1
|
Perez-Medina M, Benito-Lopez JJ, Aguilar-Cazares D, Lopez-Gonzalez JS. A Comprehensive Review of Long Non-Coding RNAs in the Cancer-Immunity Cycle: Mechanisms and Therapeutic Implications. Int J Mol Sci 2025; 26:4821. [PMID: 40429961 PMCID: PMC12111859 DOI: 10.3390/ijms26104821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/10/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of the dynamic interplay between cancer progression and immune responses. This review explored their influence on key processes of the cancer-immunity cycle, such as immune cell differentiation, antigen presentation, and tumor immunogenicity. By modulating tumor escape from the immune response, therapeutic resistance, and tumor-stroma interactions, lncRNAs actively shape the tumor microenvironment. Due to their growing knowledge in the area of immune suppression, directly intervening in the induction of regulatory T cells (Tregs), M2 macrophages, and regulating immune checkpoint pathways such as PD-L1, CTLA-4, and others, lncRNAs can be considered promising therapeutic targets. Advances in single-cell technologies and immunotherapy have significantly expanded our understanding of lncRNA-driven regulatory networks, paving the way for novel precision medicine approaches. Ultimately, we discussed how targeting lncRNAs could enhance cancer immunotherapy, offering new avenues for biomarker discovery and therapeutic intervention.
Collapse
Affiliation(s)
- Mario Perez-Medina
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.P.-M.); (J.J.B.-L.); (D.A.-C.)
- Asociación Para Evitar la Ceguera en México, I. A. P., Mexico City 04030, Mexico
| | - Jesus J. Benito-Lopez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.P.-M.); (J.J.B.-L.); (D.A.-C.)
| | - Dolores Aguilar-Cazares
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.P.-M.); (J.J.B.-L.); (D.A.-C.)
| | - Jose S. Lopez-Gonzalez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.P.-M.); (J.J.B.-L.); (D.A.-C.)
| |
Collapse
|
2
|
Jiang W, Shi J, Zhu Y, Yin L, Song Y, Zhang J, Lin X, Zhong J, Lu Y, Ma Y. A novel prognostic model based on migrasome-related LncRNAs for gastric cancer. Sci Rep 2025; 15:14572. [PMID: 40281132 PMCID: PMC12032148 DOI: 10.1038/s41598-025-99781-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
Gastric cancer (GC) represents a substantial public health challenge, characterized by elevated morbidity and mortality rates. Migrasomes, a newly discovered type of extracellular vesicle, have been highlighted as important contributors to cancer progression, though their specific role in GC remains unclear. To address this issue, we developed the first prognostic model utilizing migrasome-related long non-coding RNAs (MRLs). This model aims to deepen the understanding of GC pathogenesis and improve patient outcomes. Clinical and transcriptional data for 407 GC patients from TCGA were classified as training and testing sets. Through Pearson correlation analysis, 537 MRLs were recognized, and LASSO and Cox regression analyses further refined the list to four key lncRNAs (AC012055.1, LINC01150, AC053503.4, AC107021.2) for constructing the prognostic model. Kaplan-Meier survival analysis indicated a significantly poorer prognosis for the high-risk group. PCA confirmed the model's robustness, and univariate and multivariate analyses validated it as an independent predictor of clinical outcomes. The ROC curve and C-index evaluations further affirmed the model's predictive power. We developed a nomogram combining the MRLs signature with clinical parameters to enhance prognostic accuracy. GO, KEGG and GSEA were performed on migrasome-related genes associated with GC. Furthermore, high-risk patients exhibited increased immune cell infiltration and reduced tumor mutation burden, both associated with poorer outcomes. Additionally, twenty-nine potential therapeutic agents were identified. This novel MRLs-based model provides crucial insights into GC biology and represents a valuable tool for improving patient management and therapeutic strategies.
