1
|
Kumar P, Mahalakshmi M, Anitha S, Durgadevi S, Govarthanan M. Luminous blue carbon quantum dots employing Anisomeles indica (catmint) induce apoptotic signaling pathway in triple negative breast cancer (TNBC) cells. LUMINESCENCE 2024; 39:e4848. [PMID: 39092486 DOI: 10.1002/bio.4848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Herein, luminous blue carbon quantum dots (CDs) employing Anisomeles indica (Catmint) were reported with imaging, self-targeting, and therapeutic effects on triple-negative breast cancer (TNBC, MDA-MB-231) cells. The salient features of CDs generated from catmint are as follows: i) optical studies confirm CDs with excitation-dependent emission; ii) high-throughput characterization authenticates the formation of CDs with near-spherical shape with diameter ranging between 5 and 15 nm; iii) CDs induce cytotoxicity (3.22 ± 0.64 μg/ml) in triple-negative breast cancer (TNBC, MDA-MB-231) cells; iv) fluorescence microscopy demonstrates that CDs promote apoptosis by increasing reactive oxygen species (ROS) and decreasing mitochondrial membrane potential; v) CDs significantly up-regulate pro-apoptotic gene expression levels such as caspases-8/9/3. Finally, our work demonstrates that catmint-derived CDs are prospective nanotheranostics that augment cancer targeting and imaging.
Collapse
Affiliation(s)
- Ponnuchamy Kumar
- Food Chemistry and Molecular Cancer Biology, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Marimuthu Mahalakshmi
- Food Chemistry and Molecular Cancer Biology, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Selvaraj Anitha
- Food Chemistry and Molecular Cancer Biology, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sabapathi Durgadevi
- Food Chemistry and Molecular Cancer Biology, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
2
|
Reza ASMA, Raihan R, Azam S, Shahanewz M, Nasrin MS, Siddique MAB, Uddin MN, Dey AK, Sadik MG, Alam AK. Experimental and pharmacoinformatic approaches unveil the neuropharmacological and analgesic potential of chloroform fraction of Roktoshirinchi (Achyranthes ferruginea Roxb.). JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117769. [PMID: 38219886 DOI: 10.1016/j.jep.2024.117769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Achyranthes ferruginea (A. ferruginea) Roxb. is a common plant used in traditional medicine in Asia and Africa. It has a variety of local names, including "Gulmanci" in Nigeria, "Dangar" in Pakistan, "Thola" in Ethiopia, and "Roktoshirinchi" in Bangladesh. It is edible and has several ethnomedical uses for a wide range of illnesses, including hysteria, dropsy, constipation, piles, boils, asthma, and shigellosis. However, the neuropharmacological and analgesic potential of A. ferruginea remains uninvestigated. AIM OF THE STUDY To assess the neuropharmacological and analgesic potential of A. ferruginea through a multifaceted approach encompassing both experimental and computational models. MATERIALS AND METHODS Methanol was used to extract the leaves of A. ferruginea. It was then fractionated with low to high polar solvents (n-hexane, chloroform, ethyl acetate, and water) to get different fractions, including chloroform fraction (CLF). The study selected CLF at different doses and conducted advanced chemical element and proximate analyses, as well as phytochemical profiling using GC-MS. Toxicological studies were done at 300 μg per rat per day for 14 days. Cholinesterase inhibitory potential was checked using an in-vitro colorimetric assay. Acetic acid-induced writhing (AAWT) and formalin-induced licking tests (FILT) were used to assess anti-nociceptive effects. The forced swim test (FST), tail suspension test (TST), elevated plus maze (EPM), hole board test (HBT), and light and dark box test (LDB) were among the behavioral tests used to assess depression and anxiolytic activity. Network pharmacology-based analysis was performed on selected compounds using the search tool for interacting chemicals-5 (STITCH 5), Swiss target prediction tool, and search tool for the retrieval of interacting genes and proteins (STRING) database to link their role with genes involved in neurological disorders through gene ontology and reactome analysis. RESULTS Qualitative chemical element analysis revealed the presence of 15 elements, including Na, K, Ca, Mg, P, and Zn. The moisture content, ash value, and organic matter were found to be 11.12, 11.03, and 88.97%, respectively. GC-MS data revealed that the CLF possesses 25 phytoconstituents. Toxicological studies suggested the CLF has no effects on normal growth, hematological and biochemical parameters, or cellular organs after 14 days at 300 μg per rat. The CLF markedly reduced the activity of both acetylcholinesterase and butyrylcholinesterase (IC50: 56.22 and 13.22 μg/mL, respectively). Promising dose-dependent analgesic activity (p < 0.05) was observed in chemically-induced pain models. The TST and FST showed a dose-dependent substantial reduction in immobility time due to the CLF. Treatment with CLF notably increased the number of open arm entries and time spent in the EPM test at doses of 200 and 400 mg/kg b.w. The CLF showed significant anxiolytic activity at 200 mg/kg b.w. in the HBT test, whereas a similar activity was observed at 400 mg/kg b.w. in the EPM test. A notable increase in the amount of time spent in the light compartment was observed in the LDB test by mice treated with CLF, suggesting an anxiolytic effect. A network pharmacology study demonstrated the relationship between the phytochemicals and a number of targets, such as PPARA, PPARG, CHRM1, and HTR2, which are connected to the shown bioactivities. CONCLUSIONS This study demonstrated the safety of A. ferruginea and its efficacy in attenuating cholinesterase inhibitory activity, central and peripheral pain, anxiety, and depression, warranting further exploration of its therapeutic potential.
