-inflammatory products (NAIPs). To review the effectiveness and mechanisms of NAIPs in the cellular microenvironment, examining their impact on OA cell phenotype and organelles levels. Additionally, we summarize relevant research on drug delivery systems and clinical randomized controlled trials (RCTs), to promote clinical studies and explore natural product delivery options. English-language articles were searched on PubMed using the search terms "natural products," "OA," and so forth. We categorized search results based on PubChem and excluded "natural products" which are mix of ingredients or compounds without the structure message. Then further review was separately conducted for molecular mechanisms, drug delivery systems, and RCTs later. At present, it cannot be considered that NAIPs can thoroughly prevent or cure OA. Further high-quality studies on the anti-inflammatory mechanism and drug delivery systems of NAIPs are needed, to determine the appropriate drug types and regimens for clinical application, and to explore the combined effects of different NAIPs to prevent and treat OA.
Collapse
Affiliation(s)
- Jianbang Su
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Minghao Yu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haochen Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingliang Wei
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Rezaei Harandi Z, Heidari R, Reiisi S. Co-Delivery of Silymarin and Metformin Dual-Loaded in Mesoporous Silica Nanoparticles Synergistically Sensitizes Breast Cancer Cell Line to Mitoxantrone Chemotherapy. IEEE Trans Nanobioscience 2023; 22:872-880. [PMID: 37022888 DOI: 10.1109/tnb.2023.3242912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The development nano-carriers based therapeutic methods is a potent strategy for enhancing cellular delivery of drugs and therapeutic efficiency in cancer chemotherapy. In the study, silymarin(SLM) and metformin (Met) were co-loaded into mesoporous silica nanoparticles (MSNs) and evaluated the synergistic inhibitory effect of these natural herbal compound in improving chemotherapeutic efficiency against MCF7MX and MCF7 human breast cancer cells. Nanoparticles have been synthesized and characterized by FTIR, BET, TEM, SEM, and X-ray diffraction. Drug loading capacity and release determined. The both single and combined form of SLM and Met (free and loaded MSN) were used for MTT assay, colony formation and real time-PCR in cellular study. The synthesis MSN were uniformity in size and shape with particle size of approximately 100 nm and pore size of approximately 2 nm. The Met-MSNs IC30, SLM -MSNs IC50 and dual-drug loaded MSNs IC50 were much lower than of free-Met IC30, free-SLM IC50 and free Met-SLM IC50 MCF7MX and MCF7cells. The co-loaded MSNs treated cells were increased sensitivity to mitoxantrone with the inhibition of BCRP mRNA expressions and could induce apoptosis in MCF7MX and MCF7 cells in comparison with other groups. Colony numbers were significantly reduced in comparison to with other groups in the co-loaded MSNs -treated cells ( ). Our results indicate that Nano-SLM enhances the anti-cancer effects of SLM against human breast cancer cells. The findings of the present study suggest that the anti-cancer effects of both metformin and silymarin enhances against breast cancer cells when MSNs are used as a drug delivery system.
Collapse
|
31
|
Yan L, Zhou J, Yuan L, Ye J, Zhao X, Ren G, Chen H. Silibinin alleviates intestinal inflammation via inhibiting JNK signaling in Drosophila. Front Pharmacol 2023; 14:1246960. [PMID: 37781701 PMCID: PMC10539474 DOI: 10.3389/fphar.2023.1246960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by chronic relapsing intestinal inflammation that causes digestive system dysfunction. For years, researchers have been working to find more effective and safer therapeutic strategies to treat these diseases. Silibinin (SIL), a flavonoid compound extracted from the seeds of milk thistle plants, possesses multiple biological activities and is traditionally applied to treat liver diseases. SIL is also widely used in the treatment of a variety of inflammatory diseases attributed to its excellent antioxidant and anti-inflammatory effects. However, the efficacy of SIL against IBDs and its mechanisms remain unclear. In this study, using Drosophila melanogaster as a model organism, we found that SIL can effectively relieve intestinal inflammation caused by dextran sulfate sodium (DSS). Our results suggested that SIL supplementation can inhibit the overproliferation of intestinal stem cells (ISCs) induced by DSS, protect intestinal barrier function, acid-base balance, and intestinal excretion function, reduce intestinal reactive oxygen species (ROS) levels and inflammatory stress, and extend the lifespan of Drosophila. Furthermore, our study demonstrated that SIL ameliorates intestinal inflammation via modulating the c-Jun N-terminal kinase (JNK) signaling pathway in Drosophila. Our research aims to provide new insight into the treatment of IBDs.