Collapse
Affiliation(s)
- Wenhao Jiang
- Department of Medical Genetics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Cheng Du, 610041, China
| | - Jiaying Shi
- Department of Medical Genetics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Cheng Du, 610041, China
| | - Yingchuan Zhu
- Department of Medical Genetics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Cheng Du, 610041, China
| | - Lan Yin
- Department of Medical Genetics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Cheng Du, 610041, China
| | - Yue Song
- Department of Medical Genetics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Cheng Du, 610041, China
| | - Jingfei Zhang
- Department of Medical Genetics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Cheng Du, 610041, China
| | - Xinyu Lin
- Department of Medical Genetics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Cheng Du, 610041, China
| | - Jiaxiu Zhong
- Department of Medical Genetics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Cheng Du, 610041, China
| | - Yilu Lu
- Department of Medical Genetics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Cheng Du, 610041, China
| | - Yongxin Ma
- Department of Medical Genetics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Cheng Du, 610041, China.
| |
Collapse
|
3
|
Liu J, Mu J, Liang Z, Zhang Y, Hu T, Wu F, Zhou H. TAM-Derived Exosomes Promote EMT by Upregulating lncRNA MIR4435-2HG in Head and Neck Cancer. Oral Dis 2025; 31:1154-1164. [PMID: 39652828 DOI: 10.1111/odi.15212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 03/17/2025]
Abstract
OBJECTIVE This study aimed to investigate the impact of tumor-associated macrophage (TAM)-derived exosomes on epithelial-mesenchymal transition (EMT) in head and neck squamous cell carcinoma (HNSCC) and the underlying mechanisms involved. SUBJECTS AND METHODS Exosomes were isolated and characterized using transmission electron microscopy, nanoparticle size analysis, and western blotting. The effect on EMT in HNSCC cells was assessed using wound healing, transwell invasion, and EMT marker assays. Bioinformatics analysis was conducted to predict key TAM-related long noncoding RNAs and evaluate their relationship with EMT in HNSCC. RESULTS We observed that treatment with TAM-derived conditioned medium (CM) promoted EMT in HNSCC cells. Within the CM, we observed abundant exosomes that were taken up by HNSCC cells. Furthermore, TAM-derived exosomes promoted EMT in HNSCC cells. Mechanistically, high MIR4435-2HG expression levels were observed in TAM-derived exosomes and in HNSCC cells after treatment with TAM-derived exosomes. Notably, high MIR4435-2HG expression levels may be closely related to molecules that promote EMT in HNSCC. CONCLUSIONS TAM-derived exosomes promote EMT in HNSCC cells by upregulating MIR4435-2HG expression, suggesting that MIR4435-2HG is a candidate target for HNSCC therapy.
Collapse
Affiliation(s)
- Junjiang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhi Liang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yizhi Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Xie B, Wu P, Liu H, Yang X, Huang L. Long non-coding RNA MIR4435-2HG modulates pancreatic cancer stem cells and chemosensitivity to gemcitabine by targeting the miR-1252-5p/STAT1. J Transl Med 2025; 23:165. [PMID: 39920781 PMCID: PMC11806857 DOI: 10.1186/s12967-025-06128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
Cancer stem cells (CSCs) are key drivers of cancer progression and therapeutic resistance. Long non-coding RNAs (lncRNAs) have emerged as critical regulators of CSC properties. The aim of this study was to investigate the role of MIR4435-2HG in regulating CSC characteristics, tumorigenesis, and chemoresistance in pancreatic cancer. Functional assays were conducted to evaluate CSC self-renewal, tumorigenic potential, and chemoresistance in pancreatic cancer cells with altered expression of MIR4435-2HG. RNA interference (RNAi) was employed to knock down MIR4435-2HG, and a STAT1 reintroduction model was established to examine downstream signaling pathways. The role of miR-1252-5p as a competing endogenous RNA was also explored. Overexpression of MIR4435-2HG significantly enhanced CSC self-renewal and tumorigenic potential, whereas silencing MIR4435-2HG notably diminished these properties. Mechanistically, MIR4435-2HG promoted STAT1 expression by sponging miR-1252-5p, thereby enhancing CSC stemness and tumorigenesis. Moreover, depletion of MIR4435-2HG sensitized pancreatic cancer cells to gemcitabine-induced growth inhibition and ferroptosis. Reintroduction of STAT1 restored gemcitabine resistance in MIR4435-2HG-deficient cells. Our findings demonstrate that MIR4435-2HG plays a critical role in pancreatic cancer progression by modulating CSC properties and chemoresistance through the MIR4435-2HG/miR-1252-5p/STAT1 axis. Targeting MIR4435-2HG presents a promising therapeutic approach to regulate CSCs and improve the efficacy of chemotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Baocheng Xie
- Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Dongguan Institute of Clinical Cancer Research, Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Peishan Wu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 523000, China
| | - Hongyu Liu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 523000, China
| | - XiangDi Yang
- Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Dongguan Institute of Clinical Cancer Research, Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China.
