1
|
Gupta S, Mishra V, Aljabali AAA, Albutti A, Kanday R, El-Tanani M, Mishra Y. Breaking barriers in cancer diagnosis: unveiling the 4Ms of biosensors. RSC Adv 2025; 15:8019-8052. [PMID: 40098694 PMCID: PMC11912004 DOI: 10.1039/d4ra08212e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Cancer, an insidious affliction, continues to exact a heavy toll on humanity, necessitating early detection and nuanced comprehension of its intricacies for effective treatment. Recent strides in micro and nanoscale electronic chip fabrication have revolutionized biosensor technology, offering promising avenues for biomedical and telemedicine applications. Micro Electromechanical System (MEMS)-based integrated circuits (ICs) represent a paradigm shift in detecting chemical and biomolecular interactions pertinent to cancer diagnosis, supplanting conventional methodologies. Despite the wealth of research on biosensors, a cohesive framework integrating Material, Mechanism, Modeling, and Measurement (4M) dimensions is often lacking. This review aims to synthesize these dimensions, exploring recent breakthroughs in biosensor design and development. Categorized based on electromechanical integration, material selection, and fabrication processes, these biosensors bridge crucial knowledge gaps within the research community. A comparative analysis of sensing methods in point-of-care (PoC) technology provides insights into their practicality and efficacy. Moreover, we critically evaluate biosensor limitations, pivotal in addressing challenges hindering their global commercialization.
Collapse
Affiliation(s)
- Sachin Gupta
- Department of Robotics and Control Engineering, School of Electronics and Electrical Engineering, Lovely Professional University Phagwara Punjab-144411 India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara Punjab-144411 India
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University Irbid Jordan
| | - Aqel Albutti
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University Buraydah 51452 Saudi Arabia
| | - Rajeev Kanday
- School of Computer Science and Engineering, Lovely Professional University Phagwara Punjab-144411 India
| | - Mohamed El-Tanani
- Ras Al Khaimah Medical and Health Sciences University Ras Al Khaimah United Arab Emirates
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University Phagwara Punjab-144411 India
| |
Collapse
|
2
|
Kunst C, Tümen D, Ernst M, Tews HC, Müller M, Gülow K. Paraptosis-A Distinct Pathway to Cell Death. Int J Mol Sci 2024; 25:11478. [PMID: 39519031 PMCID: PMC11546839 DOI: 10.3390/ijms252111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Cell death is a critical biological process necessary for development, tissue maintenance, and defense against diseases. To date, more than 20 forms of cell death have been identified, each defined by unique molecular pathways. Understanding these different forms of cell death is essential for investigating the pathogenesis of diseases such as cancer, neurodegenerative disorders, and autoimmune conditions and developing appropriate therapies. Paraptosis is a distinct form of regulated cell death characterized by cytoplasmic vacuolation and dilatation of cellular organelles like the mitochondria and endoplasmic reticulum (ER). It is regulated by several signaling pathways, for instance, those associated with ER stress, calcium overload, oxidative stress, and specific cascades such as insulin-like growth factor I receptor (IGF-IR) and its downstream signaling pathways comprising mitogen-activated protein kinases (MAPKs) and Jun N-terminal kinase (JNK). Paraptosis has been observed in diverse biological contexts, including development and cellular stress responses in neuronal, retinal, endothelial, and muscle cells. The induction of paraptosis is increasingly important in anticancer therapy, as it targets non-apoptotic stress responses in tumor cells, which can be utilized to induce cell death. This approach enhances treatment efficacy and addresses drug resistance, particularly in cases where cancer cells are resistant to apoptosis. Combining paraptosis-inducing agents with traditional therapies holds promise for enhancing treatment efficacy and overcoming drug resistance, suggesting a valuable strategy in anticancer therapy.
Collapse
Affiliation(s)
- Claudia Kunst
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (D.T.); (M.E.); (H.C.T.); (M.M.); (K.G.)