Collapse
Affiliation(s)
- A S M Ali Reza
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh.
| | - Riaj Raihan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh.
| | - Saidul Azam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh.
| | - Mohammed Shahanewz
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh.
| | - Mst Samima Nasrin
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh.
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh.
| | - Md Nazim Uddin
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh.
| | - Anik Kumar Dey
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Md Golam Sadik
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Ahm Khurshid Alam
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
3
|
Eva TA, Mamurat H, Rahat MHH, Hossen SMM. Unveiling the pharmacological potential of Coelogyne suaveolens: An investigation of its diverse pharmacological activities by in vivo and computational studies. Food Sci Nutr 2024; 12:1749-1767. [PMID: 38455216 PMCID: PMC10916579 DOI: 10.1002/fsn3.3867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/04/2023] [Accepted: 11/13/2023] [Indexed: 03/09/2024] Open
Abstract
The medicinal potential of Coelogyne suaveolens, a traditional medicinal plant, was investigated through in vivo and molecular docking studies. The ethyl acetate fraction of the plant's acetonic extract was subjected to various bioactivity tests to assess its analgesic, anxiolytic, and sedative effects on Swiss albino mice. Furthermore, we used GCMS to identify the bioactive chemicals in the extract's ethyl acetate fraction. The root and bulb extracts demonstrated significant analgesic activity in acetic acid-induced writhing, hot plate, and tail immersion tests in a dose-dependent manner when compared to the control. Again, the extract exhibited moderate anxiolytic activity in the elevated plus maze test at a dosage of 400 mg/kg body weight, while the root extract showed significant anxiolytic activity in the hole board test at the same dosage. Significant sedative activity was observed in the hole cross, open field, and rotarod tests at a dosage of 400 mg/kg. According to molecular docking studies, the extract has the potential to serve as an analgesic medication by reducing the enzymatic activity of cyclooxygenases 1 and 2. Overall, the findings suggest that C. suaveolens has substantial therapeutic potential for the development of novel treatments for pain, anxiety, and sleep disorders.
Collapse
Affiliation(s)
- Taslima Akter Eva
- Department of Pharmacy, Faculty of Biological ScienceUniversity of ChittagongChittagongBangladesh
| | - Husnum Mamurat
- Department of Pharmacy, Faculty of Biological ScienceUniversity of ChittagongChittagongBangladesh
| | - Md. Habibul Hasan Rahat
- Department of Pharmacy, Faculty of Biological ScienceUniversity of ChittagongChittagongBangladesh
| | - S. M. Moazzem Hossen
- Department of Pharmacy, Faculty of Biological ScienceUniversity of ChittagongChittagongBangladesh
| |
Collapse
|
4
|
Jyoti MA, Shah MS, Uddin MN, Hossain MK, Han A, Geng P, Islam MN, Mamun AA. Anti-oxidant and neuro-modulatory effects of bioactive Byttneria pilosa leaf extract in swiss albino mice using behavioral models. Front Chem 2024; 12:1341308. [PMID: 38389724 PMCID: PMC10881790 DOI: 10.3389/fchem.2024.1341308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
Byttneria pilosa, a flowering plant from the Malvaceae family traditionally used to treat ailments such as boils and scabies, is here investigated for its potential health benefits. The study focused on evaluating its antioxidant and antidiabetic properties in vitro, as well as the in vivo anxiolytic and antidepressant activities of the methanol extract of B. pilosa leaf (MEBP). The study employed various assays to evaluate antioxidant activity, including 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, reducing power capacity, and quantification of the total phenolic and flavonoid contents of MEBP. Additionally, anxiolytic and antidepressant activities were evaluated through four tests: elevated plus-maze test (EPMT), light-dark box test (LDBT), forced swimming test (FST), and tail suspension test (TST). Antidiabetic effect was determined using α-amylase inhibition assay. Docking analysis was performed using BIOVIA and Schrödinger Maestro (v11.1), and the absorption, distribution, metabolism, and excretion/toxicity (ADME/T) properties of bioactive substances were investigated using a web-based technique. MEBP exhibited moderate antioxidant activity in DPPH radical scavenging and reducing power capacity assays, with a dose-dependent response. The total phenolic and flavonoid contents measured were 70 ± 1.53 mg and 22.33 ± 1.20 mg, respectively. MEBP demonstrated significant effects in α-amylase inhibition comparable to acarbose. In behavioral tests, MEBP dose-dependently altered time spent in open arms/light box and closed arms/dark box, indicating anxiolytic effects. Moreover, MEBP significantly reduced immobility duration in FST and TST, suggesting antidepressant properties. Molecular docking analysis revealed favorable interactions between beta-sitosterol and specific targets, suggesting the potential mediation of anxiolytic and antidiabetic effects. Overall, MEBP exhibits notable anxiolytic and antidepressant properties, along with moderate antioxidant and antidiabetic activities.