- Department of Oncology, The First People's Hospital of Chenzhou, Chenzhou, 423000, China.
- Department of oncology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Linxuan Huang
- Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Dongguan Institute of Clinical Cancer Research, Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China.
| |
Collapse
|
5
|
Yang H, Gao J, Zheng Z, Yu Y, Zhang C. Current insights and future directions of LncRNA Morrbid in disease pathogenesis. Heliyon 2024; 10:e36681. [PMID: 39263145 PMCID: PMC11388785 DOI: 10.1016/j.heliyon.2024.e36681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Non-coding RNAs have emerged as important regulators of gene expression and contributors to many diseases. LncRNA Morrbid, a long non-coding RNA, has been widely studied in recent years. Current literature reports that lncRNA Morrbid is involved in various diseases such as tumors, cardiovascular diseases, inflammatory diseases and metabolic disorder. However, controversial conclusions exist in current studies. As a potential therapeutic target, it is necessary to comprehensively review the current evidence. In this work, we carefully review the literature on Morrbid and discuss each of the hot topics related to lncRNA Morrbid.
Collapse
Affiliation(s)
- Haiqiong Yang
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jiali Gao
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of pharmacy, Luzhou people's hospital, Luzhou, China
| | - Zaiyong Zheng
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yang Yu
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Yang X, Zhang Y, Liu J, Feng Y. Construction and validation of a prognostic model for bladder cancer based on disulfidptosis-related lncRNAs. Medicine (Baltimore) 2024; 103:e38750. [PMID: 38968515 PMCID: PMC11224815 DOI: 10.1097/md.0000000000038750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/07/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Bladder cancer (BLCA) is a prevalent and aggressive cancer associated with high mortality and poor prognosis. Currently, studies on the role of disulfidptosis-related long non-coding RNAs (DRLs) in BLCA are limited. This study aims to construct a prognostic model based on DRLs to improve the accuracy of survival predictions for patients and identify novel targets for therapeutic intervention in BLCA management. METHODS Transcriptomic and clinical datasets for patients with BLCA were obtained from The Cancer Genome Atlas. Using multivariate Cox regression and least absolute shrinkage and selection operator techniques, a risk prognostic signature defined by DRLs was developed. The model's accuracy and prognostic relevance were assessed through Kaplan-Meier survival plots, receiver operating characteristic curves, concordance index, and principal component analysis. Functional and pathway enrichment analyses, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis, were conducted to elucidate the underlying biological processes. Immune cell infiltration was quantified using the CIBERSORT algorithm. Differences and functions of immune cells in different risk groups were evaluated through single-sample Gene Set Enrichment Analysis. The Tumor Immune Dysfunction and Exclusion predictor and tumor mutational burden (TMB) assessments were utilized to gauge the likelihood of response to immunotherapy. Drug sensitivity predictions were made using the Genomics of Drug Sensitivity in Cancer database. RESULTS A robust 8-DRL risk prognostic model, comprising LINC00513, SMARCA5-AS1, MIR4435-2HG, MIR4713HG, AL122035.1, AL359762.3, AC006160.1, and AL590428.1, was identified as an independent prognostic indicator. This model demonstrated strong predictive power for overall survival in patients with BLCA, revealing significant disparities between high- and low-risk groups regarding tumor microenvironment, immune infiltration, immune functions, TMB, Tumor Immune Dysfunction and Exclusion scores, and drug susceptibility. CONCLUSION This study introduces an innovative prognostic signature of 8 DRLs, offering a valuable prognostic tool and potential therapeutic targets for bladder carcinoma. The findings have significant implications for TMB, the immune landscape, and patient responsiveness to immunotherapy and targeted treatments.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Urology, Suining Central Hospital, Suining, Sichuan, China
| | - Yunzhi Zhang
