1
|
Morawska-Kozłowska M, Pitas M, Zhalniarovich Y. Mesenchymal Stem Cells in Veterinary Medicine-Still Untapped Potential. Animals (Basel) 2025; 15:1175. [PMID: 40282009 PMCID: PMC12024326 DOI: 10.3390/ani15081175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/05/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Mesenchymal stem cells (MSCs) hold significant therapeutic potential in veterinary medicine due to their regenerative and immunomodulatory properties. This review examines the clinical applications of MSCs across multiple animal species, including equine, canine, feline, and bovine medicine. MSC therapies have demonstrated promising outcomes in treating musculoskeletal disorders, osteoarthritis, inflammatory diseases, and tissue injuries, particularly in horses and dogs. In cats, MSCs show potential for managing chronic kidney disease, inflammatory bowel disease, and asthma, while in bovine medicine, they offer alternative treatment approaches for mastitis and orthopedic injuries. Despite these advancements, challenges such as treatment standardization, cell sourcing, and potential adverse effects, including tumorigenicity, remain under investigation. The emerging field of MSC-based veterinary medicine highlights its capacity to enhance healing, reduce inflammation, and improve clinical outcomes. However, further research is necessary to optimize treatment protocols and address safety concerns, ensuring the widespread adoption of MSC therapies in veterinary practice.
Collapse
Affiliation(s)
- Magdalena Morawska-Kozłowska
- Department of Surgery and Radiology with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Mateusz Pitas
- Veterinary Polyclinic, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Yauheni Zhalniarovich
- Department of Surgery and Radiology with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| |
Collapse
|
2
|
Chen C, Xu B, Li W, Chen J, Yang M, Gao L, Zhou J. New perspectives on the treatment of diabetic nephropathy: Challenges and prospects of mesenchymal stem cell therapy. Eur J Pharmacol 2025; 998:177543. [PMID: 40139419 DOI: 10.1016/j.ejphar.2025.177543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes mellitus. Traditional treatment methods have certain limitations and it is difficult to effectively delay the disease progression. Mesenchymal stem cells (MSCs), owing to their potential for self-renewal, multidirectional differentiation, and immunomodulatory abilities, can regulate the renal immune microenvironment and repair damaged tissues, providing a new strategy for the treatment of DN. However, MSCs face problems such as immune rejection, cell inactivation, challenges in directed differentiation, insufficient homing ability, and low cell retention rate after delivery. These issues limit their clinical application in patients with DN. This review aims to propose optimization strategies targeting DN pathological features to improve MSC effectiveness and reduce their side effects. Specifically, it involves optimizing cell culture systems and cryopreservation protocols, along with pre-transplantation pharmacological conditioning to boost the functionality and viability of MSCs. Additionally, the exploration of synergistic drug-MSC combination therapies was carried out, taking advantage of diverse mechanisms of action to improve therapeutic outcomes. The integration of biomaterials and gene editing technologies to significantly enhance cell survival, target specificity, and tissue engraftment was also pursued. Concurrently, the determination of optimal therapeutic dosages and administration routes remained crucial. These multifaceted strategies not only provide a theoretical framework for overcoming existing technical limitations but also lay a robust foundation for accelerating the clinical translation of MSC-based therapies.
Collapse
Affiliation(s)
- Canyu Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Bo Xu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Weiyi Li
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Jixiang Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Mingxia Yang
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Lili Gao
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Jiecan Zhou
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; MOE Key Laboratory of Pediatric Rare Diseases, University of South China, Hengyang, 421001, Hunan, China; Furong Laboratory, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
3
|
Rostami M, Farahani P, Esmaelian S, Bahman Z, Fadel Hussein A, A Alrikabi H, Hosseini Hooshiar M, Yasamineh S. The Role of Dental-derived Stem Cell-based Therapy and Their Derived Extracellular Vesicles in Post-COVID-19 Syndrome-induced Tissue Damage. Stem Cell Rev Rep 2024; 20:2062-2103. [PMID: 39150646 DOI: 10.1007/s12015-024-10770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Long coronavirus disease 2019 (COVID-19) is linked to an increased risk of post-acute sequelae affecting the pulmonary and extrapulmonary organ systems. Up to 20% of COVID-19 patients may proceed to a more serious form, such as severe pneumonia, acute respiratory distress syndrome (ARDS), or pulmonary fibrosis. Still, the majority of patients may only have mild, self-limiting sickness. Of particular concern is the possibility of parenchymal fibrosis and lung dysfunction in long-term COVID-19 patients. Furthermore, it has been observed that up to 43% of individuals hospitalized with COVID-19 also had acute renal injury (AKI). Care for kidney, brain, lung, cardiovascular, liver, ocular, and tissue injuries should be included in post-acute COVID-19 treatment. As a powerful immunomodulatory tool in regenerative medicine, dental stem cells (DSCs) have drawn much interest. Numerous immune cells and cytokines are involved in the excessive inflammatory response, which also has a significant effect on tissue regeneration. A unique reservoir of stem cells (SCs) for treating acute lung injury (ALI), liver damage, neurological diseases, cardiovascular issues, and renal damage may be found in tooth tissue, according to much research. Moreover, a growing corpus of in vivo research is connecting DSC-derived extracellular vesicles (DSC-EVs), which are essential paracrine effectors, to the beneficial effects of DSCs. DSC-EVs, which contain bioactive components and therapeutic potential in certain disorders, have been shown as potentially effective therapies for tissue damage after COVID-19. Consequently, we explore the properties of DSCs in this work. Next, we'll look at how SARS-CoV-2 affects tissue damage. Lastly, we have looked at the use of DSCs and DSC-EVs in managing COVID-19 and chronic tissue damage, such as injury to the heart, brain, lung, and other tissues.