Collapse
Affiliation(s)
- Mifta Ahmed Jyoti
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Md Shahin Shah
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Mohammad Najim Uddin
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Life and Earth Science, Jagannath University, Dhaka,Bangladesh
| | - Mohammed Kamrul Hossain
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Aixia Han
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Abdullah Al Mamun
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, Zhejiang, China
| |
Collapse
|
5
|
Mostofa MG, Reza AA, Khan Z, Munira MS, Khatoon MM, Kabir SR, Sadik MG, Ağagündüz D, Capasso R, Kazi M, Alam AHMK. Apoptosis-inducing anti-proliferative and quantitative phytochemical profiling with in silico study of antioxidant-rich Leea aequata L. leaves. Heliyon 2024; 10:e23400. [PMID: 38170014 PMCID: PMC10759211 DOI: 10.1016/j.heliyon.2023.e23400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/24/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
Natural products have been important parts of traditional medicine since ancient times, with various promising health effects. Leea aequata (L. aequata), a natural product, has been widely used for treating several diseases due to its promising pharmacological activities. Therefore, the present study aimed to explore the phytochemical profiling and molecular docking of the antioxidant-rich part of L. aequata leaves and its antiproliferative activity. L. aequata leaves were extracted with methanol, followed by fractionation with the respective solvents to obtain the petroleum ether, chloroform, ethyl acetate, and aqueous fractions. The antioxidant activity was evaluated by spectrophotometric methods. The cytotoxic and antiproliferative activities were detected using MTT colorimetric and confocal microscopy methods, respectively. Phytochemical compositions were analyzed using gas chromatography‒mass spectrometry analysis. Computer aided (molecular docking SwissADME, AdmetSAR and pass prediction) analyses were undertaken to sort out the best-fit phytochemicals present in the plant responsible for antioxidant and anticancer effects. Among the fractions, the ethyl acetate fraction was the most abundant polyphenol-rich fraction and showed the highest antioxidant, reducing power, and free radical scavenging activities. Compared to untreated MCF-7 cells, ethyl acetate fraction-treated MCF-7 cells showed an increase in apoptotic characteristics, such as membrane blebbing, chromatin condensation, and nuclear fragmentation, causing apoptosis and decreased proliferation of HeLa and MCF-7 cells. Furthermore, gas chromatography mass spectrometry data revealed that the ethyl acetate fraction contained 16 compounds, including methyl esters of long-chain fatty acids, which are the major chemical constituents. Moreover, hexadecanoic acid, methyl ester; 9-octadecenoic acid (Z)-, methyl ester; 9,12-octadecadienoic acid, methyl ester (Z, Z) and phenol, 2,4-bis(1,1-dimethylethyl) are known to have antioxidant and cytotoxic activity, as confirmed by computer-aided models. A strong correlation was observed between the antioxidant and polyphenolic contents and the anticancer activity. In conclusion, we explored the possibility that L. aequata could be a promising source of antioxidants and anticancer agents with a high phytochemical profile.
Collapse
Affiliation(s)
- Md Golam Mostofa
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh
- Department of Pharmacy, Gono Bishwabidyalay (University), Mirzanagar, Savar, Dhaka 1344, Bangladesh
| | - A.S.M. Ali Reza
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | | | - Mst Mahfuza Khatoon
- Department of Pharmacy, Gono Bishwabidyalay (University), Mirzanagar, Savar, Dhaka 1344, Bangladesh
| | - Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi, 6205, Bangladesh
| | - Md Golam Sadik
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara 06490, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - AHM Khurshid Alam
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
6
|
Ismaila MS, Sanusi KO, Iliyasu U, Imam MU, Georges K, Sundaram V, Jones KR. Antioxidant and Anti-Inflammatory Properties of Quail Yolk Oil via Upregulation of Superoxide Dismutase 1 and Catalase Genes and Downregulation of EIGER and Unpaired 2 Genes in a D. melanogaster Model. Antioxidants (Basel) 2024; 13:75. [PMID: 38247499 PMCID: PMC10812611 DOI: 10.3390/antiox13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Quail egg yolk oil (QEYO) has a rich history of medicinal use, showcasing heightened antioxidant and bioactive properties in our prior studies. This positions QEYO as a promising candidate for therapeutic and cosmetic applications. In this investigation, QEYO was extracted using ethanol/chloroform and 2-propanol/hexane solvents. GC-MS and FTIR analyses quantified 14 major bioactive compounds in the ethanol/chloroform fraction and 12 in the 2-propanol/hexane fraction. Toxicity evaluations in fruit flies, spanning acute, sub chronic, and chronic exposures, revealed no adverse effects. Negative geotaxis assays assessed locomotor activity, while biochemical assays using fly hemolymph gauged antioxidant responses. Real-time PCR revealed the relative expression levels of the antioxidant and anti-inflammatory genes. FTIR spectra indicated diverse functional groups, and the GC-MS results associated bioactive compounds with the regulation of the anti-inflammatory genes EIGER and UPD2. While no significant change in SOD activities was noted, male flies treated with specific QEYO doses exhibited increased catalase activity and total antioxidant capacity, coupled with a significant decrease in their malondialdehyde levels. This study offers valuable insights into the bioactive compounds of QEYO and their potential regulatory roles in gene expression.