- Department of Gastroenterology, Suining Central Hospital, Suining, Sichuan, China
| | - Jun Liu
- Department of Urology, Suining Central Hospital, Suining, Sichuan, China
| | - Yougang Feng
- Department of Urology, Suining Central Hospital, Suining, Sichuan, China
| |
Collapse
|
7
|
Liu R, Qian K, He X, Li H. Integration of scRNA-seq data by disentangled representation learning with condition domain adaptation. BMC Bioinformatics 2024; 25:116. [PMID: 38493095 PMCID: PMC10944609 DOI: 10.1186/s12859-024-05706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/15/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND The integration of single-cell RNA sequencing data from multiple experimental batches and diverse biological conditions holds significant importance in the study of cellular heterogeneity. RESULTS To expedite the exploration of systematic disparities under various biological contexts, we propose a scRNA-seq integration method called scDisco, which involves a domain-adaptive decoupling representation learning strategy for the integration of dissimilar single-cell RNA data. It constructs a condition-specific domain-adaptive network founded on variational autoencoders. scDisco not only effectively reduces batch effects but also successfully disentangles biological effects and condition-specific effects, and further augmenting condition-specific representations through the utilization of condition-specific Domain-Specific Batch Normalization layers. This enhancement enables the identification of genes specific to particular conditions. The effectiveness and robustness of scDisco as an integration method were analyzed using both simulated and real datasets, and the results demonstrate that scDisco can yield high-quality visualizations and quantitative outcomes. Furthermore, scDisco has been validated using real datasets, affirming its proficiency in cell clustering quality, retaining batch-specific cell types and identifying condition-specific genes. CONCLUSION scDisco is an effective integration method based on variational autoencoders, which improves analytical tasks of reducing batch effects, cell clustering, retaining batch-specific cell types and identifying condition-specific genes.
Collapse
Affiliation(s)
- Renjing Liu
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan, 430074, China
| | - Kun Qian
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan, 430074, China
| | - Xinwei He
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan, 430074, China
| | - Hongwei Li
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan, 430074, China.
| |
Collapse
|
8
|
Li Z, Cao Z, Li N, Wang L, Fu C, Huo R, Xu G, Tian C, Bi J. M2 Macrophage-Derived Exosomal lncRNA MIR4435-2HG Promotes Progression of Infantile Hemangiomas by Targeting HNRNPA1. Int J Nanomedicine 2023; 18:5943-5960. [PMID: 37881607 PMCID: PMC10596068 DOI: 10.2147/ijn.s435132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
Purpose Infantile hemangiomas (IHs) are commonly observed benign tumors that can cause serious complications. M2-polarized macrophages in IHs promote disease progression. In this study, we investigated the role of M2 macrophage-derived exosomal lncRNA MIR4435-2HG in IHs. Patients and Methods Exosomes derived from M2 polarized macrophages were extracted. Next, using cell co-culture or transfection, we investigated whether M2 polarized macrophage-derived exosomes (M2-exos) can transport MIR4435-2HG to regulate the proliferation, migration, invasion, and angiogenesis of hemangioma-derived endothelial cells (HemECs). RNA-seq and RNA pull-down assays were performed to identify targets and regulatory pathways of MIR4435-2HG. We explored the possible mechanisms through which MIR4435-2HG regulates the biological function of HemECs. Results M2-exos significantly enhanced the proliferation, migration, invasion, and angiogenesis of HemECs. Thus, HemECs uptake M2-exos and promote biological functions through the inclusion of MIR4435-2HG. RNA-seq and RNA pull-down experiments confirmed that MIR4435-2HG regulates of HNRNPA1 expression and directly binds to HNRNPA1, consequently affecting the NF-κB signal pathway. Conclusion MIR4435-2HG of M2-exos promotes the progression of IHs and enhances the proliferation, migration, invasion, and angiogenesis of HemECs by directly binding to HNRNPA1. This study not only reveals the mechanism of interaction between M2 macrophages and HemECs, but also provides a promising therapeutic target for IHs.