Collapse
Affiliation(s)
- Mitra Rostami
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouria Farahani
- Doctor of Dental Surgery, Faculty of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Samar Esmaelian
- Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Zahra Bahman
- Faculty of dentistry, Belarusian state medical university, Minsk, Belarus
| | | | - Hareth A Alrikabi
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
4
|
Long Q, Zhang X, Ren F, Wu X, Wang ZM. Identification of novel biomarkers, shared molecular signatures and immune cell infiltration in heart and kidney failure by transcriptomics. Front Immunol 2024; 15:1456083. [PMID: 39351221 PMCID: PMC11439679 DOI: 10.3389/fimmu.2024.1456083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Heart failure (HF) and kidney failure (KF) are closely related conditions that often coexist, posing a complex clinical challenge. Understanding the shared mechanisms between these two conditions is crucial for developing effective therapies. Methods This study employed transcriptomic analysis to unveil molecular signatures and novel biomarkers for both HF and KF. A total of 2869 shared differentially expressed genes (DEGs) were identified in patients with HF and KF compared to healthy controls. Functional enrichment analysis was performed to explore the common mechanisms underlying these conditions. A protein-protein interaction (PPI) network was constructed, and machine learning algorithms, including Random Forest (RF), Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Least Absolute Shrinkage and Selection Operator (LASSO), were used to identify key signature genes. These genes were further analyzed using Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA), with their diagnostic values validated in both training and validation sets. Molecular docking studies were conducted. Additionally, immune cell infiltration and correlation analyses were performed to assess the relationship between immune responses and the identified biomarkers. Results The functional enrichment analysis indicated that the common mechanisms are associated with cellular homeostasis, cell communication, cellular replication, inflammation, and extracellular matrix (ECM) production, with the PI3K-Akt signaling pathway being notably enriched. The PPI network revealed two key protein clusters related to the cell cycle and inflammation. CDK2 and CCND1 were identified as signature genes for both HF and KF. Their diagnostic value was validated in both training and validation sets. Additionally, docking studies with CDK2 and CCND1 were performed to evaluate potential drug candidates. Immune cell infiltration and correlation analyses highlighted the immune microenvironment, and that CDK2 and CCND1 are associated with immune responses in HF and KF. Discussion This study identifies CDK2 and CCND1 as novel biomarkers linking cell cycle regulation and inflammation in heart and kidney failure. These findings offer new insights into the molecular mechanisms of HF and KF and present potential targets for diagnosis and therapy.
Collapse
Affiliation(s)
- Qingqing Long
- Division of Nephrology and Clinical Immunology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Xinlong Zhang
- Institute for Photogrammetry and Geoinformatics, University of Stuttgart, Stuttgart, Germany
| | - Fangyuan Ren
- Division of Organic Chemistry - Bioorganic Chemistry, Mathematics/Natural Sciences Faculty, Koblenz University, Koblenz, Germany
| | - Xinyu Wu
- Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ze-Mu Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Yang CC, Chen YL, Sung PH, Chiang JY, Chen CH, Li YC, Yip HK. Repeated administration of adipose-derived mesenchymal stem cells added on beneficial effects of empagliflozin on protecting renal function in diabetic kidney disease rat. Biomed J 2024; 47:100613. [PMID: 37355087 PMCID: PMC10950825 DOI: 10.1016/j.bj.2023.100613] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is one of the most significant public health burdens worldwide. This study explored the renal protections of combined adipose-derived mesenchymal stem cells (ADMSCs) and empagliflozin (EMPA) in DKD rats. METHODS Adult-male-SD rats were equally allocated into group 1 (sham-operated-control), group 2 (DKD), group 3 (DKD + EMPA/20 mg/kg/day since day-14 after CKD-induction), group 4 [DKD + ADMSCs (6.0 × 105/intrarenal-arterial-injection/post-day-28, followed by 1.2 × 106/intravenous injection post-days 35 and 42 after CKD-induction, i.e., defined as repeated administration)] and group 5 (DKD + ADMSCs + EMPA) and kidney was harvested post-day-60 CKD-induction. RESULTS The result showed that the blood sugar and circulatory levels of BUN/creatinine and the ratio of urine protein/creatinine at day 60 were greatly increased in group 2 as compared the SC (i.e., group 1), significantly increased in groups 3 and 4 than in groups 5, but these parameters showed the similar manner in groups 3 and 4, except for blood sugar that was significantly lower in group 3 than in group 4 (all p < 0.0001). The protein levels of inflammation (NF-κB/FNF-α/MMP-9)/oxidative-stress (NOX-1/NOX-2/oxidized protein/p22-phox)/apoptosis (cleaved-caspase-3/cleaved-PARP/mitochondrial-Bax)/fibrosis (TGF-β/Smad 3)/mitochondrial/DNA-damaged (p-DRP1/γ-H2AX) biomarkers revealed a similar manner of creatinine level among the groups (all p < 0.0001). Kidney injury score/fibrotic area/oxidative-stress score (8-OHdG) and cellular levels of kidney-damaged biomarkers (KIM-1/γ-H2AX) showed a unanimous manner. In contrast, the cellular expressions of podocyte components (ZO-1/synaptopodin) revealed an antithetical manner of creatinine among the groups (all p < 0.0001). CONCLUSION Combined ADMSCs-EMPA was superior to just one therapy for protecting kidney function and ultra-structural integrity in DKD rodents.
Collapse
Affiliation(s)
- Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - John Y Chiang
- Department of Computer Science & Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan; Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hung Chen
- Divisions of General Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Nursing, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
6
|
Rajput S, Malviya R, Uniyal P. Advances in the Treatment of Kidney Disorders using Mesenchymal Stem Cells. Curr Pharm Des 2024; 30:825-840. [PMID: 38482624 DOI: 10.2174/0113816128296105240305110312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 06/04/2024]
Abstract
Renal disease is a medical condition that poses a potential threat to the life of an individual and is related to substantial morbidity and mortality rates in clinical environments. The aetiology of this condition is influenced by multiple factors, and its incidence tends to increase with progressive aging. Although supportive therapy and kidney transplantation have potential advantages, they also have limitations in terms of mitigating the progression of KD. Despite significant advancements in the domain of supportive therapy, mortality rates in patients continue to increase. Due to their ability to self-renew and multidirectionally differentiate, stem cell therapy has been shown to have tremendous potential in the repair of the diseased kidney. MSCs (Mesenchymal stem cells) are a cell population that is extensively distributed and can be located in various niches throughout an individual's lifespan. The cells in question are characterised by their potential for indefinite replication and their aptitude for undergoing differentiation into fully developed cells of mesodermal origin under laboratory conditions. It is essential to emphasize that MSCs have demonstrated a favorable safety profile and efficacy as a therapeutic intervention for renal diseases in both preclinical as well as clinical investigations. MSCs have been found to slow the advancement of kidney disease, and this impact is thought to be due to their control over a number of physiological processes, including immunological response, tubular epithelial- mesenchymal transition, oxidative stress, renal tubular cell death, and angiogenesis. In addition, MSCs demonstrate recognised effectiveness in managing both acute and chronic kidney diseases via paracrine pathways. The proposal to utilise a therapy that is based on stem-cells as an effective treatment has been put forward in search of discovering novel therapies to promote renal regeneration. Preclinical researchers have demonstrated that various types of stem cells can provide advantages in acute and chronic kidney disease. Moreover, preliminary results from clinical trials have suggested that these interventions are both safe and well-tolerated. This manuscript provides a brief overview of the potential renoprotective effects of stem cell-based treatments in acute as well as chronic renal dysfunction. Furthermore, the mechanisms that govern the process of kidney regeneration induced by stem cells are investigated. This article will examine the therapeutic approaches that make use of stem cells for the treatment of kidney disorders. The analysis will cover various cellular sources that have been utilised, potential mechanisms involved, and the outcomes that have been achieved so far.
