1
|
Zou J. Site-specific delivery of cisplatin and paclitaxel mediated by liposomes: A promising approach in cancer chemotherapy. ENVIRONMENTAL RESEARCH 2023; 238:117111. [PMID: 37734579 DOI: 10.1016/j.envres.2023.117111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
The site-specific delivery of drugs, especially anti-cancer drugs has been an interesting field for researchers and the reason is low accumulation of cytotoxic drugs in cancer cells. Although combination cancer therapy has been beneficial in providing cancer drug sensitivity, targeted delivery of drugs appears to be more efficient. One of the safe, biocompatible and efficient nano-scale delivery systems in anti-cancer drug delivery is liposomes. Their particle size is small and they have other properties such as adjustable physico-chemical properties, ease of functionalization and high entrapment efficiency. Cisplatin is a chemotherapy drug with clinical approval in patients, but its accumulation in cancer cells is low due to lack of targeted delivery and repeated administration results in resistance development. Gene and drug co-administration along with cisplatin/paclitaxel have resulted in increased sensitivity in tumor cells, but there is still space for more progress in cancer therapy. The delivery of cisplatin/paclitaxel by liposomes increases accumulation of drug in tumor cells and impairs activity of efflux pumps in promoting cytotoxicity. Moreover, phototherapy along with cisplatin/paclitaxel delivery can increase potential in tumor suppression. Smart nanoparticles including pH-sensitive nanoparticles provide site-specific delivery of cisplatin/paclitaxel. The functionalization of liposomes can be performed by ligands to increase targetability towards tumor cells in mediating site-specific delivery of cisplatin/paclitaxel. Finally, liposomes can mediate co-delivery of cisplatin/paclitaxel with drugs or genes in potentiating tumor suppression. Since drug resistance has caused therapy failure in cancer patients, and cisplatin/paclitaxel are among popular chemotherapy drugs, delivery of these drugs mediates targeted suppression of cancers and prevents development of drug resistance. Because of biocompatibility and safety of liposomes, they are currently used in clinical trials for treatment of cancer patients. In future, the optimal dose of using liposomes and optimal concentration of loading cisplatin/paclitaxel on liposomal nanocarriers in clinical trials should be determined.
Collapse
Affiliation(s)
- Jianyong Zou
- Department of Thoracic Surgery, The first Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, PR China.
| |
Collapse
|
2
|
Sharma M, Panwar D, Tiwari P, Kumar A, Gautam S, Marwaha D, Rai N, Singh N, Bakshi AK, Agarwal N, Singh NKC, Mitra K, Prajapati VM, Mishra PR. Immobilized doxorubicin and ribociclib carbamate linkers encaged in surface modified cubosomes spatially target tumor reductive environment to enhance antitumor efficacy. BIOMATERIALS ADVANCES 2023; 155:213672. [PMID: 37976833 DOI: 10.1016/j.bioadv.2023.213672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
In the present investigation, we have strategically synthesized Glutathione (GSH) stimuli-sensitive analogues using carbamate linkers (CL) of DOX (DOX-CL) and RB (RB-CL) which were then anchored to gold nanoparticles (Au-DOX-CL, Au-RB-CL) using mPEG as a spacer. It was observed that carbamate linkage (CL) with four carbon spacer is critical, to position the terminal thiol group, to access the carbamate group efficiently to achieve GSH-assisted release of DOX and RB in tumor-specific environment. When assessed for GSH reductase activity in MDA-MB 231 cell lines, Au-DOX-CL and Au-RB-CL showed nearly 4.18 and 3.13 fold higher GSH reductive activity as compared to the control group respectively. To achieve spatial tumor targeting with a high payload of DOX and RB, Au-DOX-CL and Au-RB-CL were encapsulated in the cell-penetrating peptide (CPP) modified liquid crystalline cubosomes i.e. CPP-Cu(Au@CL-DR). After internalization, the prototype nanocarriers release respective drugs at a precise GSH concentration inside the tumor tissues, amplifying drug concentration to a tune of five-fold. The drug concentrations remain within the therapeutic window for 72 h with a significant reduction of RB (7.8-fold) and DOX (6-fold) concentrations in vital organs, rendering reduced toxicity and improved survival. Overall, this constitutes a promising chemotherapeutic strategy against cancer and its potential application in the offing.