Collapse
Affiliation(s)
- Zhiyu Li
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Zhongying Cao
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Nanxi Li
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Luying Wang
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Cong Fu
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Ran Huo
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Guangqi Xu
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Chonglin Tian
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Jianhai Bi
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| |
Collapse
|
9
|
Song GY, Guo XN, Yao J, Lu ZN, Xie JH, Wu F, He J, Fu ZL, Han J. Differential expression profiles and functional analysis of long non-coding RNAs in calcific aortic valve disease. BMC Cardiovasc Disord 2023; 23:326. [PMID: 37369992 DOI: 10.1186/s12872-023-03311-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
AIM To evaluate the expression profile of long non-coding RNAs (lncRNAs) in calcific aortic valve disease (CAVD) and explore their potential mechanism of action. METHODS The gene expression profiles (GSE153555, GSE148219, GSE199718) were downloaded from the Gene Expression Omnibus (GEO) database and FastQC was run for quality control checks. After filtering and classifying candidate lncRNAs by differentially expressed genes (DEGs) and weighted co-expression networks (WGCNA) in GSE153555, we predicted the potential cis- or trans-regulatory target genes of differentially expressed lncRNAs (DELs) by using FEELnc and established the competitive endogenous RNA (ceRNA) network by miRanda, more over functional enrichment was analyzed using the ClusterProfiler package in R Bioconductor. The hub cis- or trans-regulatory genes were verified in GSE148219 and GSE199718 respectively. RESULTS There were 340 up-regulated lncRNAs identified in AS group compared with the control group (|log2Fold Change| ≥ 1.0 and Padj ≤ 0.05), and 460 down-regulated lncRNAs. Based on target gene prediction and co-expression network construction, twelve Long non-coding RNAs (CDKN2B-AS1, AC244453.2, APCDD1L-DT, SLC12A5-AS1, TGFB3, AC243829.4, MIR4435-2HG, FAM225A, BHLHE40-AS1, LINC01614, AL356417.2, LINC01150) were identified as the hub cis- or trans-regulatory genes in the pathogenesis of CAVD which were validated in GSE148219 and GSE19971. Additionally, we found that MIR4435-2HG was the top hub trans-acting lncRNA which also plays a crucial role by ceRNA pattern. CONCLUSION LncRNAs may play an important role in CAVD and may provide a new perspective on the pathogenesis, diagnosis, and treatment of this disease. Further studies are required to illuminate the underlying mechanisms and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Guang-Yuan Song
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China.
| | - Xu-Nan Guo
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jing Yao
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhi-Nan Lu
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jia-Hong Xie
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Fang Wu
- Department of Cardiac Surgery, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jing He
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhao-Lin Fu
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jie Han
- Department of Cardiac Surgery, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Identification of cuproptosis-related long noncoding RNA signature for predicting prognosis and immunotherapy response in bladder cancer. Sci Rep 2022; 12:21386. [PMID: 36496537 PMCID: PMC9741610 DOI: 10.1038/s41598-022-25998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Bladder cancer (BC) is the most common malignant tumour of the urinary system and one of the leading causes of cancer-related death. Cuproptosis is a novel form of programmed cell death, and its mechanism in tumours remains unclear. This study aimed to establish the prognostic signatures of cuproptosis-related lncRNAs and determine their clinical prognostic value. RNA sequencing data from The Cancer Genome Atlas were used to detect the expression levels of cuproptosis-related genes in BC. Cuproptosis-related lncRNAs linked to survival were identified using co-expression and univariate Cox regression. Furthermore, consensus cluster analysis divided the lncRNAs into two subtypes. Subsequently, we established a signature model consisting of seven cuproptosis-related lncRNAs (AC073534.2, AC021321.1, HYI-AS1, PPP1R26-AS1, AC010328.1, AC012568.1 and MIR4435-2Hg) using least absolute shrinkage and selection operator regression. Survival analysis based on risk score showed that the overall survival and progression-free survival of patients in the high-risk group were worse than those in the low-risk group. Multivariate Cox analysis demonstrated the independent prognostic potential of this signature model for patients with BC. Moreover, age and clinical stage were also significantly correlated with prognosis. The constructed nomogram plots revealed good predictive power for the prognosis of patients with BC and were validated using calibration plots. Additionally, enrichment analysis, Single sample gene set enrichment analysis and immune infiltration abundance analysis revealed significant differences in immune infiltration between the two risk groups, with high levels of immune cell subset infiltrations observed in the high-risk group accompanied by various immune pathway activation. Moreover, almost all the immune checkpoint genes showed high expression levels in the high-risk group. Moreover, TIDE analysis suggested that the high-risk group was more responsive to immunotherapy. Finally, eight drugs with low IC50 values were screened, which may prove to be beneficial for patients in the high-risk group.