Collapse
Affiliation(s)
- Shivam Rajput
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
7
|
Ko SF, Yang CC, Sung PH, Cheng BC, Shao PL, Chen YL, Yip HK. Dapagliflozin-entresto protected kidney from renal hypertension via downregulating cell-stress signaling and upregulating SIRT1/PGC-1α/Mfn2-medicated mitochondrial homeostasis. Exp Biol Med (Maywood) 2023; 248:2421-2439. [PMID: 38059322 PMCID: PMC10903247 DOI: 10.1177/15353702231198087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/10/2023] [Indexed: 12/08/2023] Open
Abstract
This study tested whether combined dapagliflozin and entresto would be superior to mere one therapy on protecting the residual renal function and integrity of kidney parenchyma in hypertensive kidney disease (HKD) rat. In vitro results showed that the protein expressions of oxidative-stress/mitochondrial-damaged (NOX-1/NOX-2/oxidized-protein/cytosolic-cytochrome-C)/apoptotic (mitochondrial-Bax/cleaved caspeases 3, 9)/cell-stress (p-ERK/p-JNK/p-p38) biomarkers were significantly increased in H2O2-treated NRK-52E cells than those of controls that were reversed by dapagliflozin or entresto treatment. Adult-male SD rats (n = 50) were equally categorized into group 1 (sham-operated-control), group 2 (HKD by 5/6 nephrectomy + DOCA-salt/25 mg/kg/subcutaneous injection/twice weekly), group 3 (HKD + dapagliflozin/orally, 20 mg/kg/day for 4 weeks since day 7 after HKD induction), group 4 (HKD + entresto/orally, 100 mg/kg/day for 4 weeks since day 7 after HKD induction), and group 5 (HKD + dapagliflozin + entresto/the procedure and treatment strategy were identical to groups 2/3/4). By day 35, circulatory levels of blood-urine-nitrogen (BUN)/creatinine and urine protein/creatinine ratio were lowest in group 1, highest in group 2, and significantly lower in group 5 than in groups 3/4, but no difference between groups 3/4. Histopathological findings showed the kidney injury score/fibrotic area/cellular expressions of oxidative-stress/kidney-injury-molecule (8-OHdG+/KIM-1+) exhibited an identical trend, whereas the cellular expressions of podocyte components (synaptopodin/ZO-1/E-cadherin) exhibited an opposite pattern of BUN level among the groups. The protein expressions of oxidative stress/mitochondrial-damaged (NOX-1/NOX-2/oxidized protein/cytosolic-cytochrome-C/cyclophilin-D)/apoptotic (mitochondrial-Bax/cleaved-caspase 3)/mitochondrial-fission (PINK1/Parkin/p-DRP1)/autophagic (LC3BII/LC3BI ratio, Atg5/beclin-1)/MAPK-family (p-ERK/p-JNK/p-p38) biomarkers displayed a similar pattern, whereas the protein expression of mitochondria-biogenesis signaling (SIRT1/PGC-1α-Mfn2/complex I-V) displayed an opposite pattern of BUN among the groups. In conclusion, combined dapagliflozin-entresto therapy offered additional benefits on protecting the residual kidney function and architectural integrity in HKD rat.
Collapse
Affiliation(s)
- Sheung-Fat Ko
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 88301
| | - Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 88301
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 88301
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 88301
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 88301
| | - Ben-Chung Cheng
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 88301
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung 41354
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 88301
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 88301
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 88301
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 88301
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 88301
- Department of Nursing, Asia University, Taichung 41354
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302
| |
Collapse
|
8
|
Theofilis P, Vordoni A, Kalaitzidis RG. Novel therapeutic approaches in the management of chronic kidney disease: a narrative review. Postgrad Med 2023; 135:543-550. [PMID: 37401536 DOI: 10.1080/00325481.2023.2233492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Chronic kidney disease (CKD) remains a pathologic entity with constantly rising incidence and high rates of morbidity and mortality, which are associated with serious cardiovascular complications. Moreover, the incidence of end-stage renal disease tends to increase. The epidemiological trends of CKD warrant the development of novel therapeutic approaches aiming to prevent its development or retard its progression through the control of major risk factors: type 2 diabetes mellitus, arterial hypertension, and dyslipidemia. Contemporary therapeutics such as sodium-glucose cotransporter-2 inhibitors and second-generation mineralocorticoid receptor antagonists are utilized in this direction. Additionally, experimental and clinical studies present novel drug categories that could be employed in managing CKD, such as aldosterone synthesis inhibitors or activators guanylate cyclase, while the role of melatonin should be further tested in the clinical setting. Finally, in this patient population, the use of hypolipidemic agents may provide incremental benefits.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- Center for Nephrology, "G. Papadakis" General Hospital of Nikaia-Piraeus "Ag. Panteleimon", Athens, Greece
| | - Aikaterini Vordoni
- Center for Nephrology, "G. Papadakis" General Hospital of Nikaia-Piraeus "Ag. Panteleimon", Athens, Greece
| | - Rigas G Kalaitzidis
- Center for Nephrology, "G. Papadakis" General Hospital of Nikaia-Piraeus "Ag. Panteleimon", Athens, Greece
| |
Collapse
|