| | | | | | | | | | | |
Collapse
|
3
|
Xu CC, Lin YF, Huang MY, Zhang XL, Wang P, Huang MQ, Lu JJ. Paraptosis: a non-classical paradigm of cell death for cancer therapy. Acta Pharmacol Sin 2024; 45:223-237. [PMID: 37715003 PMCID: PMC10789732 DOI: 10.1038/s41401-023-01159-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023]
Abstract
Due to the sustained proliferative potential of cancer cells, inducing cell death is a potential strategy for cancer therapy. Paraptosis is a mode of cell death characterized by endoplasmic reticulum (ER) and/or mitochondrial swelling and cytoplasmic vacuolization, which is less investigated. Considerable evidence shows that paraptosis can be triggered by various chemical compounds, particularly in cancer cells, thus highlighting the potential application of this non-classical mode of cell death in cancer therapy. Despite these findings, there remain significant gaps in our understanding of the role of paraptosis in cancer. In this review, we summarize the current knowledge on chemical compound-induced paraptosis. The ER and mitochondria are the two major responding organelles in chemical compound-induced paraptosis, which can be triggered by the reduction of protein degradation, disruption of sulfhydryl homeostasis, overload of mitochondrial Ca2+, and increased generation of reactive oxygen species. We also discuss the stumbling blocks to the development of this field and the direction for further research. The rational use of paraptosis might help us develop a new paradigm for cancer therapy.
Collapse
Affiliation(s)
- Chun-Cao Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yi-Fan Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Mu-Yang Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiao-Lei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Pei Wang
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Ming-Qing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Macao, China.
- Zhuhai UM Science & Technology Research Institute, Zhuhai, 519000, China.
| |
Collapse
|
4
|
Krzemiński P, Misiewicz-Krzemińska I, Grodzik M, Padzińska-Pruszyńska I, Kucharzewska P, Ostrowska A, Sawosz E, Pomorski P. The protective effect of silver nanoparticles' on epithelial cornea cells against ultraviolet is accompanied by changes in calcium homeostasis and a decrease of the P2X7 and P2Y2 receptors. Biomed Pharmacother 2024; 170:116090. [PMID: 38169187 DOI: 10.1016/j.biopha.2023.116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE The aim of the study was to evaluate the effect of silver nanoparticles hydrocolloids (AgNPs) on human corneal epithelial cells. Epithelial cells form the outermost and the most vulnerable to environmental stimuli layer of the cornea in the eye. Mechanical stress, UV radiation, and pathogens such as bacteria, viruses, and parasites challenge the fragile homeostasis of the eye. To help combat stress, infection, and inflammation wide portfolio of interventions is available. One of the oldest treatments is colloidal silver. Silver nanoparticle suspension in water is known for its anti-bacterial anti-viral and antiprotozoal action. However, AgNPs interact also with host cells, and the character of the interplay between corneal cells and silver seeks investigation. METHODS The human epithelial corneal cell line (HCE-2) was cultured in vitro, treated with AgNPs, and subjected to UV. The cell's viability, migration, calcium concentration, and expression/protein level of selected proteins were investigated by appropriate methods including cytotoxicity tests, "wound healing" assay, Fluo8/Fura2 AM staining, qRT-PCR, and western blot. RESULTS Incubation of human corneal cells (HCE-2) with AgNP did not affect cells viability but limited cells migration and resulted in altered calcium homeostasis, decreased the presence of ATP-activated P2X7, P2Y2 receptors, and enhanced the expression of PACAP. Furthermore, AgNPs pretreatment helped restrain some of the deleterious effects of UV irradiation. Interestingly, AgNPs had no impact on the protein level of ACE2, which is important in light of potential SARS-CoV-2 entrance through the cornea. CONCLUSIONS Silver nanoparticles are safe for corneal epithelial cells in vitro.
Collapse
Affiliation(s)
- Patryk Krzemiński
- Department of Nanobiotechnology, Insitute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8, bldg. 23, 02-786 Warsaw, Poland.
| | - Irena Misiewicz-Krzemińska
- Plasma Cell Neoplasm Laboratory, Department of Experimental Haematology, Institute of Hematology and Blood Transfusion, Chocimska 5, 00-791 Warsaw, Poland
| | - Marta Grodzik
- Department of Nanobiotechnology, Insitute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8, bldg. 23, 02-786 Warsaw, Poland
| | - Irena Padzińska-Pruszyńska
- Department of Cancer Biology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8, bldg. 23, 02-786 Warsaw, Poland
| | - Paulina Kucharzewska
- Department of Cancer Biology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8, bldg. 23, 02-786 Warsaw, Poland
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Insitute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8, bldg. 23, 02-786 Warsaw, Poland
| | - Ewa Sawosz
- Department of Nanobiotechnology, Insitute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8, bldg. 23, 02-786 Warsaw, Poland
| | - Paweł Pomorski
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Pasteura 3, 02-093 Warsaw, Poland
| |
Collapse
|
5
|
Barar E, Shi J. Genome, Metabolism, or Immunity: Which Is the Primary Decider of Pancreatic Cancer Fate through Non-Apoptotic Cell Death? Biomedicines 2023; 11:2792. [PMID: 37893166 PMCID: PMC10603981 DOI: 10.3390/biomedicines11102792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid tumor characterized by poor prognosis and resistance to treatment. Resistance to apoptosis, a cell death process, and anti-apoptotic mechanisms, are some of the hallmarks of cancer. Exploring non-apoptotic cell death mechanisms provides an opportunity to overcome apoptosis resistance in PDAC. Several recent studies evaluated ferroptosis, necroptosis, and pyroptosis as the non-apoptotic cell death processes in PDAC that play a crucial role in the prognosis and treatment of this disease. Ferroptosis, necroptosis, and pyroptosis play a crucial role in PDAC development via several signaling pathways, gene expression, and immunity regulation. This review summarizes the current understanding of how ferroptosis, necroptosis, and pyroptosis interact with signaling pathways, the genome, the immune system, the metabolism, and other factors in the prognosis and treatment of PDAC.