Collapse
Affiliation(s)
- Muhammad Sani Ismaila
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, The University of the West Indies, St. Augustine 999183, Trinidad and Tobago; (M.S.I.); (K.G.); (V.S.)
| | - Kamaldeen Olalekan Sanusi
- Centre for Advanced Medical Research and Training (CAMRET), Usmanu Danfodiyo University, Sokoto 840004, Nigeria; (K.O.S.); (M.U.I.)
| | - Uwaisu Iliyasu
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna 800283, Nigeria;
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training (CAMRET), Usmanu Danfodiyo University, Sokoto 840004, Nigeria; (K.O.S.); (M.U.I.)
| | - Karla Georges
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, The University of the West Indies, St. Augustine 999183, Trinidad and Tobago; (M.S.I.); (K.G.); (V.S.)
| | - Venkatesan Sundaram
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, The University of the West Indies, St. Augustine 999183, Trinidad and Tobago; (M.S.I.); (K.G.); (V.S.)
| | - Kegan Romelle Jones
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, The University of the West Indies, St. Augustine 999183, Trinidad and Tobago; (M.S.I.); (K.G.); (V.S.)
| |
Collapse
|
7
|
Ho TJ, Ahmed T, Shibu MA, Lin YJ, Shih CY, Lin PY, Ling SZ, Chiang CY, Kuo WW, Huang CY. A prospective review of the health-promoting potential of Jing Si Herbal Tea. Tzu Chi Med J 2024; 36:1-22. [PMID: 38406577 PMCID: PMC10887337 DOI: 10.4103/tcmj.tcmj_194_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 02/27/2024] Open
Abstract
Traditional Chinese medicine (TCM) has gained considerable attention over the past few years for its multicomponent, multitarget, and multi-pathway approach to treating different diseases. Studies have shown that TCMs as adjuvant therapy along with conventional treatment may benefit in safely treating various disorders. However, investigations on finding effective herbal combinations are ongoing. A novel TCM formula, "Jing Si Herbal Tea (JSHT)," has been reported recently for their health-promoting effects in improving overall body and mental health. JSHT is a combination of eight herbs recognized in Chinese herbal pharmacopoeia for their anti-viral, anti-aging, and anti-cancer properties as well as protective effects against cardiovascular, metabolic, neural, digestive, and genitourinary diseases. Thus, to better understand the beneficial effects of the ingredients of JSHT on health, this review intends to summarize the preclinical and clinical studies of the ingredients of JSHT on human health and diseases, and possible therapeutic effects with the related mode of actions and future prospects for their application in complementary therapies.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, HualienTzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tanvir Ahmed
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Yu-Jung Lin
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Cheng Yen Shih
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
| | - Shinn-Zong Ling
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chien-Yi Chiang
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph. D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Biological Science and Technology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital and China Medical University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
8
|
Chen YR, Jiang WP, Deng JS, Chou YN, Wu YB, Liang HJ, Lin JG, Huang GJ. Anisomeles indica Extracts and Their Constituents Suppress the Protein Expression of ACE2 and TMPRSS2 In Vivo and In Vitro. Int J Mol Sci 2023; 24:15062. [PMID: 37894745 PMCID: PMC10606724 DOI: 10.3390/ijms242015062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), stemming from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has had a profound global impact. This highly contagious pneumonia remains a significant ongoing threat. Uncertainties persist about the virus's effects on human health, underscoring the need for treatments and prevention. Current research highlights angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) as key targets against SARS-CoV-2. The virus relies on ACE2 to enter cells and TMPRSS2 to activate its spike protein. Inhibiting ACE2 and TMPRSS2 expression can help prevent and treat SARS-CoV-2 infections. Anisomeles indica (L.) Kuntze, a medicinal plant in traditional Chinese medicine, shows various promising pharmacological properties. In this study, ethanolic extracts of A. indica were examined both in vivo (250 and 500 μM) and in vitro (500 μM). Through Western blotting analysis, a significant reduction in the expression levels of ACE2 and TMPRSS2 proteins was observed in HepG2 (human hepatocellular carcinoma) cells and HEK 293T (human embryonic kidney) cell lines without inducing cellular damage. The principal constituents of A. indica, namely, ovatodiolide (5 and 10 μM), anisomlic acid (5 and 10 μM), and apigenin (12.5 and 25 μM), were also found to produce the same effect. Furthermore, immunohistochemical analysis of mouse liver, kidney, and lung tissues demonstrated a decrease in ACE2 and TMPRSS2 protein expression levels. Consequently, this article suggests that A. indica and its constituents have the potential to reduce ACE2 and TMPRSS2 protein expression levels, thus aiding in the prevention of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Yu-Ru Chen
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (Y.-R.C.); (Y.-N.C.); (J.-G.L.)
| | - Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Jeng-Shyan Deng
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan;
| | - Ya-Ni Chou
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (Y.-R.C.); (Y.-N.C.); (J.-G.L.)
| | - Yeh-Bin Wu
- Arjil Pharmaceuticals LLC, Hsinchu 300, Taiwan; (Y.-B.W.); (H.-J.L.)
| | - Hui-Ju Liang
- Arjil Pharmaceuticals LLC, Hsinchu 300, Taiwan; (Y.-B.W.); (H.-J.L.)
| | - Jaung-Geng Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (Y.-R.C.); (Y.-N.C.); (J.-G.L.)