9
|
Li YY, Tian ZH, Su SS, Shi JJ, Zhou C, Zhang LH, Zhang FR, Hao YK. Anti-apoptotic effect of HeidihuangWan in renal tubular epithelial cells via PI3K/Akt/mTOR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115882. [PMID: 36341817 DOI: 10.1016/j.jep.2022.115882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Heidihuang Wan (HDHW) is a classic Chinese herbal formula, which was first recorded in the "Suwen Bingji Qiyi Baoming Collection" written by Liu Wansu during the Jin Dynasty (1115-1234 AD). It is commonly used clinically for the treatment of kidney diseases and its curative effect is stable. Previous animal experiments have confirmed that HDHW can effectively improve renal fibrosis. However, the underlying pharmacological mechanism remains unclear. AIMS OF THIS STUDY Renal tubular epithelial cell (RTEC) apoptosis is one of the main pathological features of renal fibrosis. This study aimed to observe the effect and underlying mechanism of HDHW on the apoptosis of RTECs to further explore the pathological mechanism of HDHW against renal fibrosis. MATERIALS AND METHODS We examined the HDHW composition in rat serum. In vitro, we first screened out the optimal intervention concentration of HDHW on RTECs using the MTT assay. Hypoxia/reoxygenation was then used to induce apoptosis of RTECs (H/R-RTECs), which were divided into H/R-RTEC, astragaloside IV (positive control), HDHW, and RTECs groups. After 48 h of drug intervention, apoptosis of RTECs was detected using flow cytometry and protein expression was detected by western blotting. The 5/6 nephrectomy rat model was constructed and divided into the normal control, 5/6 nephrectomy, HDHW, and astragaloside IV groups. After 8 weeks of treatment, TUNEL staining was used to detect cell apoptosis, and western blotting was used to detect protein expression. RESULTS HDHW downregulated the expression of pro-apoptotic proteins Bax and Caspase3, up-regulated the expression of anti-apoptotic protein Bcl-2, activated the PI3K/Akt/mTOR signaling pathway, and reversed the early apoptosis of RTECs, thereby resisting the apoptosis of RTECs. CONCLUSION HDHW inhibits apoptosis of RTECs by modulating the PI3K/Akt/mTOR signaling pathway. This study provides experimental evidence for the anti-fibrotic effect of HDHW on the kidneys and partially elucidates its pharmacological mechanism of action.
Collapse
Affiliation(s)
- Ying-Ying Li
- College of First Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zeng-Hui Tian
- College of First Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shan-Shan Su
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing-Jing Shi
- College of First Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Zhou
- Department of Oncology, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Li-Hua Zhang
- Department of Geriatrics, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Fa-Rong Zhang
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yan-Ke Hao
- Department of Spine Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
10
|
Melatonin-Assisted Cisplatin Suppresses Urinary Bladder Cancer Cell Proliferation and Growth through Inhibiting PrP C-Regulated Cell Stress and Cell Proliferation Signaling. Int J Mol Sci 2023; 24:ijms24043353. [PMID: 36834767 PMCID: PMC9959909 DOI: 10.3390/ijms24043353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
This study investigated whether melatonin (Mel) would promote cisplatin to suppress the proliferation and growth of bladder cancer (BC) cells by inhibiting cellular prion protein (PrPC)-mediated cell stress and cell proliferation signaling. An immunohistochemical staining of tissue arrays from BC patients demonstrated that the PrPC expression was significantly upregulated from stage I to III BC (p < 0.0001). The BC cellline of T24 was categorized into G1 (T24), G2 (T24 + Mel/100 μM), G3 (T24+cisplatin/6 μM), G4 (PrPC overexpression in T24 (i.e., PrPC-OE-T24)), G5 (PrPC-OE-T24+Mel), and G6 (PrPC-OE-T24+cisplatin). When compared with a human uroepithelial cell line (SV-HUC-1), the cellular viability/wound healing ability/migration rate were significantly increased in T24 cells (G1) and further significantly increased in PrPC-OE-T24 cells (G4); and they were suppressed in Mel (G2/G5) or cisplatin (G3/G6) treatment (all p < 0.0001). Additionally, the protein expressions of cell proliferation (PI3K/p-Akt/p-m-TOR/MMP-9/PrPC), cell cycle/mitochondrial functional integrity (cyclin-D1/clyclin-E1/ckd2/ckd4/mitochondrial-cytochrome-C/PINK1), and cell stress (RAS/c-RAF/p-MEK1/2, p-ERK1/2) markers showed a similar pattern of cell viability among the groups (all p < 0.001). After the BC cell line of UMUC3 was implanted into nude mouse backs, by day 28 mthe BC weight/volume and the cellular levels of PrPC/MMP-2/MMP-9 were significantly, gradually reduced from groups one to four (all p < 0.0001). The protein expressions of cell proliferation (PI3K/p-Akt/p-m-TOR/MMP-9/PrPC), cell cycle/mitophagy (cyclin-D1/clyclin-E1/ckd2/ckd4/PINK1), and cell stress (RAS/c-RAF/p-MEK1,2/p-ERK1,2) signaling were significantly, progressively reduced from groups one to four, whereas the protein expressions of apoptotic (Mit-Bax/cleaved-caspase-3/cleaved-PARP) and oxidative stress/mitochondrial damaged (NOX-1/NOX-2/cytosolic-cytochrome-C/p-DRP1) markers expressed an opposite pattern of cell proliferation signaling among the groups (all p < 0.0001). Mel-cisplatin suppressed BC cell growth/proliferation via inhibiting the PrPC in upregulating the cell proliferation/cell stress/cell cycle signaling.
