1
|
Pan D, Jiang M, Tao G, Shi J, Song Z, Chen R, Wang D. The role of Ca 2+ signalling and InsP3R in the pathogenesis of intrahepatic cholestasis of pregnancy. J OBSTET GYNAECOL 2024; 44:2345276. [PMID: 38685831 DOI: 10.1080/01443615.2024.2345276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND In order to contribute new insights for future prevention and treatment of intrahepatic cholestasis of pregnancy (ICP), and to promote positive pregnancy outcomes, we evaluated serum Ca2+ levels and inositol 1,4,5-trisphosphate receptor (InsP3R) expression in the liver tissue of a rat ICP model. METHODS After establishing the model by injection of oestradiol benzoate and progesterone into pregnant rats, animals were divided into normal control (n = 5) and ICP model groups (n = 5). The expression of InsP3R protein in the liver, and serum levels of Ca2+, glycocholic acid and bile acid were detected. RESULTS InsP3R mRNA and protein were significantly lower in the ICP model group compared to the normal group, as determined by qPCR and immunohistochemistry, respectively. Serum enzyme-linked immunosorbent assay results revealed significantly higher levels of glycocholic acid and bile acid in the ICP model group compared to the normal group, while Ca2+ levels were significantly lower. The levers of Ca2+ were significantly and negatively correlated with the levels of glycocholic acid. The observed decrease in Ca2+ was associated with an increase in total bile acids, but there was no significant correlation. CONCLUSIONS Our results revealed that the expression of InsP3R and serum Ca2+ levels was significantly decreased in the liver tissue of ICP model rats. Additionally, Ca2+ levels were found to be negatively correlated with the level of glycocholic acid.
Collapse
Affiliation(s)
- Dan Pan
- Department of Obstetrics and Gynecology, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, China
| | - Mengting Jiang
- Department of Obstetrics and Gynecology, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, China
| | - Guoxian Tao
- Department of Obstetrics and Gynecology, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, China
| | - Jinmei Shi
- Department of Obstetrics and Gynecology, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, China
| | - Zhiwei Song
- Department of Medical Laboratory, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, China
| | - Ren Chen
- Department of Obstetrics and Gynecology, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, China
| | - Dongguo Wang
- Department of Central Laboratory, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, China
| |
Collapse
|
2
|
Wu L, Chen J. Type 3 IP3 receptor: Its structure, functions, and related disease implications. Channels (Austin) 2023; 17:2267416. [PMID: 37818548 PMCID: PMC10569359 DOI: 10.1080/19336950.2023.2267416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023] Open
Abstract
Cell-fate decisions depend on the precise and strict regulation of multiple signaling molecules and transcription factors, especially intracellular Ca2+ homeostasis and dynamics. Type 3 inositol 1,4,5-triphosphate receptor (IP3R3) is an a tetrameric channel that can mediate the release of Ca2+ from the endoplasmic reticulum (ER) in response to extracellular stimuli. The gating of IP3R3 is regulated not only by ligands but also by other interacting proteins. To date, extensive research conducted on the basic structure of IP3R3, as well as its regulation by ligands and interacting proteins, has provided novel perspectives on its biological functions and pathogenic mechanisms. This review aims to discuss recent advancements in the study of IP3R3 and provides a comprehensive overview of the relevant literature pertaining to its structure, biological functions, and pathogenic mechanisms.