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (Y.-R.C.); (Y.-N.C.); (J.-G.L.)
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan;
| |
Collapse
|
9
|
Hasan M, Hossain MM, Abrarin S, Kormoker T, Billah MM, Bhuiyan MKA, Akbor MA, Salam SMA, Khan R, Naher K, Salam MA, Ali MM, Rahman MM, Emran TB, Mahmoud Z, Khandaker MU, Siddique MAB. Heavy metals in popularly sold branded cigarettes in Bangladesh and associated health hazards from inhalation exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100828-100844. [PMID: 37644270 DOI: 10.1007/s11356-023-29491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Tobacco products are widely recognized as a major contributor to death. Cigarette smoke contains several toxic chemicals including heavy metals particulate causing high health risks. However, limited information has been available on the health risks associated with the heavy metals in cigarettes commonly sold in the Bangladeshi market. This study evaluated the concentrations and potential health risks posed by ten concerned heavy metals in ten widely consumed cigarette brands in Bangladesh using an atomic absorption spectrometer. The concentration (mg/kg) ranges of heavy metals Pb, Cd, Cr, As, Co, Ni, Mn, Fe, Cu, and Zn vary between 0.46-1.05, 0.55-1.03, 0.80-1.2, 0.22-0.40, 0.46-0.78, 2.59-3.03, 436.8-762.7, 115.8-184.4, 146.6-217.7, and 34.0-42.7, respectively. We assume that the heavy metals content among cigarette brands is varied due to the differences in the source of tobacco they use for cigarette preparation. The carcinogenic risks posed by heavy metals follow the order of Cr > Co > Cd > As > Ni > Pb, while the non-carcinogenic risks for Cu, Zn, Fe, and Mn were greater than unity (HQ > 1), except for Fe. The existence of toxic heavy metals in cigarette tobacco may thus introduce noticeable non-carcinogenic and carcinogenic health impacts accompanying inhalation exposure. This study provides the first comprehensive report so far on heavy metal concentration and associated health risks in branded cigarettes commonly sold in Bangladesh. Hence, this data and the information provided can serve as a baseline as well as a reference for future research and have potential implications for policy and legislation in Bangladesh.
Collapse
Affiliation(s)
- Mehedi Hasan
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Moazzem Hossain
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shaifa Abrarin
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Tapos Kormoker
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | - Md Masum Billah
- Inter-Departmental Research Centre for Environmental Science - CIRSA, University of Bologna, Via S. Alberto 163, Ravenna Campus, Ravenna, 48123, Italy
| | - Md Khurshid Alam Bhuiyan
- Institute of Marine Research (INMAR), University of Cádiz, Research Institutes Building, Puerto Real Campus, Cádiz, 11510, Puerto Real, Spain
| | - Md Ahedul Akbor
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Sayed M A Salam
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Rahat Khan
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh
| | - Kamrun Naher
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh
| | - Mohammed Abdus Salam
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Z Mahmoud
- Department of Physics, College of Sciences, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Malaysia
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh.
| |
Collapse
|
10
|
Reza AA, Sakib MA, Nasrin MS, Khan J, Khan MF, Hossen MA, Ali MH, Haque MA. Lasia spinosa (L.) thw. attenuates chemically induced behavioral disorders in experimental and computational models. Heliyon 2023; 9:e16754. [PMID: 37313137 PMCID: PMC10258414 DOI: 10.1016/j.heliyon.2023.e16754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Lasia spinosa (L.) Thw. (L. spinosa) is widely used as a folk remedy for different physical ailments, and its neurological effects have yet to be assessed. Phytochemicals status of L. spinosa was evaluated by GC-MS analysis. Membrane stabilization test, elevated plus maze (EPM) tests and hole board tests (HBT), tail suspension tests (TST) and thiopental sodium-induced sleeping tests (TISTT) were used to assess anti-inflammatory, anxiolytic and anti-depressant activity. Fourteen compounds have been recorded from GC-MS analysis. The LSCTF showed 68.66 ± 2.46% hemolysis protections (p < 0.05) at 500 μg/mL, whereas LSCHF and LSNHF demonstrated efficiency rates of 68.6 ± 1.46% and 52.46 ± 5.28%, respectively. During EPM tests, LSNHF and LSCTF significantly (p < 0.001) increased the time spent in the open arm (59.88 ± 0.65 s and 50.77 ± 0.67 s, respectively) at the dosages of 400 mg/kg. In HBT, samples exhibited dose-dependent anxiolytic activity. LSNHF and LSCTF showed a significant (p < 0.001) hole poking tendency and a high number of head dips (78.66 ± 1.05 and 65.17 ± 0.96, respectively) at the higher dose. In TST, at 400 mg/kg dose demonstrated significantly (p < 0.001) smaller amounts of time immobile, at 81.33 ± 1.67 s and 83.50 ± 1.90 s, respectively, compared to the control group. A consistent finding was also observed in TISTT. The computer-assisted studies on the identified compounds strongly support the aforementioned biological activities, indicating that L. spinosa has potential as a source of medication for treating neuropsychiatric and inflammatory diseases.