Collapse
|
11
|
Yin T, Li Y, Sung P, Chiang JY, Shao P, Yip H, Lee MS. Adipose-derived mesenchymal stem cells overexpressing prion improve outcomes via the NLRP3 inflammasome/DAMP signalling after spinal cord injury in rat. J Cell Mol Med 2023; 27:482-495. [PMID: 36660907 PMCID: PMC9930430 DOI: 10.1111/jcmm.17620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 01/21/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a highly destructive disease in human neurological functions. Adipose-derived mesenchymal stem cells (ADMSCs) have tissue regenerations and anti-inflammations, especially with prion protein overexpression (PrPcOE ). Therefore, this study tested whether PrPcOE -ADMSCs therapy offered benefits in improving outcomes via regulating nod-like-receptor-protein-3 (NLRP3) inflammasome/DAMP signalling after acute SCI in rats. Compared with ADMSCs only, the capabilities of PrPcOE -ADMSCs were significantly enhanced in cellular viability, anti-oxidative stress and migration against H2 O2 and lipopolysaccharide damages. Similarly, PrPcOE -ADMSCs significantly inhibited the inflammatory patterns of Raw264.7 cells. The SD rats (n = 32) were categorized into group 1 (Sham-operated-control), group 2 (SCI), group 3 (SCI + ADMSCs) and group 4 (SCI + PrPcOE -ADMSCs). Compared with SCI group 2, both ADMSCs and PrPcOE -ADMSCs significantly improved neurological functions. Additionally, the circulatory inflammatory cytokines levels (TNF-α/IL-6) and inflammatory cells (CD11b/c+/MPO+/Ly6G+) were highest in group 2, lowest in group 1, and significantly higher in group 3 than in group 4. By Day 3 after SCI induction, the protein expressions of inflammasome signalling (HGMB1/TLR4/MyD88/TRIF/c-caspase8/FADD/p-NF-κB/NEK7/NRLP3/ASC/c-caspase1/IL-ß) and by Day 42 the protein expressions of DAMP-inflammatory signalling (HGMB1/TLR-4/MyD88/TRIF/TRAF6/p-NF-κB/TNF-α/IL-1ß) in spinal cord tissues displayed an identical pattern as the inflammatory patterns. In conclusion, PrPcOE -ADMSCs significantly attenuated SCI in rodents that could be through suppressing the inflammatory signalling.
Collapse
Affiliation(s)
- Tsung‐Cheng Yin
- Department of Orthopaedic SurgeryKaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiungTaiwan,Center for General EducationCheng Shiu UniversityKaohsiungTaiwan
| | - Yi‐Chen Li
- Clinical Medicine Research CenterNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan,Center of Cell TherapyNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan,Institute of Clinical MedicineCollege of MedicineNational Cheng Kung UniversityTainanTaiwan,Division of Cardiology, Department of Internal MedicineKaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiungTaiwan
| | - Pei‐Hsun Sung
- Division of Cardiology, Department of Internal MedicineKaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiungTaiwan,Center for Shockwave Medicine and Tissue EngineeringKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan,Institute for Translational Research in BiomedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
| | - John Y. Chiang
- Department of Computer Science & EngineeringNational Sun Yat‐sen UniversityKaohsiungTaiwan,Department of Healthcare Administration and Medical InformaticsKaohsiung Medical UniversityKaohsiungTaiwan
| | - Pei‐Lin Shao
- Department of NursingAsia UniversityTaichungTaiwan
| | - Hon‐Kan Yip
- Division of Cardiology, Department of Internal MedicineKaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiungTaiwan,Center for Shockwave Medicine and Tissue EngineeringKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan,Institute for Translational Research in BiomedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan,Department of NursingAsia UniversityTaichungTaiwan,Department of Medical ResearchChina Medical University Hospital, China Medical UniversityTaichungTaiwan,Division of Cardiology, Department of Internal MedicineXiamen Chang Gung HospitalXiamenChina
| | - Mel S. Lee
- Department of Orthopaedic SurgeryKaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiungTaiwan,Department of Orthopedic SurgeryPao‐Chien HospitalPingtungTaiwan
| |
Collapse
|
12
|
Chen YT, Yang CC, Chiang JY, Sung PH, Shao PL, Huang CR, Lee MS, Yip HK. Prion Protein Overexpression in Adipose-Derived Mesenchymal Stem Cells (ADMSCs) Effectively Protected Rodent Kidney Against Ischemia-Reperfusion Injury Via Enhancing ATP/Mitochondrial Biogenesis-Role of ADMSC Rejuvenation and Proliferation. Cell Transplant 2023; 32:9636897231211067. [PMID: 38078417 PMCID: PMC10714882 DOI: 10.1177/09636897231211067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND We tested the hypothesis that overexpression of cellular-prion-protein in adipose-derived mesenchymal stem cells (PrPCOE-ADMSCs) effectively protected the kidney against ischemia-reperfusion (IR) injury in rat. METHODS Part I of cell culture was categorized into A1(ADMSCs)/A2(ADMSCs+p-Cresol)/A3(PrPCOE in ADMSCs)/A4 (PrPCOE in ADMSCs+p-Cresol). Part II of cell culture was divided into B1(ADMSCs)/B2[ADMSCs+lipopolysaccharide (LPS)]/B3(PrPCOE in ADMSCs)/B4(PrPCOE in ADMSCs+LPS). Sprague-Dawley (SD) rats (n = 50) were equally categorized into groups 1 (sham-operated-control)/2 (IR)/3 (IR+ADMSCs/6.0 × 105 equally divided into bilateral-renal arteries and 6.0 × 105 intravenous administration by 1 h after IR)/4 [IR+PrPCOE-ADMSCs (identical dosage administered as group 3)]/5 [IR+silencing PRNP -ADMSCs (identical dosage administered as group 3)], and kidneys were harvested post-day 3 IR injury. RESULTS Part I results demonstrated that the cell viability at 24/48/72 h, BrdU uptake/number of mitDNA/APT concentration/mitochondrial-cytochrome-C+ cells and the protein expressions of ki67/PrPC at 72 h-cell culturing were significantly higher in PrPCOE-ADMSCs than in ADMSCs (all P < 0.001). The protein expressions of oxidative-stress (NOX-1/NOX2/NOX4/oxidized protein)/mitochondrial-damaged (p22-phox/cytosolic-cytochrome-C)/inflammatory (p-NF-κB/IL-1ß/TNF-α/IL-6)/apoptotic (cleaved caspase-3/cleaved-PARP) biomarkers were lowest in A1/A3 and significantly higher in A2 than in A4 (all P < 0.001). Part II result showed that the protein expressions of inflammatory (p-NF-κB/IL-1ß/TNF-α/IL-6)/apoptotic (cleaved caspase-3/cleaved-PARP) biomarkers exhibited an identical pattern of part I among the groups (all P < 0.001). The protein expressions of inflammatory (p-NF-κB/IL-1ß/TNF-α/MMP-9)/oxidative-stress (NOX-1/NOX-2/oxidized-protein)/mitochondrial-damaged (cytosolic-cytochrome-C/p22-phox)/apoptotic (cleaved caspase-3/cleaved-PARP/mitochondrial-Bx)/autophagic (beclin-1/ratio of LC3B-II/LC3B-I)/fibrotic (Smad3/TGF-ß) biomarkers and kidney-injury-score/creatinine level were lowest in group 1, highest in group 2, significantly higher in group 5 than in groups 3/4 (all P < 0.0001). CONCLUSION PrPCOE in ADMSCs rejuvenated these cells and played a cardinal role on protecting the kidney against IR injury.