Collapse
Affiliation(s)
- La Yan
- Laboratory of Metabolism and Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Juanyu Zhou
- Laboratory of Metabolism and Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Yuan
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jinbao Ye
- Laboratory of Metabolism and Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xudong Zhao
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gang Ren
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Haiyang Chen
- Laboratory of Metabolism and Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
32
|
Gür FM, Bilgiç S. Silymarin, an antioxidant flavonoid, protects the liver from the toxicity of the anticancer drug paclitaxel. Tissue Cell 2023; 83:102158. [PMID: 37459721 DOI: 10.1016/j.tice.2023.102158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
One of the biggest factors that negatively affect the cancer treatment plan is the toxic effects of chemotherapeutics on non-target cells and tissues. This information prompted us to investigate the protective effects of silymarin (SL), a hepatoprotective agent, against the hepatotoxic effects of the anticancer drug paclitaxel (PAC). Four groups were formed from 28 rats as control, PAC (2 mg/kg), SL (100 mg/kg) and PAC + SL (combination of PAC with SL). After completing the experimental procedures, the tissues collected after anesthesia were analyzed by Western blot, qRT-PCR, biochemical, stereological, immunohistochemical, and histopathological techniques. Administration of PAC significantly increased the expression of tumor necrosis factor-alpha (TNF-α), Bax, cytochrome-c (cyt-c), and active caspase-3, as well as malondialdehyde (MDA) levels in liver tissue and decreased glutathione (GSH) levels compared with the control group. PAC also resulted in a significant increase in serum triglyceride (TG), cholesterol (CH), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels compared with the control group. Pathological changes such as microvesicular steatosis, the formation of Councilman bodies, an increase in total sinusoidal volume, and a decrease in the total number of hepatocytes were observed in the liver tissue of the PAC group. Almost all analysis results in the PAC + SL group were similar to those in the control group, and no significant pathological alterations were observed in this group. The data obtained show that SL protects the liver from the harmful effects of PAC, especially thanks to its TNF-α suppressor, anti-inflammatory, anti-apoptotic and antioxidant effects. Based on this result, in cases where PAC is used in cancer treatment, it can be recommended to be used together with SL to prevent harmful effects on healthy liver tissue and to continue treatment uninterruptedly and effectively.
Collapse
Affiliation(s)
- Fatih Mehmet Gür
- Department of Histology and Embryology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey.
| | - Sedat Bilgiç
- Department of Medical Biochemistry, Vocational School of Health Services, Adıyaman University, Adıyaman, Turkey.
| |
Collapse
|
33
|
Koushki M, Farrokhi Yekta R, Amiri-Dashatan N. Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
34
|
Preparation and Characterization of Silymarin Gel: A Novel Topical Mucoadhesive Formulation for Potential Applicability in Oral Pathologies. Gels 2023; 9:gels9020139. [PMID: 36826309 PMCID: PMC9956077 DOI: 10.3390/gels9020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Silybum marianum has been used for centuries by herbalists and physicians to treat different forms of liver diseases. It contains flavonoid, which has antioxidant, anti-inflammatory, antifibrotic and anticancer properties. The objective of this research was to develop a silymarin-based mucoadhesive gel for prolonged release in oral mucosa and to evaluate the same by using in vitro drug release kinetic models and ex vivo methods for drug permeation using chicken buccal mucosa. The mucoadhesive gel was formulated in different trials by varying the concentration of silymarin and polymer. Out of 10 formulation trials, the F10 optimized trial was characterized for in vitro physicochemical parameters such as pH, homogeneity, viscosity, stability, drug content, in vitro drug release, in vitro antioxidant assay and ex vivo permeation study. Trial 10 was chosen as the best trial formulation among the other trials and was marked as an optimal trial. The physicochemical properties observed were pH to be 6.4 ± 0.01, the gel free of lumps, spreadability of 23.75 ± 0.03 and drug content of 32.77 ± 0.20 mg/g. It had no physiological changes such as color shift or fluid exudate segregation after 6 months of storage at room temperature. In vitro drug release established the presence of a non-fickian mechanism and demonstrated dose-dependent antioxidant activity. Ex vivo findings indicated 21.97 ± 0.18% release, proving that the gel can permeate through the oral mucosal membrane. Our future research will concentrate on expanding the therapeutic scope by developing the formulation trial F10 to a nanoformulation and conducting clinical trials for its potential use in various oral diseases.