Collapse
|
11
|
Li C, Chen Z, Gao J, Tang T, Zhou L, Zhang G, Zhang D, Shen C, Guo L, Fu T. MIR4435-2HG in exosomes promotes gastric carcinogenesis by inducing M2 polarization in macrophages. Front Oncol 2022; 12:1017745. [PMID: 36483041 PMCID: PMC9723220 DOI: 10.3389/fonc.2022.1017745] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/19/2022] [Indexed: 01/25/2023] Open
Abstract
Gastric cancer (GC) is a cancer with a high mortality rate. lncRNAs play a role in regulating GC tumorigenesis. In this paper, we analyzed differentially expressed lncRNAs between GC and adjacent normal tissues using multiple bioinformatics tools to identify new potential targets in GC. Cell viability and migration ability were detected using the Cell Counting Kit-8 (CCK-8) and transwell assays, MIR4435-2HG was negatively correlated with the survival rate of GC patients, and by inhibiting the activity of MIR4435-2HG, the viability and migration ability of GC cells could be reduced. In addition, RT- qPCR and western blot to detect gene and protein level expression, transmission electron microscopy and nanoparticle tracking analysis (NTA) to study the efficiency of exosome isolation, and flow cytometry to observe cell differentiation were employed, delivery of MIR4435-2HG shRNA via MKN45 cell-derived exosomes significantly reversed the MKN45 exosome-induced M2 polarization in macrophages. Furthermore, the low expression of MIR4435-2HG in MKN45 cell-derived exosomes inhibited the Jagged1/Notch and JAK1/STAT3 pathways in macrophages; MIR4435-2HG downregulated exosomes were found to significantly inhibit GC tumor growth in vivo by establishing a mouse model. In short, MKN45 cell-derived exosomes deliver lncRNA MIR4435-2HG, which promotes gastric carcinogenesis by inducing macrophage M2 polarization.
Collapse
Affiliation(s)
- Chaofeng Li
- Gastrointestinal Surgery Department, China-Japan Friendship Hospital, Beijing, China
| | - Zhengju Chen
- Nanchang Institute of Technology, College of Medicine, China. Pooling Medical Research Institutes, Hangzhou, China,Pooling Medical Research Institutes, Hangzhou, Beijing, China
| | - Jinli Gao
- Department of Pathology, East Hospital, Tongji University, Shanghai, China
| | - Tao Tang
- Gastrointestinal Surgery Department, China-Japan Friendship Hospital, Beijing, China
| | - Lei Zhou
- Gastrointestinal Surgery Department, China-Japan Friendship Hospital, Beijing, China
| | - Guochao Zhang
- Gastrointestinal Surgery Department, China-Japan Friendship Hospital, Beijing, China
| | - Dongdong Zhang
- Gastrointestinal Surgery, Peking University International Hospital, Beijing, China
| | - Chao Shen
- Gastrointestinal Surgery, Peking University International Hospital, Beijing, China
| | - Lei Guo
- Pooling Medical Research Institutes, Hangzhou, Beijing, China,*Correspondence: Tao Fu, ; Lei Guo,
| | - Tao Fu
- Gastrointestinal Surgery Department, China-Japan Friendship Hospital, Beijing, China,Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China,*Correspondence: Tao Fu, ; Lei Guo,
| |
Collapse
|
12
|
Lv W, Tan Y, Zhou X, Zhang Q, Zhang J, Wu Y. Landscape of prognosis and immunotherapy responsiveness under tumor glycosylation-related lncRNA patterns in breast cancer. Front Immunol 2022; 13:989928. [PMID: 36189319 PMCID: PMC9520571 DOI: 10.3389/fimmu.2022.989928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant glycosylation, a post-translational modification of proteins, is regarded to engage in tumorigenesis and malignant progression of breast cancer (BC). The altered expression of glycosyltransferases causes abnormal glycan biosynthesis changes, which can serve as diagnostic hallmarks in BC. This study attempts to establish a predictive signature based on glycosyltransferase-related lncRNAs (GT-lncRNAs) in BC prognosis and response to immune checkpoint inhibitors (ICIs) treatment. We firstly