Collapse
Affiliation(s)
- Yen-Ta Chen
- Division of Urology, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
| | - Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung
| | - John Y. Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung
| | - Pei-Hsun Sung
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung
| | - Chi-Ruei Huang
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung
| | | | - Hon-Kan Yip
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Department of Nursing, Asia University, Taichung
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan
| |
Collapse
|
13
|
Chen KH, Lin HS, Li YC, Sung PH, Chen YL, Yin TC, Yip HK. Synergic Effect of Early Administration of Probiotics and Adipose-Derived Mesenchymal Stem Cells on Alleviating Inflammation-Induced Chronic Neuropathic Pain in Rodents. Int J Mol Sci 2022; 23:ijms231911974. [PMID: 36233275 PMCID: PMC9570240 DOI: 10.3390/ijms231911974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
This study investigated the hypothesis that probiotics enhanced the therapeutic effect of adipose-derived mesenchymal stem cells (ADMSCs) on alleviating neuropathic pain (NP) due to chronic constriction injury (CCI) mainly through regulating the microbiota in rats. SD rats (n = 50) were categorized into group 1 (sham-control), group 2 (NP), group 3 (NP + probiotics (i.e., 1.5 billion C.F.U./day/rat, orally 3 h after NP procedure, followed by QOD 30 times)), group 4 (NP + ADMSCs (3.0 × 105 cells) 3 h after CCI procedure, followed by QOD six times (i.e., seven times in total, i.e., mimic a clinical setting of drug use) and group 5 (NP + probiotics + ADMSCs (3.0 × 105 cells)) and euthanized by day 60 after NP induction. By day 28 after NP induction, flow-cytometric analysis showed circulating levels of early (AN-V+/PI−) and late (AN-V+/PI+) apoptotic, and three inflammatory (CD11b-c+, Ly6G+ and MPO+) cells were lowest in group 1 and significantly progressively reduced in groups 2 to 5 (all p < 0.0001). By days 7, 14, 21, 28, and 60 after CCI, the thresholds of thermal paw withdrawal latency (PWL) and mechanical paw withdrawal threshold (PWT) were highest in group 1 and significantly progressively increased in groups 2 to 5 (all p < 0.0001). Numbers of pain-connived cells (Nav1.8+/peripherin+, p-ERK+/peripherin+, p-p38+/peripherin+ and p-p38+/NF200+) and protein expressions of inflammatory (p-NF-κB, IL-1ß, TNF-α and MMP-9), apoptotic (cleaved-caspase-3, cleaved-PARP), oxidative-stress (NOX-1, NOX-2), DNA-damaged (γ-H2AX) and MAPK-family (p-P38, p-JNK, p-ERK1/2) biomarkers as well as the protein levels of Nav.1.3, Nav.1.8, and Nav.1.9 in L4-L5 in dorsal root ganglia displayed an opposite pattern of mechanical PWT among the groups (all p < 0.0001). In conclusion, combined probiotic and ADMSC therapy was superior to merely one for alleviating CCI-induced NP mainly through suppressing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hung-Sheng Lin
- Division of Neurology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yi-Chen Li
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Tsung-Cheng Yin
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: (T.-C.Y.); (H.-K.Y.)
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Nursing, Asia University, Taichung 41354, Taiwan
- Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen 361028, China
- Correspondence: (T.-C.Y.); (H.-K.Y.)
| |
Collapse
|
14
|
Liu T, Yang L, Mao H, Ma F, Wang Y, Li S, Li P, Zhan Y. Sirtuins as novel pharmacological targets in podocyte injury and related glomerular diseases. Biomed Pharmacother 2022; 155:113620. [PMID: 36122519 DOI: 10.1016/j.biopha.2022.113620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Podocyte injury is a major cause of proteinuria in kidney diseases, and persistent loss of podocytes leads to rapid irreversible progression of kidney disease. Sirtuins, a class of nicotinamide adenine dinucleotide-dependent deacetylases, can promote DNA repair, modify transcription factors, and regulate the cell cycle. Additionally, sirtuins play a critical role in renoprotection, particularly against podocyte injury. They also have pleiotropic protective effects on podocyte injury-related glomerular diseases, such as improving the immune inflammatory status and oxidative stress levels, maintaining mitochondrial homeostasis, enhancing autophagy, and regulating lipid metabolism. Sirtuins deficiency causes podocyte injury in different glomerular diseases. Studies using podocyte sirtuin-specific knockout and transgenic models corroborate this conclusion. Of note, sirtuin activators have protective effects in different podocyte injury-related glomerular diseases, including diabetic kidney disease, focal segmental glomerulosclerosis, membranous nephropathy, IgA nephropathy, and lupus nephritis. These findings suggest that sirtuins are promising therapeutic targets for preventing podocyte injury. This review provides an overview of recent advances in the role of sirtuins in kidney diseases, especially their role in podocyte injury, and summarizes the possible rationale for sirtuins as targets for pharmacological intervention in podocyte injury-related glomerular diseases.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shen Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
15
|
Yeh JP, Sung PH, Chiang JY, Huang CR, Chen YL, Lai JP, Sheu JJ. Rejuvenated endothelial progenitor cells through overexpression of cellular prion protein effectively salvaged the critical limb ischemia in rats with preexisting chronic kidney disease. Stem Cell Res Ther 2022; 13:447. [PMID: 36056416 PMCID: PMC9440498 DOI: 10.1186/s13287-022-03119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study tested the hypothesis that overexpression of cellular prion protein in endothelial progenitor cells (PrPcOE-EPCs), defined as "rejuvenated EPCs," was superior to EPCs for salvaging the critical limb ischemia (CLI) induced after 28-day chronic kidney disease (CKD) induction in rat. METHODS AND RESULTS Cell viability and flow cytometric analyses of early/late apoptosis/total-intracellular ROS/cell cycle (sub-G1, G2/M phase) were significantly higher in EPCs + H2O2 than in EPCs that were significantly reversed in PrPcOE-EPCs + H2O2 (all p < 0.001). The protein expressions of inflammation (IL-1ß/IL-6/MMP-9/p-NF-κB) were significantly increased in EPC + TNF-α than in EPCs that were significantly reversed in PrPcOE-EPCs + TNF-α (all p < 0.001). Adult-male SD rats (n = 8/each group) were categorized into group 1 (sham-operated control), group 2 (CKD + CLI), group 3 [CKD + CLI + EPCs by intravenous (0.6 × 105)/intra-muscular (0.6 × 105) injections at 3 h after CLI induction], group 4 (CKD + CLI + PrPcOE-EPCs/dose-administration as group 3) and group 5 (CKD + CLI + siPrnp-EPCs/dose-administration as group 3). By day 14 after CLI induction, the ratio of ischemia to normal blood flow (INBF) in CLI area was highest in group 1/lowest in group 2/significantly higher in group 4 than in groups 3/5 and significantly higher in group 3 than in group 5 (all p < 0.0001). Histopathology demonstrated that the angiogenesis (number of small vessels/CD31 + cells) exhibited a similar trend, whereas the fibrosis/kidney injury score exhibited an opposite pattern of INBF among the groups (all p < 0.0001). The protein expressions of angiogenesis (SDF-1α/VEGF/CXCR4)/cell-stress signaling (p-PI3K/p-Akt/p-m-TOR) were significantly and progressively increased from groups 1-4 that were reversed in group 5 (all p < 0.0001). The protein expressions of fibrotic (p-Smad3/TGF-ß)/oxidative-stress (NOX-1/NOX-2/oxidized-protein)/apoptotic (mitochondrial-Bax/cleaved caspase3/cleaved PARP)/mitochondrial-damaged (cytosolic-cytochrome-C) biomarkers displayed an opposite pattern of INBF among the groups (all p < 0.0001). CONCLUSION PrPcOE-EPCs were superior to EPCs only therapy for salvaging the CLI.
