1
|
Wu L, Xue L, Ding X, Jiang H, Zhang R, Zheng A, Zu Y, Tan S, Wang X, Liu Z. Integrated microbiome and metabolomics analysis reveals the alleviating effect of Pediococcus acidilactici on colitis. Front Vet Sci 2025; 12:1520678. [PMID: 40078208 PMCID: PMC11897304 DOI: 10.3389/fvets.2025.1520678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/22/2025] [Indexed: 03/14/2025] Open
Abstract
Colitis is a complicated disease caused by multiple factors, seriously threatening the host health and the development of animal husbandry. Probiotics have been demonstrate to participate in the active regulation of multiple gastrointestinal disease, gut microbiota and metabolism, but research on the efficacy of Pediococcus acidilactici isolated from dogs in alleviating colitis remains scarce. Here, we aimed to investigate the ameliorative effects of Pediococcus acidilactici isolated from dogs on colitis induced by LPS and its underlying molecular mechanisms. For this purpose, we collected colon contents from 15 mice for amplicon sequencing and metabolic analysis. Results showed that Pediococcus acidilactici could relieve the colon damage and cytokine disorder caused by colitis. Microbiome analysis showed that colitis could cause a significant decrease in the gut microbial diversity and abundance, but Pediococcus acidilactici administration could restore the microbial index to the control level. Metabolomics analysis showed that 8 metabolic pathways and 5 (spermine, L-Arginine, 15-Deoxy-Delta12,14-PGJ2, prostaglandin J2, and 15(S)-HETE) metabolites may be involved in the alleviation of colitis by Pediococcus acidilactici. In summary, these findings demonstrated that the positive regulation effect of Pediococcus acidilactici on gut microbiota and metabolism may be one of its underlying mechanisms to alleviate colitis. Additionally, this study also conveyed a vital message that Pediococcus acidilactici isolated from dogs may serve as a promising candidate to ameliorate Pediococcus acidilactici.
Collapse
Affiliation(s)
- Lulu Wu
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Lixun Xue
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Xin Ding
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Huyan Jiang
- School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, China
| | - Ranran Zhang
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Aifang Zheng
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Yuan Zu
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Shuaishuai Tan
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Xin Wang
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Zhigang Liu
- School of Life Sciences, Anqing Normal University, Anqing, China
- Engineering Technology Research Center for Aquatic Organism Conservation and Water Ecosystem Restoration in University of Anhui Province, Anqing, China
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing, China
- Anqing Forestry Technology Innovation Research Institute, Anqing, China
| |
Collapse
|
2
|
Uhlig HH, Booth C, Cho J, Dubinsky M, Griffiths AM, Grimbacher B, Hambleton S, Huang Y, Jones K, Kammermeier J, Kanegane H, Koletzko S, Kotlarz D, Klein C, Lenardo MJ, Lo B, McGovern DPB, Özen A, de Ridder L, Ruemmele F, Shouval DS, Snapper SB, Travis SP, Turner D, Wilson DC, Muise AM. Precision medicine in monogenic inflammatory bowel disease: proposed mIBD REPORT standards. Nat Rev Gastroenterol Hepatol 2023; 20:810-828. [PMID: 37789059 DOI: 10.1038/s41575-023-00838-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/05/2023]
Abstract
Owing to advances in genomics that enable differentiation of molecular aetiologies, patients with monogenic inflammatory bowel disease (mIBD) potentially have access to genotype-guided precision medicine. In this Expert Recommendation, we review the therapeutic research landscape of mIBD, the reported response to therapies, the medication-related risks and systematic bias in reporting. The mIBD field is characterized by the absence of randomized controlled trials and is dominated by retrospective observational data based on case series and case reports. More than 25 off-label therapeutics (including small-molecule inhibitors and biologics) as well as cellular therapies (including haematopoietic stem cell transplantation and gene therapy) have been reported. Heterogeneous reporting of outcomes impedes the generation of robust therapeutic evidence as the basis for clinical decision making in mIBD. We discuss therapeutic goals in mIBD and recommend standardized reporting (mIBD REPORT (monogenic Inflammatory Bowel Disease Report Extended Phenotype and Outcome of Treatments) standards) to stratify patients according to a genetic diagnosis and phenotype, to assess treatment effects and to record safety signals. Implementation of these pragmatic standards should help clinicians to assess the therapy responses of individual patients in clinical practice and improve comparability between observational retrospective studies and controlled prospective trials, supporting future meta-analysis.