Collapse
Affiliation(s)
- Lvying Wu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jin Chen
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
3
|
Zheng Q, Li M, Chen L, Zhang C, Zhao Y, Liu G, Yang F, Zhan J. Potential therapeutic target of EGF on bile duct ligation model and biliary atresia children. Pediatr Res 2023; 94:1297-1307. [PMID: 37138025 DOI: 10.1038/s41390-023-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/26/2023] [Accepted: 03/20/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND The pathogenesis of liver fibrosis in biliary atresia (BA) is unclear. Epidermal growth factor (EGF) plays a vital role in liver fibrosis. This study aims to investigate the expression of EGF and the mechanisms of its pro-fibrotic effects in BA. METHODS EGF levels in serum and liver samples of BA and non-BA children were detected. Marker proteins of EGF signaling and epithelial-mesenchymal transition (EMT) in liver sections were evaluated. Effects of EGF on intrahepatic cells and the underlying mechanisms were explored in vitro. Bile duct ligation (BDL) mice with/without EGF antibody injection were used to verify the effects of EGF on liver fibrosis. RESULTS Serum levels and liver expression of EGF elevated in BA. Phosphorylated EGF receptor (p-EGFR) and extracellular regulated kinase 1/2 (p-ERK1/2) increased. In addition, EMT and proliferation of biliary epithelial cells were present in BA liver. In vitro, EGF induced EMT and proliferation of HIBEpic cells and promoted IL-8 expression in L-02 cells by phosphorylating ERK1/2. And EGF activated LX-2 cells. Furthermore, EGF antibody injection reduced p-ERK1/2 levels and alleviated liver fibrosis in BDL mice. CONCLUSION EGF is overexpressed in BA. It aggravates liver fibrosis through EGF/EGFR-ERK1/2 pathway, which may be a therapeutic target for BA. IMPACT The exact pathogenesis of liver fibrosis in BA is unknown, severely limiting the advancement of BA treatment strategies. This study revealed that serum and liver tissue levels of EGF were increased in BA, and its expression in liver tissues was correlated with the degree of liver fibrosis. EGF may promote EMT and proliferation of biliary epithelial cells and induce IL-8 overexpression in hepatocytes through EGF/EGFR-ERK1/2 signaling pathway. EGF can also activate HSCs in vitro. The EGF/EGFR-ERK1/2 pathway may be a potential therapeutic target for BA.
Collapse
Affiliation(s)
- Qipeng Zheng
- Graduate College, Tianjin Medical University, Tianjin, 300070, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Mengdi Li
- Graduate College, Tianjin Medical University, Tianjin, 300070, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Lingzhi Chen
- Graduate College, Tianjin Medical University, Tianjin, 300070, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Cong Zhang
- Graduate College, Tianjin Medical University, Tianjin, 300070, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Yilin Zhao
- Graduate College, Tianjin Medical University, Tianjin, 300070, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Gengxin Liu
- Graduate College, Tianjin Medical University, Tianjin, 300070, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Fang Yang
- Graduate College, Tianjin Medical University, Tianjin, 300070, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Jianghua Zhan
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China.
| |
Collapse
|
4
|
In silico Prediction of Deleterious Single Nucleotide Polymorphism in S100A4 Metastatic Gene: Potential Early Diagnostic Marker. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:4202623. [PMID: 35965620 PMCID: PMC9357733 DOI: 10.1155/2022/4202623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
S100A4 protein overexpression has been reported in different types of cancer and plays a key role by interacting with the tumor suppressor protein Tp53. Single nucleotide polymorphisms (SNP) in S100A4 could directly influence the biomolecular interaction with the tumor suppressor protein Tp53 due to their aberrant conformations. Hence, the study was designed to predict the deleterious SNP and its effect on the S100A4 protein structure and function. Twenty-one SNP data sets were screened for nonsynonymous mutations and subsequently subjected to deleterious mutation prediction using different computational tools. The screened deleterious mutations were analyzed for their changes in functionality and their interaction with the tumor suppressor protein Tp53 by protein-protein docking analysis. The structural effects were studied using the 3DMissense mutation tool to estimate the solvation energy and torsion angle of the screened mutations on the predicted structures. In our study, 21 deleterious nonsynonymous mutations were screened, including F72V, E74G, L5P, D25E, N65S, A28V, A8D, S20L, L58P, and K26N were found to be remarkably conserved by exhibiting the interaction either with the EF-hand 1 or EF-hand 2 domain. The solvation and torsion values significantly deviated for the mutant-type structures with S20L, N65S, and F72L mutations and showed a marked reduction in their binding affinity with the Tp53 protein. Hence, these deleterious mutations might serve as prospective targets for diagnosing and developing personalized treatments for cancer and other related diseases.
Collapse
|