Collapse
Affiliation(s)
- Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow 226031, Uttar pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dilip Panwar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow 226031, Uttar pradesh, India
| | - Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow 226031, Uttar pradesh, India
| | - Ankit Kumar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow 226031, Uttar pradesh, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow 226031, Uttar pradesh, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow 226031, Uttar pradesh, India
| | - Nikhil Rai
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow 226031, Uttar pradesh, India
| | - Neha Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow 226031, Uttar pradesh, India
| | - Avijit Kumar Bakshi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow 226031, Uttar pradesh, India
| | - Neha Agarwal
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow 226031, Uttar pradesh, India
| | - Nisha Kumari C Singh
- Division of Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar pradesh, India
| | - Kalyan Mitra
- Division of Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar pradesh, India
| | - V M Prajapati
- Division of Toxicology & Experimental medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar pradesh, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow 226031, Uttar pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Stepanova M, Nikiforov A, Tennikova T, Korzhikova-Vlakh E. Polypeptide-Based Systems: From Synthesis to Application in Drug Delivery. Pharmaceutics 2023; 15:2641. [PMID: 38004619 PMCID: PMC10674432 DOI: 10.3390/pharmaceutics15112641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Synthetic polypeptides are biocompatible and biodegradable macromolecules whose composition and architecture can vary over a wide range. Their unique ability to form secondary structures, as well as different pathways of modification and biofunctionalization due to the diversity of amino acids, provide variation in the physicochemical and biological properties of polypeptide-containing materials. In this review article, we summarize the advances in the synthesis of polypeptides and their copolymers and the application of these systems for drug delivery in the form of (nano)particles or hydrogels. The issues, such as the diversity of polypeptide-containing (nano)particle types, the methods for their preparation and drug loading, as well as the influence of physicochemical characteristics on stability, degradability, cellular uptake, cytotoxicity, hemolysis, and immunogenicity of polypeptide-containing nanoparticles and their drug formulations, are comprehensively discussed. Finally, recent advances in the development of certain drug nanoformulations for peptides, proteins, gene delivery, cancer therapy, and antimicrobial and anti-inflammatory systems are summarized.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Alexey Nikiforov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, Petergof, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| |
Collapse
|
4
|
Zashikhina N, Gandalipov E, Dzhuzha A, Korzhikov-Vlakh V, Korzhikova-Vlakh E. Dual drug loaded polypeptide delivery systems for cancer therapy. J Microencapsul 2023:1-19. [PMID: 37824702 DOI: 10.1080/02652048.2023.2270064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The present study was aimed to prepare and examine in vitro novel dual-drug loaded delivery systems. Biodegradable nanoparticles based on poly(L-glutamic acid-co-D-phenylalanine) were used as nanocarriers for encapsulation of two drugs from the paclitaxel, irinotecan, and doxorubicin series. The developed delivery systems were characterised with hydrodynamic diameters less than 300 nm (PDI < 0.3). High encapsulation efficiencies (≥75%) were achieved for all single- and dual-drug formulations. The release studies showed faster release at acidic pH, with the release rate decreasing over time. The release patterns of the co-encapsulated forms of substances differed from those of the separately encapsulated drugs, suggesting differences in drug-polymer interactions. The joint action of encapsulated drugs was analysed using the colon cancer cells, both for the dual-drug delivery sytems and a mixture of single-drug formulations. The encapsulated forms of the drug combinations demonstrated comparable efficacy to the free forms, with the encapsulation enhancing solubility of the hydrophobic drug paclitaxel.
Collapse
Affiliation(s)
- Natalia Zashikhina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | - Erik Gandalipov
- International Institute of Solution Chemistry and Advanced Materials Technologies, ITMO University, St. Petersburg, Russia
| | - Apollinariia Dzhuzha
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| | - Viktor Korzhikov-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
5
|
Liu C, Chen H, Guo S, Liu Q, Chen Z, Huang H, Zhao Q, Li L, Cen H, Jiang Z, Luo Q, Chen X, Zhao J, Chen W, Yang PC, Wang L. Anti-breast cancer-induced cardiomyopathy: Mechanisms and future directions. Biomed Pharmacother 2023; 166:115373. [PMID: 37647693 DOI: 10.1016/j.biopha.2023.115373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023] Open
Abstract
With the progression of tumor treatment, the 5-year survival rate of breast cancer is close to 90%. Cardiovascular toxicity caused by chemotherapy has become a vital factor affecting the survival of patients with breast cancer. Anthracyclines, such as doxorubicin, are still some of the most effective chemotherapeutic agents, but their resulting cardiotoxicity is generally considered to be progressive and irreversible. In addition to anthracyclines, platinum- and alkyl-based antitumor drugs also demonstrate certain cardiotoxic effects. Targeted drugs have always been considered a relatively safe option. However, in recent years, some random clinical trials have observed the occurrence of subclinical cardiotoxicity in targeted antitumor drug users, which may be related to the effects of targeted drugs on the angiotensin converting enzyme, angiotensin receptor and β receptor. The use of angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers and beta-blockers may prevent clinical cardiotoxicity. This article reviews the toxicity and mechanisms of current clinical anti-breast cancer drugs and proposes strategies for preventing cardiovascular toxicity to provide recommendations for the clinical prevention and treatment of chemotherapy-related cardiomyopathy.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China; Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510080, Guangdong Province, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Sien Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Qiaojing Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Zhijun Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Haiding Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Qi Zhao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Longmei Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Huan Cen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Zebo Jiang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Qiyuan Luo
- Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Xiaoling Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Jiaxiong Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Wensheng Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Phillip C Yang
- Cardiovascular Stem Cell (Yang) Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China; Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China.