Collapse
Affiliation(s)
- Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Claire Booth
- UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Judy Cho
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marla Dubinsky
- Department of Paediatric Gastroenterology, Susan and Leonard Feinstein IBD Clinical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anne M Griffiths
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, Toronto, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
- Institute of Immunology and Transplantation, Royal Free Hospital, University College London, London, UK
| | - Sophie Hambleton
- Primary Immunodeficiency Group, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Ying Huang
- Department of Gastroenterology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Kelsey Jones
- Paediatric Gastroenterology, Great Ormond Street Hospital, London, UK
- Kennedy Institute, University of Oxford, Oxford, UK
| | - Jochen Kammermeier
- Gastroenterology Department, Evelina London Children's Hospital, London, UK
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sibylle Koletzko
- Dr. von Hauner Children's Hospital, Department of Paediatrics, University Hospital, LMU Munich, Munich, Germany
- Department of Paediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Daniel Kotlarz
- Dr. von Hauner Children's Hospital, Department of Paediatrics, University Hospital, LMU Munich, Munich, Germany
- German Center for Child and Adolescent Health, Munich, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Department of Paediatrics, University Hospital, LMU Munich, Munich, Germany
- German Center for Child and Adolescent Health, Munich, Germany
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bernice Lo
- Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Dermot P B McGovern
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ahmet Özen
- Marmara University Division of Allergy and Immunology, Istanbul, Turkey
| | - Lissy de Ridder
- Department of Paediatric Gastroenterology, Erasmus University Medical Center Sophia Children's Hospital, Rotterdam, Netherlands
| | - Frank Ruemmele
- Université Paris Cité, APHP, Hôpital Necker Enfants Malades, Service de Gastroentérologie pédiatrique, Paris, France
| | - Dror S Shouval
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Scott B Snapper
- Division of Gastroenterology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Department of Paediatrics and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Simon P Travis
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Biomedical Research Centre, University of Oxford, Oxford, UK
- Kennedy Institute, University of Oxford, Oxford, UK
| | - Dan Turner
- Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David C Wilson
- Child Life and Health, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
- Department of Paediatric Gastroenterology, The Royal Hospital for Children, and Young People, Edinburgh, UK
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, Toronto, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Toronto, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Cheng Y, Li J, Wang L, Wu X, Li Y, Xu M, Li Q, Huang J, Zhao T, Yang Z, Zhang H, Zuo L, Zhang X, Geng Z, Wang Y, Song X, Jun Z. Eriocalyxin B ameliorated Crohn's disease-like colitis by restricting M1 macrophage polarization through JAK2/STAT1 signalling. Eur J Pharmacol 2023:175876. [PMID: 37391008 DOI: 10.1016/j.ejphar.2023.175876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND AND AIMS M1 polarization of macrophages in the intestine is an important maintenance factor of the inflammatory response in Crohn's disease (CD). Eriocalyxin B (EriB) is a natural medicine that antagonizes inflammation. Our study aimed to determine the effects of EriB on CD-like colitis in mice, as well as the possible mechanism. METHODS 2,4,6-trinitrobenzene sulfonic acid (TNBS) mice and Il-10-/- mice were used as CD animal models, and the therapeutic effect of EriB on CD-like colitis in mice was addressed by the disease activity index (DAI) score, weight change, histological analysis and flow cytometry assay. To assess the direct role of EriB in regulating macrophage polarization, bone marrow-derived macrophages (BMDMs) were induced to M1 or M2 polarization separately. Molecular docking simulations and blocking experiments were performed to explore the potential mechanisms by which EriB regulates the macrophage polarization. RESULTS EriB treatment reduced body weight loss, DAI score and histological score, demonstrating the improvement of colitis symptoms in mice. In vivo and in vitro experiments both showed that EriB decreased the M1 polarization of macrophages, and suppressed the release of proinflammatory cytokines (IL-1β, TNF-α and IL-6) in mouse colons and BMDMs. The activation of Janus kinase 2/signal transducer and activator of transcription 1 (JAK2/STAT1) signals could be inhibited by EriB, which may be related to the regulation of EriB on M1 polarization. CONCLUSIONS EriB inhibits the M1 polarization of macrophages by attenuating the JAK2/STAT1 pathway, which partially explains the potential mechanism by which EriB ameliorates colitis in mice, and provides a new regimen for the clinical treatment of CD.
Collapse
Affiliation(s)
- Yang Cheng
- Department of Blood Transfusion, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lian Wang
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaopei Wu
- Bengbu Medical College, Bengbu, Anhui, China
| | - Yuetong Li
- Bengbu Medical College, Bengbu, Anhui, China
| | - Mengyu Xu
- Bengbu Medical College, Bengbu, Anhui, China
| | - Qingqing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ju Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tianhao Zhao
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Zi Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Hao Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Lugen Zuo
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaofeng Zhang
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Geng
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yueyue Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xue Song
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.
| | - Zhang Jun
- Department of Blood Transfusion, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.
