1
|
Zhao T, Su Y. Mechanisms and Therapeutic Potential of Myofibroblast Transformation in Pulmonary Fibrosis. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2025; 2:10001. [PMID: 40190620 PMCID: PMC11970920 DOI: 10.70322/jrbtm.2025.10001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, and fatal disease with an increasing incidence and limited therapeutic options. It is characterized by the formation and deposition of excess extracellular matrix proteins resulting in the gradual replacement of normal lung architecture by fibrous tissue. The cellular and molecular mechanism of IPF has not been fully understood. A hallmark in IPF is pulmonary fibroblast to myofibroblast transformation (FMT). During excessive lung repair upon exposure to harmful stimuli, lung fibroblasts transform into myofibroblasts under stimulation of cytokines, chemokines, and vesicles from various cells. These mediators interact with lung fibroblasts, initiating multiple signaling cascades, such as TGFβ1, MAPK, Wnt/β-catenin, NF-κB, AMPK, endoplasmic reticulum stress, and autophagy, contributing to lung FMT. Furthermore, single-cell transcriptomic analysis has revealed significant heterogeneity among lung myofibroblasts, which arise from various cell types and are adapted to the altered microenvironment during pathological lung repair. This review provides an overview of recent research on the origins of lung myofibroblasts and the molecular pathways driving their formation, with a focus on the interactions between lung fibroblasts and epithelial cells, endothelial cells, and macrophages in the context of lung fibrosis. Based on these molecular insights, targeting the lung FMT could offer promising avenues for the treatment of IPF.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Meng X, Sheng L, You Y, Dai H, Yu M, Wang F, Zhou Z, Shan Y, Sheng M. Integrated serum metabolomics and network pharmacology reveal molecular mechanism of Qixue Huazheng formula on peritoneal fibrosis. Front Pharmacol 2025; 16:1515038. [PMID: 39917615 PMCID: PMC11799242 DOI: 10.3389/fphar.2025.1515038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
Background Peritoneal fibrosis (PF) causes peritoneal dialysis (PD) withdrawal due to ultrafiltration failure. Qixue Huazheng formula (QXHZF), comprising Astragalus membranaceus, Centella asiatica, and Ligusticum sinense, is applied to treat PD-related peritoneum injury related; however, the active components, core genes, and underlying mechanism involved remain unclear. Methods The anti-PF effects of QXHZF were verified in vivo and in vitro. Targets underlying QXHZF-mediated improvement of PD-induced PF were predicted using network pharmacology analysis. Metabolites associated with QXHZF treatment of PD-related PF were analyzed by serum metabolomics. Integration of network pharmacology and serum metabolomics findings identified potentially important pathways, metabolites, and targets, and molecular docking studies confirmed the interactions of key components and targets. Western blotting (WB), quantitative real-time PCR (qRT-PCR), TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, and flow cytometry were conducted. Results QXHZF had potent therapeutic efficacy against PF according to WB, qRT-PCR, and pathological section examination. Network pharmacological analysis indicated that multiple QXHZF compounds contributed to improving PF by modulating various targets and pathways. Differential metabolites were identified by serum metabolomics analysis. Integrated data analysis indicated that steroid hormone biosynthesis, the Ras signaling pathway, apoptosis, and estrogen signaling contributed to the effects of QXHZF. Metabolite-target network and molecular docking analyses revealed that QXHZF can bind to estrogen receptor 1 (ESR1) and rapidly accelerated fibrosarcoma 1 (RAF1) through its components. WB demonstrated that QXHZF treatment reversed activation of the above-mentioned signaling pathways, thereby inhibiting PD fluid-induced PF. Conclusion QXHZF can significantly ameliorate PD-induced PF and may regulate estrogen signaling, the Ras pathway, and apoptosis in this context.