Collapse
Affiliation(s)
- A.S.M. Ali Reza
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Mahfuz Ahmed Sakib
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Mst. Samima Nasrin
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Mohammad Forhad Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Md. Amjad Hossen
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Md. Hazrat Ali
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
| | - Md. Anwarul Haque
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
11
|
Ferdousi L, Begum M, Yeasmin MS, Uddin J, Miah MAA, Rana GM, Chowdhury TA, Boby F, Maitra B, Khan R, Emran TB, Siddique MAB. Facile acid fermentation extraction of silkworm pupae oil and evaluation of its physical and chemical properties for utilization as edible oil. Heliyon 2023; 9:e12815. [PMID: 36647348 PMCID: PMC9840356 DOI: 10.1016/j.heliyon.2023.e12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Considering the increasing demand for edible oil in recent times, their price in the world market is becoming skyrocketing. In this research, we produced cost-effective edible oil from desilked silkworm pupae (Bombyx mori) applying a facile acid fermentation process, for the first time. The extraction was performed using two different types of organic acids, 3% of each acetic and citric acid. The yield of the extracted oil was 3.52 ± 0.23% from fresh silkworm pupae. The produced oil was then characterized physically and chemically to know its suitability to be used as edible oil. The oil was found with a low peroxide and acid value of 4.82 meq/kg and 1.35 mg KOH/g oil, respectively, and comprised of different fatty acids, in which palmitic acid (32.04%) and oleic acid (34.62%) were in large portions among the total fatty acids. Additionally, the extracted oil included linoleic, α-linolenic, and dihomo-gamma-linolenic acid which have health benefits. The oil was rich with minerals such as Iron, Sodium, Potassium, Calcium, Magnesium, Zinc, and Phosphorus with a negligible concentration of toxic elements such as Manganese, Cobalt, Nickel, Copper, Lead, Cadmium, Chromium, Arsenic, and Silver, indicating a good nutritive value of the extracted oil. Overall, the outcomes of all the characterizations showed that the extracted oil could be used as good edible oil and the corresponding acid fermentation extraction process has the potential to be used as an effective oil extraction method for silkworm pupae.
Collapse
Affiliation(s)
- Lailatul Ferdousi
- BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi, 6206, Bangladesh
| | - Mohajira Begum
- BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi, 6206, Bangladesh
| | - Mst. Sarmina Yeasmin
- BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi, 6206, Bangladesh
| | - Jasim Uddin
- BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi, 6206, Bangladesh
| | - Md. Al-Amin Miah
- BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi, 6206, Bangladesh
| | - G.M. Masud Rana
- BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi, 6206, Bangladesh
| | - Tahmina Akter Chowdhury
- BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi, 6206, Bangladesh
| | - Farhana Boby
- BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi, 6206, Bangladesh
| | - Bijoy Maitra
- BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi, 6206, Bangladesh
| | - Rahat Khan
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md. Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| |
Collapse
|
12
|
Jahan I, Sakib SA, Alam N, Majumder M, Sharmin S, Reza ASMA. Pharmacological insights into Chukrasia velutina bark: Experimental and computer-aided approaches. Animal Model Exp Med 2022; 5:377-388. [PMID: 36047481 PMCID: PMC9434563 DOI: 10.1002/ame2.12268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/02/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Chukrasia velutina is an enthnomedicinally used plant reported to have significant medicinal values. The present study aimed to explore the pharmacological activities of bark methanol extract using in vitro, in vivo and in silico models. METHODS The study was designed to investigate the pharmacological effects of methanol extract of Chukrasia velutina bark (MECVB) through in vitro, in vivo and in silico assays. Analgesic activity was tested using formalin-induced nociception and acetic acid-induced writhing assays while the antipyretic effect was tested using yeast-induced hyperthermia in mice model. The antioxidant effect was tested using the DPPH and reducing power assay and the cytotoxic screening was tested using the brine shrimp lethality bioassay. In addition, in silico studies were conducted using computer aided methods. RESULTS In the acetic acid-induced writhing assay, the extract showed 28.36% and 56.16% inhibition of writhing for doses of 200 and 400 mg/kg, respectively. Moreover, a dose-dependent formalin-induced licking response was observed in both early and late phase. In yeast-induced pyrexia, the MECVB exhibited (p < 0.05) antipyretic effect. The extract demonstrated an IC50 value of 78.86 μg/ml compared with ascorbic acid (IC50 23.53 μg/ml) in the DPPH scavenging assay. The compounds sitosterol, 5,7-dimethoxycoumarin and scopoletin were seen be effective in molecular docking scores against COX-I (2OYE), COX-II (6COX) and human peroxiredoxin 5 (1HD2). In ADME/T analysis, 5,7-dimethoxycoumarin and scopoletin satisfied Lipinski's rule of five and thus are potential drug candidates. CONCLUSION The bark of Chukrasia velutina showed significant analgesic and antipyretic properties and is a potential source of natural anti-oxidative agents.