| |
Collapse
|
6
|
Gomes ER, Souza FR, Cassali GD, Sabino ADP, de Barros ALB, Oliveira MC. Investigation of the Antitumor Activity and Toxicity of Tumor-Derived Exosomes Fused with Long-Circulating and pH-Sensitive Liposomes Containing Doxorubicin. Pharmaceutics 2022; 14:2256. [PMID: 36365075 PMCID: PMC9696811 DOI: 10.3390/pharmaceutics14112256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 08/29/2023] Open
Abstract
Exosome-liposome hybrid nanocarriers containing chemotherapeutic agents have been developed to enhance drug delivery, improve the efficacy of the treatment of metastatic cancer, and overcome chemoresistance in cancer therapy. Thus, the objectives of this study were to investigate the toxicological profiles of exosomes fused with long-circulating and pH-sensitive liposomes containing doxorubicin (ExoSpHL-DOX) in healthy mice and the antitumor activity of ExoSpHL-DOX in Balb/c female mice bearing 4T1 breast tumors. The acute toxicity was determined by evaluating the mortality and morbidity of the animals and conducting hematological, biochemical, and histopathological analyses after a single intravenous administration of ExoSpHL-DOX. The results of the study indicated that the ExoSpHL-DOX treatment is less toxic than the free doxorubicin (DOX) treatment. ExoSpHL-DOX showed no signs of nephrotoxicity, even at the highest dose of DOX, indicating that the hybrid nanosystem may alter the distribution of DOX and reduce the kidney damage. Regarding the antitumor activity, ExoSpHL-DOX showed an antitumor effect compared to the control group. Furthermore, the hybrid nanocarrier of tumor-derived exosomes fused with long-circulating and pH-sensitive liposomes reduced the number of metastatic foci in the lungs. These results indicate that ExoSpHL-DOX may be a promising nanocarrier for the treatment of breast cancer, reducing toxicity and inhibiting metastasis, mainly in the lungs.
Collapse
Affiliation(s)
- Eliza Rocha Gomes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Fernanda Rezende Souza
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Geovanni Dantas Cassali
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Adriano de Paula Sabino
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - André Luis Branco de Barros
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Mônica Cristina Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| |
Collapse
|
7
|
Foglizzo V, Marchiò S. Nanoparticles as Physically- and Biochemically-Tuned Drug Formulations for Cancers Therapy. Cancers (Basel) 2022; 14:cancers14102473. [PMID: 35626078 PMCID: PMC9139219 DOI: 10.3390/cancers14102473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Conventional antitumor drugs have limitations, including poor water solubility and lack of targeting capability, with consequent non-specific distribution, systemic toxicity, and low therapeutic index. Nanotechnology promises to overcome these drawbacks by exploiting the physical properties of diverse nanocarriers that can be linked to moieties with binding selectivity for cancer cells. The use of nanoparticles as therapeutic formulations allows a targeted delivery and a slow, controlled release of the drug(s), making them tunable modules for applications in precision medicine. In addition, nanoparticles are also being developed as cancer vaccines, offering an opportunity to increase both cellular and humoral immunity, thus providing a new weapon to beat cancer. Abstract Malignant tumors originate from a combination of genetic alterations, which induce activation of oncogenes and inactivation of oncosuppressor genes, ultimately resulting in uncontrolled growth and neoplastic transformation. Chemotherapy prevents the abnormal proliferation of cancer cells, but it also affects the entire cellular network in the human body with heavy side effects. For this reason, the ultimate aim of cancer therapy remains to selectively kill cancer cells while sparing their normal counterparts. Nanoparticle formulations have the potential to achieve this aim by providing optimized drug delivery to a pathological site with minimal accumulation in healthy tissues. In this review, we will first describe the characteristics of recently developed nanoparticles and how their physical properties and targeting functionalization are exploited depending on their therapeutic payload, route of delivery, and tumor type. Second, we will analyze how nanoparticles can overcome multidrug resistance based on their ability to combine different therapies and targeting moieties within a single formulation. Finally, we will discuss how the implementation of these strategies has led to the generation of nanoparticle-based cancer vaccines as cutting-edge instruments for cancer immunotherapy.
Collapse
Affiliation(s)
- Valentina Foglizzo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Serena Marchiò
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Correspondence: ; Tel.: +39-01199333239
| |
Collapse
|