screened out characterized glycosyltransferase-related genes (GTGs) through NMF and WGCNA analysis and identified GT-lncRNAs through co-expression analysis. By using the coefficients of 8 GT-lncRNAs, a risk score was calculated and its median value divided BC patients into high- and low-risk groups. The analyses unraveled that patients in the high-risk group had shorter survival and the risk score was an independent predictor of BC prognosis. Besides, the predictive efficacy of our risk score was higher than other published models. Moreover, ESTIMATE analysis, immunophenoscore (IPS), and SubMAP analysis showed that the risk score could stratify patients with distinct immune infiltration, and patients in the high-risk group might benefit more from ICIs treatment. Finally, the vitro assay showed that MIR4435-2HG might promote the proliferation and migration of BC cells, facilitate the polarization of M1 into M2 macrophages, enhance the migration of macrophages and increase the PD-1/PD-L1/CTLA4 expression. Collectively, our well-constructed prognostic signature with GT-lncRNAs had the ability to identify two subtypes with different survival state and responses to immune therapy, which will provide reliable tools for predicting BC outcomes and making rational follow-up strategies.
Collapse
Affiliation(s)
- Wenchang Lv
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufang Tan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomei Zhou
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Qi Zhang, ; Jun Zhang, ; Yiping Wu,
| | - Jun Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
- *Correspondence: Qi Zhang, ; Jun Zhang, ; Yiping Wu,
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Qi Zhang, ; Jun Zhang, ; Yiping Wu,
| |
Collapse
|
13
|
Kunadirek P, Pinjaroen N, Nookaew I, Tangkijvanich P, Chuaypen N. Transcriptomic Analyses Reveal Long Non-Coding RNA in Peripheral Blood Mononuclear Cells as a Novel Biomarker for Diagnosis and Prognosis of Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms23147882. [PMID: 35887228 PMCID: PMC9324406 DOI: 10.3390/ijms23147882] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Novel biomarkers are highly required for the diagnosis and predicting prognosis of hepatocellular carcinoma (HCC). In this study, we investigated the profiles of long non-coding RNAs (lncRNAs) obtained from the peripheral blood mononuclear cells (PBMCs) of patients with HCC and PBMCs from a co-culture model using transcriptomic analysis. The differentially expressed lncRNAs (DElncRNAs) were then characterized and integrated as cancer-induced lncRNAs. Among them, three up-regulating DElncRNAs including MIR4435-2HG, SNHG9 and lnc-LCP2-1 and one down-regulating, lnc-POLD3-2, were identified. The functional analysis showed that these enriched lncRNAs were mainly associated with carcinogenesis and immune responses. Following further validation in PBMCs samples (100 HBV-related HCC, 100 chronic hepatitis B and 100 healthy controls), MIR4435-2HG, lnc-POLD3-2 and their combination were revealed to be sensitive biomarkers in discriminating HCC from non-HCC (AUROC = 0.78, 0.80, and 0.87, respectively), particularly among individuals with normal serum alpha-fetoprotein levels. Additionally, high circulating SNHG9 expression was shown to be an independent prognostic factor of overall survival in patients with HCC. These results indicate that determining these lncRNAs in PBMCs could serve as novel diagnostic and prognostic biomarkers for HBV-related HCC.
Collapse
Affiliation(s)
- Pattapon Kunadirek
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nutcha Pinjaroen
- Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Correspondence: (P.T.); (N.C.); Tel.: +66-2-256-4482 (N.C.)
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Correspondence: (P.T.); (N.C.); Tel.: +66-2-256-4482 (N.C.)
| |
Collapse
|