Collapse
Affiliation(s)
- Israt Jahan
- Department of PharmacyInternational Islamic University ChittagongChittagongBangladesh
| | - Shahenur Alam Sakib
- Department of PharmacyInternational Islamic University ChittagongChittagongBangladesh
| | - Najmul Alam
- Department of PharmacyInternational Islamic University ChittagongChittagongBangladesh
| | | | - Sanjida Sharmin
- Department of PharmacyInternational Islamic University ChittagongChittagongBangladesh
| | - A. S. M. Ali Reza
- Department of PharmacyInternational Islamic University ChittagongChittagongBangladesh
| |
Collapse
|
13
|
Hossen SM, Yusuf A, Emon NU, Alam N, Sami SA, Polash SH, Nur MA, Mitra S, Uddin MH, Emran TB. Biochemical and Pharmacological aspects of Ganoderma lucidum: Exponent from the in vivo and computational investigations. Biochem Biophys Rep 2022; 32:101371. [PMID: 36386440 PMCID: PMC9650014 DOI: 10.1016/j.bbrep.2022.101371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Ganoderma lucidum is known as lingzhi mushroom, which is said to have medicinal properties by the local residents. This research was focused to assess the antidepressant, anxiolytic, and sedative activities of the mentioned mushroom extracts by means of in vivo and in silico approaches. The antidepressant, anxiolytic, and sedative properties of the methanol extracts of G. lucidum (MEGL) were assessed using the forced swim test hole board, open field test, elevated plus maze, hole cross test, and thiopental sodium-induced sleeping time. The extracts revealed significant antidepressant, anxiolytic, and sedative activities in a dose-dependent manner. Rutin and quercetin were found to be the most effective enzyme inhibitors in the molecular docking study. According to the findings of in vivo and molecular docking study, it could be forecast that, the extract could have substantial antidepressant, anxiolytic, and sedative characteristics and deep molecular strategies on this extracts might create a target for the development of novel therapeutics. Further investigations are needed to appraise the molecular mechanisms implicated and isolate the bioactive components.
Collapse
Affiliation(s)
- S.M. Moazzem Hossen
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chattogram, 4331, Bangladesh
| | - A.T.M. Yusuf
- Department of Pharmacy, University of Science & Technology Chittagong, Chattogram, 4202, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Najmul Alam
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chattogram, 4331, Bangladesh
- Department of Pharmacy, Faculty of Pharmacy, Varendra University, Rajshahi 6204, Bangladesh
| | - Shajjad Hossain Polash
- Department of Pharmacy, University of Science & Technology Chittagong, Chattogram, 4202, Bangladesh
| | | | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammad Helal Uddin
- Department of Applied Chemistry & Chemical Engineering, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
14
|
Lien HM, Wang YY, Huang MZ, Wu HY, Huang CL, Chen CC, Hung SW, Chen CC, Chiu CH, Lai CH. Gastroprotective Effect of Anisomeles indica on Aspirin-Induced Gastric Ulcer in Mice. Antioxidants (Basel) 2022; 11:antiox11122327. [PMID: 36552535 PMCID: PMC9774812 DOI: 10.3390/antiox11122327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Gastric ulcers are commonly seen in the upper gastrointestinal tract and may be related to the Helicobacter pylori infection and the use of aspirin, a nonsteroidal anti-inflammatory drug (NSAID). Typically, proton-pump inhibitors (PPIs) are used to treat gastric ulcers; however, adverse effects have emerged following long-term treatment. Natural medicines are used as alternative therapeutic agents in the treatment of gastric ulcers, with few side effects. Despite various reports on the anti-H. pylori and anti-gastric cancer activities of Anisomeles indica, its gastroprotective effect on ulcers remains undetermined. This study investigated the protective effect of A. indica on aspirin-induced gastric ulcers in murine models. Our results show that three fractions of ethanol-extracted A. indica inhibited aspirin-induced gastric injury. Among these, A. indica Fraction 1 was observed to enrich ovatodiolide, which effectively diminished gastric acidity and alleviated aspirin-induced inflammation in the stomach. Our results provide evidence that A. indica could be developed as an effective therapeutic agent for gastroprotective purposes.