Collapse
|
35
|
Gilabadi S, Stanyon H, DeCeita D, Pendry BA, Galante E. Simple and effective method for the extraction of silymarin from Silybum marianum (L.) gaertner seeds. J Herb Med 2023. [DOI: 10.1016/j.hermed.2022.100619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Agnihotri TG, Alexander A, Agrawal M, Dubey SK, Jain A. In vitro-in vivo correlation in nanocarriers: From protein corona to therapeutic implications. J Control Release 2023; 354:794-809. [PMID: 36709923 DOI: 10.1016/j.jconrel.2023.01.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Understanding and establishing a link between the physicochemical characteristics of nanoparticles (NPs) and their biological interactions poses to be a great challenge in the field of nanotherapeutics. Recent analytical advancements concerning bio-nanointerfaces have accelerated the quest to comprehend the fate of nanocarrier systems in vivo. Scientists have discovered that protein corona, an adsorbed layer of biomolecules on the surface of NPs takes a leading part in interacting with cells and in the cellular uptake process, thereby determining the in vivo behaviour of NPs. Another useful method to assess the in vivo fate of NPs is by performing dissolution testing. This forms the basis for in vitro in vivo correlation (IVIVC), relating in vitro dissolution of NPs and their in vivo properties. Scientists are continuously directing their efforts towards establishing IVIVC for different nanocarrier systems while concurrently gaining insights into protein corona. This review primarily summarizes the importance of protein corona and its interaction with nanoparticles. It also gives an insight into the factors affecting the interaction and various in vitro dissolution media used for varied nanocarrier systems. The article concludes with a discussion of the limitations of IVIVC modelling and its position from a regulatory perspective.
Collapse
Affiliation(s)
- Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila village, Nizsundarighopa, Changsari, Assam 781101, India
| | - Mukta Agrawal
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Polepally SEZ, TSIIC, Jadcherla, Mahbubnagar, Hyderabad 509301, India
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India.
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
37
|
Wang Y, Yuan AJ, Wu YJ, Wu LM, Zhang L. Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
38
|
Musazadeh V, Karimi A, Bagheri N, Jafarzadeh J, Sanaie S, Vajdi M, Karimi M, Niazkar HR. The favorable impacts of silibinin polyphenols as adjunctive therapy in reducing the complications of COVID-19: A review of research evidence and underlying mechanisms. Biomed Pharmacother 2022; 154:113593. [PMID: 36027611 PMCID: PMC9393179 DOI: 10.1016/j.biopha.2022.113593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/11/2022] Open
Abstract
The proceeding pandemic of coronavirus disease 2019 is the latest global challenge. Like most other infectious diseases, inflammation, oxidative stress, and immune system dysfunctions play a pivotal role in the pathogenesis of COVID-19. Furthermore, the quest of finding a potential pharmaceutical therapy for preventing and treating COVID-19 is still ongoing. Silymarin, a mixture of flavonolignans extracted from the milk thistle, has exhibited numerous therapeutic benefits. We reviewed the beneficial effects of silymarin on oxidative stress, inflammation, and the immune system, as primary factors involved in the pathogenesis of COVID-19. We searched PubMed/Medline, Web of Science, Scopus, and Science Direct databases up to April 2022 using the relevant keywords. In summary, the current review indicates that silymarin might exert therapeutic effects against COVID-19 by improving the antioxidant system, attenuating inflammatory response and respiratory distress, and enhancing immune system function. Silymarin can also bind to target proteins of SARS-CoV-2, including main protease, spike glycoprotein, and RNA-dependent RNA-polymerase, leading to the inhibition of viral replication. Although multiple lines of evidence suggest the possible promising impacts of silymarin in COVID-19, further clinical trials are encouraged.