Collapse
Affiliation(s)
- Erfaneh Barar
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Jiaqi Shi
- Department of Pathology & Clinical Labs, Rogel Cancer Center, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Hanson S, Dharan A, P. V. J, Pal S, Nair BG, Kar R, Mishra N. Paraptosis: a unique cell death mode for targeting cancer. Front Pharmacol 2023; 14:1159409. [PMID: 37397502 PMCID: PMC10308048 DOI: 10.3389/fphar.2023.1159409] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Programmed cell death (PCD) is the universal process that maintains cellular homeostasis and regulates all living systems' development, health and disease. Out of all, apoptosis is one of the major PCDs that was found to play a crucial role in many disease conditions, including cancer. The cancer cells acquire the ability to escape apoptotic cell death, thereby increasing their resistance towards current therapies. This issue has led to the need to search for alternate forms of programmed cell death mechanisms. Paraptosis is an alternative cell death pathway characterized by vacuolation and damage to the endoplasmic reticulum and mitochondria. Many natural compounds and metallic complexes have been reported to induce paraptosis in cancer cell lines. Since the morphological and biochemical features of paraptosis are much different from apoptosis and other alternate PCDs, it is crucial to understand the different modulators governing it. In this review, we have highlighted the factors that trigger paraptosis and the role of specific modulators in mediating this alternative cell death pathway. Recent findings include the role of paraptosis in inducing anti-tumour T-cell immunity and other immunogenic responses against cancer. A significant role played by paraptosis in cancer has also scaled its importance in knowing its mechanism. The study of paraptosis in xenograft mice, zebrafish model, 3D cultures, and novel paraptosis-based prognostic model for low-grade glioma patients have led to the broad aspect and its potential involvement in the field of cancer therapy. The co-occurrence of different modes of cell death with photodynamic therapy and other combinatorial treatments in the tumour microenvironment are also summarized here. Finally, the growth, challenges, and future perspectives of paraptosis research in cancer are discussed in this review. Understanding this unique PCD pathway would help to develop potential therapy and combat chemo-resistance in various cancer.
Collapse
Affiliation(s)
- Sweata Hanson
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Aiswarya Dharan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Jinsha P. V.
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Sanjay Pal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Rekha Kar
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, United States
| | - Nandita Mishra
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| |
Collapse
|
7
|
The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life (Basel) 2023; 13:life13020466. [PMID: 36836823 PMCID: PMC9965924 DOI: 10.3390/life13020466] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer is a fatal disease with a complex pathophysiology. Lack of specificity and cytotoxicity, as well as the multidrug resistance of traditional cancer chemotherapy, are the most common limitations that often cause treatment failure. Thus, in recent years, significant efforts have concentrated on the development of a modernistic field called nano-oncology, which provides the possibility of using nanoparticles (NPs) with the aim to detect, target, and treat cancer diseases. In comparison with conventional anticancer strategies, NPs provide a targeted approach, preventing undesirable side effects. What is more, nanoparticle-based drug delivery systems have shown good pharmacokinetics and precise targeting, as well as reduced multidrug resistance. It has been documented that, in cancer cells, NPs promote reactive oxygen species (ROS) production, induce cell cycle arrest and apoptosis, activate ER (endoplasmic reticulum) stress, modulate various signaling pathways, etc. Furthermore, their ability to inhibit tumor growth in vivo has also been documented. In this paper, we have reviewed the role of silver NPs (AgNPs) in cancer nanomedicine, discussing numerous mechanisms by which they render anticancer properties under both in vitro and in vivo conditions, as well as their potential in the diagnosis of cancer.
Collapse
|