| |
Collapse
|
4
|
Rebelos E, Tentolouris N, Jude E. The Role of Vitamin D in Health and Disease: A Narrative Review on the Mechanisms Linking Vitamin D with Disease and the Effects of Supplementation. Drugs 2023; 83:665-685. [PMID: 37148471 PMCID: PMC10163584 DOI: 10.1007/s40265-023-01875-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
Vitamin D insufficiency or deficiency (VDD) is a very prevalent condition in the general population. Vitamin D is necessary for optimal bone mineralization, but apart from the bone effects, preclinical and observational studies have suggested that vitamin D may have pleiotropic actions, whereas VDD has been linked to several diseases and higher all-cause mortality. Thus, supplementing vitamin D has been considered a safe and inexpensive approach to generate better health outcomes-and especially so in frail populations. Whereas it is generally accepted that prescribing of vitamin D in VDD subjects has demonstrable health benefits, most randomized clinical trials, although with design constraints, assessing the effects of vitamin D supplementation on a variety of diseases have failed to demonstrate any positive effects of vitamin D supplementation. In this narrative review, we first describe mechanisms through which vitamin D may exert an important role in the pathophysiology of the discussed disorder, and then provide studies that have addressed the impact of VDD and of vitamin D supplementation on each disorder, focusing especially on randomized clinical trials and meta-analyses. Despite there already being vast literature on the pleiotropic actions of vitamin D, future research approaches that consider and circumvent the inherent difficulties in studying the effects of vitamin D supplementation on health outcomes are needed to assess the potential beneficial effects of vitamin D. The evaluation of the whole vitamin D endocrine system, rather than only of 25-hydroxyvitamin D levels before and after treatment, use of adequate and physiologic vitamin D dosing, grouping based on the achieved vitamin D levels rather than the amount of vitamin D supplementation subjects may receive, and sufficiently long follow-up are some of the aspects that need to be carefully considered in future studies.
Collapse
Affiliation(s)
- Eleni Rebelos
- Turku PET Centre, University of Turku, Turku, Finland
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Nikolaos Tentolouris
- 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Edward Jude
- Department of Medicine, Tameside and Glossop Integrated Care NHS Foundation Trust, Ashton-under-Lyne , England.
- University of Manchester, Manchester, UK.
- Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
5
|
Jiang Y, Hong S, Zhu X, Zhang L, Tang H, Jordan KL, Saadiq IM, Huang W, Lerman A, Eirin A, Lerman LO. IL-10 partly mediates the ability of MSC-derived extracellular vesicles to attenuate myocardial damage in experimental metabolic renovascular hypertension. Front Immunol 2022; 13:940093. [PMID: 36203611 PMCID: PMC9530748 DOI: 10.3389/fimmu.2022.940093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) obtain properties of immunomodulation and tissue repair from their parental mesenchymal stem cells (MSCs), and upon delivery may be associated with fewer adverse events. EVs derived from adipose-tissue MSCs restored kidney function by attenuating kidney inflammation in a swine model of metabolic syndrome (MetS) and renal artery stenosis via anti-inflammatory pathways. EVs also ameliorated myocardial injury in renovascular hypertension (RVH) secondary to inflammation in cardiorenal disease, but the mechanisms regulating this effect are unknown. We hypothesize that the anti-inflammatory cytokine interleukin (IL)-10 mediates the reparative effects of EVs on cardiovascular complications in a preclinical swine model with coexisting MetS and RVH. Twenty-three pigs established as Lean controls or RVH models were observed for 16 weeks. At 12 weeks RVH subgroups received an intrarenal delivery of 1011 either wildtype (WT) EVs or EVs after IL-10 knockdown (KD) (RVH+WT-EVs or RVH+IL-10-KD-EVs, respectively). Cardiac and renal function were studied in-vivo and myocardial tissue injury in-vitro 4 weeks later. RVH pigs showed myocardial inflammation, fibrosis, and left ventricular diastolic dysfunction. WT-EVs attenuated these impairments, increased capillary density, and decreased myocardial inflammation in-vivo. In-vitro, co-incubation with IL-10-containing WT-EVs decreased activated T-cells proliferation and endothelial cells inflammation and promoted their migration. Contrarily, these cardioprotective effects were largely blunted using IL-10-KD-EVs. Thus, the anti-inflammatory and pro-angiogenic effects of EVs in RVH may be partly attributed to their cargo of anti-inflammatory IL-10. Early intervention of IL-10-containing EVs may be helpful to prevent cardiovascular complications of MetS concurrent with RVH.
Collapse
Affiliation(s)
- Yamei Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Siting Hong
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Xiangyang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Lei Zhang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Kyra L. Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Ishran M. Saadiq
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Weijun Huang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
6
|
Inflammatory Bowel Disease: A Review of Pre-Clinical Murine Models of Human Disease. Int J Mol Sci 2022; 23:ijms23169344. [PMID: 36012618 PMCID: PMC9409205 DOI: 10.3390/ijms23169344] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/11/2022] Open
Abstract
Crohn’s disease (CD) and ulcerative colitis (UC) are both highly inflammatory diseases of the gastrointestinal tract, collectively known as inflammatory bowel disease (IBD). Although the cause of IBD is still unclear, several experimental IBD murine models have enabled researchers to make great inroads into understanding human IBD pathology. Here, we discuss the current pre-clinical experimental murine models for human IBD, including the chemical-induced trinitrobenzene sulfonic acid (TNBS) model, oxazolone and dextran sulphate sodium (DSS) models, the gene-deficient I-kappa-B kinase gamma (Iκκ-γ) and interleukin(IL)-10 models, and the CD4+ T-cell transfer model. We offer a comprehensive review of how these models have been used to dissect the etiopathogenesis of disease, alongside their limitations. Furthermore, the way in which this knowledge has led to the translation of experimental findings into novel clinical therapeutics is also discussed.
Collapse
|