Collapse
Affiliation(s)
- Vali Musazadeh
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Karimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nasim Bagheri
- Department of microbiology Islamic Azad University of medical science, Tehran, Iran
| | - Jaber Jafarzadeh
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Vajdi
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mozhde Karimi
- Department of Immunology, Faculty ofMedical Sciences ,Tarbiat Modares University
| | - Hamid Reza Niazkar
- Breast Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
39
|
Laser empowered ‘chemo-free’ phytotherapy: Newer approach in anticancer therapeutics delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Hong S, Yan Z, Song Y, Bi M, Li S. RETRACTED ARTICLE: Down-regulation of lncRNA FEZF1-AS1 mediates regulatory T cell differentiation and further blocks immune escape in colon cancer. Expert Rev Mol Diagn 2022; 22:i-xiii. [PMID: 34877908 DOI: 10.1080/14737159.2022.2012157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Statement of RetractionWe, the Editors and Publisher of the journal Expert Review of Molecular Diagnostics, have retracted the following article:Sen Hong, Zhenkun Yan, YuMei Song, MiaoMiao Bi & Shiquan Li. Down-regulation of lncRNA FEZF1-AS1 mediates regulatory T cell differentiation and further blocks immune escape in colon cancer. Expert Review of Molecular Diagnostics. 2021. DOI: 10.1080/14737159.2022.2012157Since publication, significant concerns have been raised about the integrity of the data and reported results in the article. When approached for an explanation, the authors did not provide their original data or any necessary supporting information. As verifying the validity of published work is core to the integrity of the scholarly record, we are therefore retracting the article. The corresponding author listed in this publication has been informed.We have been informed in our decision-making by our policy on publishing ethics and integrity and the COPE guidelines on retractions.The retracted article will remain online to maintain the scholarly record, but it will be digitally watermarked on each page as 'Retracted'.
Collapse
Affiliation(s)
- Sen Hong
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhenkun Yan
- Department of Endoscopy Center, China-Japan Union Hospital of JiLin University, Changchun, Jilin, P.R.China
| | - YuMei Song
- Department of Thoracic Oncology, Tumor Hospital of Jilin Province, Changchun, Jilin People's Republic of China
| | - MiaoMiao Bi
- Department of Ophthalmology, The China-Japan Union Hostial of Jilin University, Jilin University, Changchun, Jilin, P.R. China
| | - Shiquan Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
41
|
Potential of cyclodextrin in hybrid liposomes for improving the solubility, bioavailability and stability of silibinin. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Zheng Y, Chen J, Wu X, Zhang X, Hu C, Kang Y, Lin J, Li J, Huang Y, Zhang X, Li C. Enhanced Anti-Inflammatory Effects of Silibinin and Capsaicin Combination in Lipopolysaccharide-Induced RAW264.7 Cells by Inhibiting NF-κB and MAPK Activation. Front Chem 2022; 10:934541. [PMID: 35844639 PMCID: PMC9279934 DOI: 10.3389/fchem.2022.934541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 01/22/2023] Open
Abstract
Silibinin and capsaicin both are natural product molecules with diverse biological activities. In this article, we investigated the anti-inflammatory effects of silibinin combined with capsaicin in lipopolysaccharide (LPS)-induced RAW264.7 cells. The results showed that silibinin combined with capsaicin strongly inhibited LPS-induced nitric oxide (NO), tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), and COX-2. Moreover, silibinin combined with capsaicin potently inhibited nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. The results of the present study indicate that silibinin combined with capsaicin effectively inhibits inflammation.