Collapse
Affiliation(s)
- Hsiu-Man Lien
- Research Institute of Biotechnology, Hungkuang University, Taichung 433304, Taiwan
- Correspondence: (H.-M.L.); (C.-H.L.)
| | - Yu-Yen Wang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Mei-Zi Huang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hui-Yu Wu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chao-Lu Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chia-Chi Chen
- Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 300110, Taiwan
| | - Shao-Wen Hung
- Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 300110, Taiwan
| | - Chia-Chang Chen
- School of Management, Feng Chia University, Taichung 407102, Taiwan
| | - Cheng-Hsun Chiu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Department of Nursing, Asia University, Taichung 413305, Taiwan
- Department of Medical Research, School of Medicine, China Medical University and Hospital, Taichung 404333, Taiwan
- Correspondence: (H.-M.L.); (C.-H.L.)
| |
Collapse
|
15
|
Akhter S, Arman MSI, Tayab MA, Islam MN, Xiao J. Recent advances in the biosynthesis, bioavailability, toxicology, pharmacology, and controlled release of citrus neohesperidin. Crit Rev Food Sci Nutr 2022; 64:5073-5092. [PMID: 36416093 DOI: 10.1080/10408398.2022.2149466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neohesperidin (hesperetin 7-O-neohesperidoside), a well-known flavanone glycoside widely found in citrus fruits, exhibits a variety of biological activities, with potential applications ranging from food ingredients to therapeutics. The purpose of this manuscript is to provide a comprehensive overview of the chemical, biosynthesis, and pharmacokinetics profiles of neohesperidin, as well as the therapeutic effects and mechanisms of neohesperidin against potential diseases. This literature review covers a wide range of pharmacological responses elicited by Neohesperidin, including neuroprotective, anti-inflammatory, antidiabetic, antimicrobial, and anticancer activities, with a focus on the mechanisms of those pharmacological responses. Additionally, the mechanistic pathways underlying the compound's osteoporosis, antiulcer, cardioprotective, and hepatoprotective effects have been outlined. This review includes detailed illustrations of the biosynthesis, biopharmacokinetics, toxicology, and controlled release of neohesperidine. Neohesperidin demonstrated a broad range of therapeutic and biological activities in the treatment of a variety of complex disorders, including neurodegenerative, hepato-cardiac, cancer, diabetes, obesity, infectious, allergic, and inflammatory diseases. Neohesperidin is a promising therapeutic candidate for the management of various etiologically complex diseases. However, further in vivo and in vitro studies on mechanistic potential are required before clinical trials to confirm the safety, bioavailability, and toxicity profiles of neohesperidin.
Collapse
Affiliation(s)
- Saima Akhter
- Department of Pharmacy, International Islamic University, Chittagong, Bangladesh
| | | | - Mohammed Abu Tayab
- Department of Pharmacy, International Islamic University, Chittagong, Bangladesh
| | | | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
16
|
Chowdhury NN, Islam MN, Jafrin R, Rauf A, Khalil AA, Emran TB, Aljohani ASM, Alhumaydhi FA, Lorenzo JM, Shariati MA, Simal-Gandara J. Natural plant products as effective alternatives to synthetic chemicals for postharvest fruit storage management. Crit Rev Food Sci Nutr 2022; 63:10332-10350. [PMID: 35612470 DOI: 10.1080/10408398.2022.2079112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruits contain enormous source of vitamins that provides energy to the human body. These are also affluent in essential and vital vitamins, minerals, fiber, and health-promoting components, which has led to an increase in fruit consumption in recent years. Though fruit consumption has expanded considerably in recent years, the use of synthetic chemicals to ripen or store fruits has been steadily increasing, resulting in postharvest deterioration. Alternatives to synthetic chemicals should be considered to control this problem. Instead of utilizing synthetic chemicals, this study suggests using natural plant products to control postharvest decay. The aim of this study indicates how natural plant products can be useful and effective to eliminate postharvest diseases rather than using synthetic chemicals. Several electronic databases were investigated as information sources, including Google Scholar, PubMed, Web of Science, Scopus, ScienceDirect, SpringerLink, Semantic Scholar, MEDLINE, and CNKI Scholar. The current review focused on the postharvest of fruits has become more and more necessary because of these vast demands of fruits. Pathogen-induced diseases are the main component and so the vast portion of fruits get wasted after harvest. Besides, it may occur harmful during harvesting and subsequent handling, storage, and marketing and after consumer purchasing and also causes for numerous endogenous and exogenous diseases via activating ROS, oxidative stress, lipid peroxidation, etc. However, pathogenicity can be halted by using postharvest originating natural fruits containing bioactive elements that may be responsible for the management of nutritional deficiency, inflammation, cancer, and so on. However, issues arising during the postharvest diseases must be controlled and resolved before releasing the horticultural commodities for commercialization. Therefore, the control of postharvest pathogens still depends on the use of synthetic fungicides; however, due to the problem of the development of the fungicide-resistant strains there is a good demand of public to eradicate the use of pesticides with the arrival of numerous diseases that are expanded in their intensity by the specific chemical product. By using of the organic or natural products for controlling postharvest diseases of fruits has become a mandatory step to take. In addition, antimicrobial packaging may have a greater impact on long-term food security by lowering the risk of pathogenicity and increasing the longevity of fruit shelf life. Taken together, natural chemicals as acetaldehyde, hexanal, eugenol, linalool, jasmonates, glucosinolates, essential oils, and many plant bioactive are reported for combating of the postharvest illnesses and guide to way of storage of fruits in this review.
Collapse
Affiliation(s)
- Nahidun Nesa Chowdhury
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Rifat Jafrin
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management, The First Cossack University), Moscow, Russia
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain
| |
Collapse
|