Collapse
Affiliation(s)
- Jui-Po Yeh
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Dapi Road, Niaosung Dist., Kaohsiung City, 833253, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833253, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833253, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833253, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chi-Ruei Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833253, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833253, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833253, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833253, Taiwan
| | - Jui-Pin Lai
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Dapi Road, Niaosung Dist., Kaohsiung City, 833253, Taiwan.
| | - Jiunn-Jye Sheu
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833253, Taiwan. .,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833253, Taiwan. .,Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Dapi Road, Niaosung Dist., Kaohsiung, 83301, Taiwan.
| |
Collapse
|
16
|
Theofilis P, Vordoni A, Kalaitzidis RG. The Role of Melatonin in Chronic Kidney Disease and Its Associated Risk Factors: A New Tool in Our Arsenal? Am J Nephrol 2022; 53:565-574. [PMID: 35767942 DOI: 10.1159/000525441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/25/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND The increasing incidence of chronic kidney disease (CKD), as a consequence of the high prevalence of arterial hypertension and type 2 diabetes mellitus (T2DM), warrants the need for developing effective treatment approaches. In this regard, the pineal gland-derived hormone melatonin may represent an appealing treatment approach of CKD and its associated risk factors. SUMMARY Targeting the adverse pathophysiology surrounding CKD and its associated risk factors has been the concept of pharmacologic treatment developed for its management. This review article aimed to present the role of melatonin in this direction, by providing an overview of melatonin's physiology followed by its effect as a therapeutic agent in arterial hypertension and T2DM. KEY MESSAGES Melatonin, the primary darkness hormone, possesses pleiotropic mechanisms of action which may have important implications in various pathologic states since its receptors are situated across various organ systems. As a treatment tool in arterial hypertension, melatonin may be efficacious in reducing both daytime and nocturnal blood pressure by influencing endothelial function, oxidative stress, the autonomic nervous system, and the renin-angiotensin system. Melatonin may also increase insulin sensitivity and β-cell function. However, late meal intake may be detrimental in glucose regulation, as consumption close to melatonin peak concentrations may induce hyperglycemia and insulin resistance. This finding may explain the inconsistent glycose regulation achieved with melatonin in clinical trials and meta-analyses. Additionally, the presence of genetic variants to melatonin receptor 2 may predispose to T2DM development. Finally, we present the available preclinical evidence supporting melatonin's efficacy in ameliorating CKD's pathophysiology since melatonin supplementation has not been adequately explored in patients with CKD. The combined use of stem cells with melatonin is an appealing therapeutic approach which ought to be assessed further.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- General Hospital of Nikaia-Piraeus Agios Panteleimon, Center for Nephrology "G. Papadakis", Piraeus, Greece
| | - Aikaterini Vordoni
- General Hospital of Nikaia-Piraeus Agios Panteleimon, Center for Nephrology "G. Papadakis", Piraeus, Greece
| | - Rigas G Kalaitzidis
- General Hospital of Nikaia-Piraeus Agios Panteleimon, Center for Nephrology "G. Papadakis", Piraeus, Greece
| |
Collapse
|
17
|
Yue Y, Yeh JN, Chiang JY, Sung PH, Chen YL, Liu F, Yip HK. Intrarenal arterial administration of human umbilical cord-derived mesenchymal stem cells effectively preserved the residual renal function of diabetic kidney disease in rat. Stem Cell Res Ther 2022; 13:186. [PMID: 35526048 PMCID: PMC9080206 DOI: 10.1186/s13287-022-02857-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/10/2022] [Indexed: 12/16/2022] Open
Abstract
Background This experimental study was designed as a preclinical study for testing the hypothesis that intrarenal arterial (IRA) transfusion of human umbilical cord-derived mesenchymal stem cells (HUCDMSCs) therapy preserved the residual renal function of diabetic kidney disease (DKD) in rat [induction by 5/6 nephrectomy of left kidney and right nephrectomy, followed by intraperitoneal administration of aminoguanidine (180 mg/kg) and streptozotocin (30 mg/kg)]. Methods Animals (n = 24) were categorized into group 1 (sham-operated control), group 2 (DKD), group 3 [DKD + HUCDMSCs (2.1 × 105/IRA injection at day 28 after CKD induction)] and group 4 [(DKD + HUCDMSCs (6.3 × 105/IRA injection)]. Results By day 60 after DKD induction, the kidneys were harvested and the result showed that the creatinine level, ratio of urine protein/urine creatinine and kidney injury score were lowest in group 1, highest in group 2 and significantly lower in group 4 than in group 3 (all p < 0.0001). The protein expressions of apoptotic (cleaved caspase-3/cleaved PARP/mitochondrial Bax), fibrotic (TGF-ß/p-Smad3), autophagic (ratio of LC3B-II/LC3B-I, Atg5/Beclin-1), oxidative stress (NOX-1/NOX-2/oxidized protein/p22phox), mitochondrial/DNA-damaged (cytosolic-cytochrome-C/DRP1/γ-H2AX) and inflammatory (MMP-9/TNF-α/p-NF-κB) biomarkers exhibited an identical pattern, whereas the protein expressions of angiogenesis factors (CD31/vWF/vascularity) exhibited an opposite pattern of creatinine level among the groups (all p < 0.0001). Histopathological findings demonstrated the renal tubular-damaged (KIM-1)/kidney fibrosis area/oxidative stress (8-OHdG + cells) expressed an identical pattern, whereas the podocyte components (ZO-1/synaptopodin/podocin) exhibited an opposite pattern of creatinine level among the groups (all p < 0.0001). No tumorigenesis or immune rejection event was identified. Conclusion IRA injection of xenogeneic MSCs was safe and effectively protected the residual renal function and architectural integrity in DKD rat.