Collapse
|
43
|
Koltai T, Reshkin SJ, Carvalho TMA, Di Molfetta D, Greco MR, Alfarouk KO, Cardone RA. Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review. Cancers (Basel) 2022; 14:2486. [PMID: 35626089 PMCID: PMC9139729 DOI: 10.3390/cancers14102486] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a poor prognosis and inadequate response to treatment. Many factors contribute to this therapeutic failure: lack of symptoms until the tumor reaches an advanced stage, leading to late diagnosis; early lymphatic and hematic spread; advanced age of patients; important development of a pro-tumoral and hyperfibrotic stroma; high genetic and metabolic heterogeneity; poor vascular supply; a highly acidic matrix; extreme hypoxia; and early development of resistance to the available therapeutic options. In most cases, the disease is silent for a long time, andwhen it does become symptomatic, it is too late for ablative surgery; this is one of the major reasons explaining the short survival associated with the disease. Even when surgery is possible, relapsesare frequent, andthe causes of this devastating picture are the low efficacy ofand early resistance to all known chemotherapeutic treatments. Thus, it is imperative to analyze the roots of this resistance in order to improve the benefits of therapy. PDAC chemoresistance is the final product of different, but to some extent, interconnected factors. Surgery, being the most adequate treatment for pancreatic cancer and the only one that in a few selected cases can achieve longer survival, is only possible in less than 20% of patients. Thus, the treatment burden relies on chemotherapy in mostcases. While the FOLFIRINOX scheme has a slightly longer overall survival, it also produces many more adverse eventsso that gemcitabine is still considered the first choice for treatment, especially in combination with other compounds/agents. This review discusses the multiple causes of gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Khalid Omer Alfarouk
- Zamzam Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| |
Collapse
|
44
|
Isolation and Characterization of a Flavonoid and a Neolignan from
Silybum marianum
: In‐vitro Cytotoxic Evaluation. ChemistrySelect 2022. [DOI: 10.1002/slct.202200502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Amer ME, Amer MA, Othman AI, Elsayed DA, El-Missiry MA, Ammar OA. Silymarin inhibits the progression of Ehrlich solid tumor via targeting molecular pathways of cell death, proliferation, angiogenesis, and metastasis in female mice. Mol Biol Rep 2022; 49:4659-4671. [PMID: 35305227 DOI: 10.1007/s11033-022-07315-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Plant-derived phytochemicals have been reported to exert anticancer activity. This study investigated the antitumor role of silymarin (Silybum marianum) (SMN) and its molecular targets in Ehrlich solid tumor xenografts in vivo. METHODS AND RESULTS Female Swiss albino mice were divided into three groups (of five animals each) that were engrafted with Ehrlich tumor (ET) cells with or without SMN treatment. The 3rd groups treated with DMSO only vehicle control group. A significant reduction in animal body mass and tumor volume/weight were observed in xenografted mice treated with SMN. SMN modulated oxidative stress in tumors while enhancing the antioxidant levels in mouse serum. SMN activated both mitochondrial and death receptor-related apoptosis pathways and induced cell cycle arrest, marked by a significant downregulation of cyclin D1 in SMN-treated tumors. Significant decreases in RNA content and protein expression levels of Ki-67 and proliferating cell nuclear antigen were observed in ET cells. Additionally, SMN downregulated vascular endothelial growth factor and nuclear factor-kappa B levels indicating anti-angiogenesis activity of this agent. SMN upregulated the expression of E-cadherin in tumor tissue suggesting, that SMN has potential ability to inhibit metastasis. Tumor tissue from SMN-treated animals showed a remarkable degeneration and reduction in the neoplastic cell density. CONCLUSIONS The anticancer effect was associated with apparent apoptosis in neoplastic cells with abundance of multifocal necrotic areas. SMN was found to inhibit ET growth via enhancing apoptosis, inhibition of cell division and reduction in angiogenesis in vivo. Hypothetical scheme of SMN antitumor effects (mechanism of signaling) in solid ET in vivo. SMN anticancer effect may be mediated by molecular mediators that affect proliferation, cell cycle activity, apoptotic pathways, angiogenesis, and metastasis.
Collapse
Affiliation(s)
- Maggie E Amer
- Zoology Department, Faculty of Sciences, Mansoura University, Mansoura, Egypt.
| | - Maher A Amer
- Zoology Department, Faculty of Sciences, Mansoura University, Mansoura, Egypt
| | - Azza I Othman
- Zoology Department, Faculty of Sciences, Mansoura University, Mansoura, Egypt
| | - Doaa A Elsayed
- Zoology Department, Faculty of Sciences, Mansoura University, Mansoura, Egypt
| | | | - Omar A Ammar
- Basic Science Department, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
46
|
Duan X, Yu X, Li Z. Circular RNA hsa_circ_0001658 regulates apoptosis and autophagy in gastric cancer through microRNA-182/Ras-related protein Rab-10 signaling axis. Bioengineered 2022; 13:2387-2397. [PMID: 35030981 PMCID: PMC8974080 DOI: 10.1080/21655979.2021.2024637] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer (GC) is a tumor with high incidence and lack of early diagnostic markers. The aim of this study was to explore novel regulatory circular RNAs (circRNAs) in GC and their underlying mechanisms. Differentially expressed circRNAs were analyzed using the Gene Expression Omnibus (GEO). mRNA and miRNA expression levels were determined using real-time reverse transcription polymerase chain reaction (RT-qPCR). Protein expression was detected using Western blotting. Cellular functions were evaluated using the cell counting kit-8 (CCK-8) assay and flow cytometry analysis. Immunofluorescence analysis was used to visually identify microtubule-associated protein 1 light chain 3 (LC3) puncta on a per-cell basis. Furthermore, dual-luciferase reporter and RNA pull-down assays were performed to verify the interaction between microRNA (miR)-182 and circ_0001658/Ras-related protein Rab-10 (RAB10). Circ_0001658 was identified to be aberrantly expressed in GC tissues and was demonstrated in GC cell lines (AGS and HGC27) in vitro. MiR-182 bound to circ_0001658 and RAB10. Circ_0001658 and RAB10 were upregulated, whereas miR-182 was suppressed in AGS and HGC27 cells. GC cell viability and autophagy were inhibited and apoptosis was promoted after circ_0001658 knockdown, and the cellular functions were reversed by downregulating miR-182. Moreover, upregulated RAB10 neutralized the effects of miR-182 on cell viability, autophagy, and apoptosis of GC cells. Silencing circ_0001658 restrained cell viability, suppressed autophagy, and promoted apoptosis of GC cells by sponging miR-182 to suppress the expression of RAB10. Therefore, circ_0001658 may be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Xinxing Duan
- Department of General Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, China
| | - Xiong Yu
- Department of General Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, China
| | - Zhengrong Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
47
|
Zhang Y, Xu J, Qiu Z, Guan Y, Zhang X, Zhang X, Chai D, Chen C, Hu Q, Wang W. STK25 enhances hepatocellular carcinoma progression through the STRN/AMPK/ACC1 pathway. Cancer Cell Int 2022; 22:4. [PMID: 34986838 PMCID: PMC8734210 DOI: 10.1186/s12935-021-02421-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background Serine/threonine protein kinase 25 (STK25) plays an important role in regulating glucose and insulin homeostasis and in ectopic lipid accumulation. It directly affects the progression and prognosis of nonalcoholic fatty liver disease (NAFLD). However, the effects of STK25 on lipid metabolism in hepatocellular carcinoma (HCC) remain unexplored. The aim of this study was to investigate the role of STK25 in HCC and to elucidate the underlying mechanisms. Methods Immunohistochemistry was used to measure the expression of STK25 in hepatic tissues of HCC patients, and public datasets were used as supplementary material for predicting the expression of STK25 and the prognosis of patients with HCC. The interaction between STK25 and striatin (STRN) was determined by the STRING database, immunohistochemistry and western blot analyses. The involved signaling pathway was detected by the KEGG database and western blot. Moreover, the biological behaviors of the HCC cells were detected by wound healing assays, Transwell invasion assays and oil red O staining. Finally, it was verified again by xenograft model. Results STK25 is highly expressed in HCC patients and is associated with poor prognosis. STK25 knockdown inhibited the HCC cell invasion and proliferation, promotes apoptosis. Consistently, STK25 knockdown inhibited tumor growth in xenograft mouse model. Besides, STK25 deficiency decreased lipid synthesis, energy reserve, epithelial-mesenchymal transition (EMT) by down-regulating lipid metabolism signaling pathway. STRN could reverse the change of lipid metabolism. Conclusions Our results demonstrated that STK25 interacted with STRN to regulates the energy reserve and EMT via lipid metabolism reprogramming. Accordingly, high expression of STK25 may be associated with HCC patients and poor prognosis, which implicates STK25 could be a potential target for lipid metabolism in cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02421-w.