Collapse
Affiliation(s)
- Ya Yue
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Jui-Ning Yeh
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China.,Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Fanna Liu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan. .,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan. .,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan. .,Department of Nursing, Asia University, Taichung, 41354, Taiwan. .,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, 361028, Fujian, China.
| |
Collapse
|
18
|
Aierken A, Li B, Liu P, Cheng X, Kou Z, Tan N, Zhang M, Yu S, Shen Q, Du X, Enkhbaatar BB, Zhang J, Zhang R, Wu X, Wang R, He X, Li N, Peng S, Jia W, Wang C, Hua J. Melatonin treatment improves human umbilical cord mesenchymal stem cell therapy in a mouse model of type II diabetes mellitus via the PI3K/AKT signaling pathway. Stem Cell Res Ther 2022; 13:164. [PMID: 35414044 PMCID: PMC9006413 DOI: 10.1186/s13287-022-02832-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/01/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are promising candidates for tissue regeneration and disease treatment. However, long-term in vitro passaging leads to stemness loss of MSCs, resulting in failure of MSC therapy. This study investigated whether the combination of melatonin and human umbilical cord mesenchymal stem cells (hUC-MSCs) was superior to hUC-MSCs alone in ameliorating high-fat diet and streptozocin (STZ)-induced type II diabetes mellitus (T2DM) in a mouse model. METHODS Mice were divided into four groups: normal control (NC) group; T2DM group; hUC-MSCs treatment alone (UCMSC) group and pretreatment of hUC-MSCs with melatonin (UCMSC/Mel) group. RESULTS RNA sequence analysis showed that certain pathways, including the signaling pathway involved in the regulation of cell proliferation signaling pathway, were regulated by melatonin. The blood glucose levels of the mice in the UCMSC and UCMSC/Mel treatment groups were significantly reduced compared with the T2DM group without treatment (P < 0.05). Furthermore, hUC-MSCs enhance the key factor in the activation of the PI3K/Akt pathway in T2DM mouse hepatocytes. CONCLUSION The pretreatment of hUC-MSCs with melatonin partly boosted cell efficiency and thereby alleviated impaired glycemic control and insulin resistance. This study provides a practical strategy to improve the application of hUC-MSCs in diabetes mellitus and cytotherapy. Overview of the PI3K/AKT signaling pathway. (A) Underlying mechanism of UCMSC/Mel inhibition of hyperglycemia and insulin resistance T2DM mice via regulation of PI3K/AKT pathway. hUC-MSCs stimulates glucose uptake and improves insulin action thus should inhibition the clinical signs of T2DM, through activation of the p-PI3K/Akt signaling pathway and then regulates glucose transport through activating AS160. UCMSC/Mel increases p53-dependent expression of BCL2, and inhibit BAX and Capase3 protein activation. Leading to the decrease in apoptosis. (B) Melatonin modulated PI3K/AKT signaling pathway. Melatonin activated PI3K/AKT response pathway through binding to MT1and MT2 receptor. Leading to the increase in hUC-MSCs proliferation, migration and differentiation. → (Direct stimulatory modification); ┴ ( Direct Inhibitory modification); → ┤ (Multistep inhibitory modification); ↑ (Up regulate); ↓ (Down regulate); PI3K (Phosphoinositide 3-Kinase); AKT ( protein kinase B); PDK1 (Phosphoinositide-dependent protein kinase 1); IR, insulin receptor; GLUT4 ( glucose transporter type 4); ROS (reactive oxygen species); BCL-2 (B-cell lymphoma-2); PDK1 (phosphoinositide-dependent kinase 1) BAX (B-cell lymphoma-2-associated X protein); PCNA (Proliferating cell nuclear antigen); Cell cycle-associated proteins (KI67, cyclin A, cyclin E).
Collapse
Affiliation(s)
- Aili Aierken
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Balun Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Peng Liu
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xuedi Cheng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Zheng Kou
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Ning Tan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Mengfei Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Shuai Yu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Qiaoyan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Xiaomin Du
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Bold Bayar Enkhbaatar
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Juqing Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Rui Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Xiaolong Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Ruibin Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Wenwen Jia
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Congrong Wang
- Department of Endocrinology and Metabolism, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China.
| |
Collapse
|
19
|
Sung PH, Chai HT, Yang CC, Chiang JY, Chen CH, Chen YL, Yip HK. Combined levosimendan and Sacubitril/Valsartan markedly protected the heart and kidney against cardiorenal syndrome in rat. Biomed Pharmacother 2022; 148:112745. [DOI: 10.1016/j.biopha.2022.112745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
|