Collapse
Affiliation(s)
- Yichao Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Junhui Xu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhendong Qiu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yongjun Guan
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - XiaoYi Zhang
- Intensive Care Unit, ZhongNan Hospital of Wuhan University, Wuhan, China
| | - Xin Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dongqi Chai
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qinyong Hu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
48
|
Koltai T, Fliegel L. Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions. J Evid Based Integr Med 2022; 27:2515690X211068826. [PMID: 35018864 PMCID: PMC8814827 DOI: 10.1177/2515690x211068826] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
The flavonoid silymarin extracted from the seeds of Sylibum marianum is a mixture of 6 flavolignan isomers. The 3 more important isomers are silybin (or silibinin), silydianin, and silychristin. Silybin is functionally the most active of these compounds. This group of flavonoids has been extensively studied and they have been used as hepato-protective substances for the mushroom Amanita phalloides intoxication and mainly chronic liver diseases such as alcoholic cirrhosis and nonalcoholic fatty liver. Hepatitis C progression is not, or slightly, modified by silymarin. Recently, it has also been proposed for SARS COVID-19 infection therapy. The biochemical and molecular mechanisms of action of these substances in cancer are subjects of ongoing research. Paradoxically, many of its identified actions such as antioxidant, promoter of ribosomal synthesis, and mitochondrial membrane stabilization, may seem protumoral at first sight, however, silymarin compounds have clear anticancer effects. Some of them are: decreasing migration through multiple targeting, decreasing hypoxia inducible factor-1α expression, inducing apoptosis in some malignant cells, and inhibiting promitotic signaling among others. Interestingly, the antitumoral activity of silymarin compounds is limited to malignant cells while the nonmalignant cells seem not to be affected. Furthermore, there is a long history of silymarin use in human diseases without toxicity after prolonged administration. The ample distribution and easy accessibility to milk thistle-the source of silymarin compounds, its over the counter availability, the fact that it is a weed, some controversial issues regarding bioavailability, and being a nutraceutical rather than a drug, has somehow led medical professionals to view its anticancer effects with skepticism. This is a fundamental reason why it never achieved bedside status in cancer treatment. However, in spite of all the antitumoral effects, silymarin actually has dual effects and in some cases such as pancreatic cancer it can promote stemness. This review deals with recent investigations to elucidate the molecular actions of this flavonoid in cancer, and to consider the possibility of repurposing it. Particular attention is dedicated to silymarin's dual role in cancer and to some controversies of its real effectiveness.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
49
|
Hüttl M, Markova I, Miklankova D, Zapletalova I, Poruba M, Racova Z, Vecera R, Malinska H. The Beneficial Additive Effect of Silymarin in Metformin Therapy of Liver Steatosis in a Pre-Diabetic Model. Pharmaceutics 2021; 14:pharmaceutics14010045. [PMID: 35056941 PMCID: PMC8780287 DOI: 10.3390/pharmaceutics14010045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/30/2022] Open
Abstract
The combination of plant-derived compounds with anti-diabetic agents to manage hepatic steatosis closely associated with diabetes mellitus may be a new therapeutic approach. Silymarin, a complex of bioactive substances extracted from Silybum marianum, evinces an antioxidative, anti-inflammatory, and hepatoprotective activity. In this study, we investigated whether metformin (300 mg/kg/day for four weeks) supplemented with micronized silymarin (600 mg/kg/day) would be effective in mitigating fatty liver disturbances in a pre-diabetic model with dyslipidemia. Compared with metformin monotherapy, the metformin-silymarin combination reduced the content of neutral lipids (TAGs) and lipotoxic intermediates (DAGs). Hepatic gene expression of enzymes and transcription factors involved in lipogenesis (Scd-1, Srebp1, Pparγ, and Nr1h) and fatty acid oxidation (Pparα) were positively affected, with hepatic lipid accumulation reducing as a result. Combination therapy also positively influenced arachidonic acid metabolism, including its metabolites (14,15-EET and 20-HETE), mitigating inflammation and oxidative stress. Changes in the gene expression of cytochrome P450 enzymes, particularly Cyp4A, can improve hepatic lipid metabolism and moderate inflammation. All these effects play a significant role in ameliorating insulin resistance, a principal background of liver steatosis closely linked to T2DM. The additive effect of silymarin in metformin therapy can mitigate fatty liver development in the pre-diabetic state and before the onset of diabetes.
Collapse
Affiliation(s)
- Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (I.M.); (D.M.); (H.M.)
- Correspondence: ; Tel.: +420-261-365-369
| | - Irena Markova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (I.M.); (D.M.); (H.M.)
| | - Denisa Miklankova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (I.M.); (D.M.); (H.M.)
| | - Iveta Zapletalova
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (I.Z.); (M.P.); (Z.R.); (R.V.)
| | - Martin Poruba
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (I.Z.); (M.P.); (Z.R.); (R.V.)
| | - Zuzana Racova
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (I.Z.); (M.P.); (Z.R.); (R.V.)
| | - Rostislav Vecera
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (I.Z.); (M.P.); (Z.R.); (R.V.)
| | - Hana Malinska
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (I.M.); (D.M.); (H.M.)
| |
Collapse
|