Collapse
Affiliation(s)
- Xiaohui Meng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Research Center of First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Sheng
- Department of Nephrology, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, China
| | - Yongqing You
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Research Center of First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huibo Dai
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Manshu Yu
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Funing Wang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Research Center of First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziren Zhou
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Research Center of First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Shan
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Meixiao Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Sheng F, Yang S, Li M, Wang J, Liu L, Zhang L. Research Progress on the Anti-Cancer Effects of Astragalus membranaceus Saponins and Their Mechanisms of Action. Molecules 2024; 29:3388. [PMID: 39064966 PMCID: PMC11280308 DOI: 10.3390/molecules29143388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Astragalus membranaceus saponins are the main components of A. membranaceus, a plant widely used in traditional Chinese medicine. Recently, research on the anti-cancer effects of A. membranaceus saponins has received increasing attention. Numerous in vitro and in vivo experimental data indicate that A. membranaceus saponins exhibit significant anti-cancer effects through multiple mechanisms, especially in inhibiting tumor cell proliferation, migration, invasion, and induction of apoptosis, etc. This review compiles relevant studies on the anti-cancer properties of A. membranaceus saponins from various databases over the past two decades. It introduces the mechanism of action of astragalosides, highlighting their therapeutic benefits in the management of cancer. Finally, the urgent problems in the research process are highlighted to promote A. membranaceus saponins as an effective drug against cancer.
Collapse
Affiliation(s)
- Feiya Sheng
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Siyu Yang
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Mi Li
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Jiaojiao Wang
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Lianghong Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Lele Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| |
Collapse
|
4
|
Wen J, Wang C, Song LY, Wang YY, Liang PT, Pang WL, Yin W, Zhang Q, Zhao WT, Sun XP, Yan JY, Yang ZS. Ferroptosis Mediates Pulmonary Fibrosis: Implications for the Effect of Astragalus and Panax notoginseng Decoction. Can Respir J 2024; 2024:5554886. [PMID: 38584671 PMCID: PMC10997418 DOI: 10.1155/2024/5554886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 04/09/2024] Open
Abstract
Objective To investigate the mechanism through which Astragalus and Panax notoginseng decoction (APD) facilitates the treatment of ferroptosis-mediated pulmonary fibrosis. Materials and Methods First, the electromedical measurement systems were used to measure respiratory function in mice; the lungs were then collected for histological staining. Potential pharmacologic targets were predicted via network pharmacology. Finally, tests including immunohistochemistry, reverse transcription-quantitative polymerase chain reaction, and western blotting were used to evaluate the relative expression levels of collagen, transforming growth factor β, α-smooth muscle actin, hydroxyproline, and ferroptosis-related genes (GPX4, SLC7A11, ACSL4, and PTGS2) and candidates involved in the mediation of pathways associated with ferroptosis (Hif-1α and EGFR). Results APD prevented the occurrence of restrictive ventilation dysfunction induced by ferroptosis. Extracellular matrix and collagen fiber deposition were significantly reduced when the APD group compared with the model group; furthermore, ferroptosis was attenuated, expression of PTGS2 and ACSL4 increased, and expression of GPX4 and SLC7A11 decreased. In the APD group, the candidates related to the mediation of ferroptosis (Hif-1α and EGFR) decreased compared with the model group. Discussion and Conclusions. APD may ameliorate restrictive ventilatory dysfunction through the inhibition of ferroptosis. This was achieved through the attenuation of collagen deposition and inflammatory recruitment in pulmonary fibrosis. The underlying mechanisms might involve Hif-1α and EGFR.
Collapse
Affiliation(s)
- Jing Wen
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Cui Wang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Li-yun Song
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yin-ying Wang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Peng-tao Liang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wen-lin Pang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wen Yin
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qiang Zhang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wei-tian Zhao
- Dali Prefectural Hospital of Traditional Chinese Medicine, Dali, Yunnan, China
| | - Xue-ping Sun
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jin-yuan Yan
- Central Laboratory, Kunming Medical University Second Hospital, Kunming, Yunnan, China
| | - Zhong-shan Yang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
5
|
Seo CS. Simultaneous Quantification of Nine Target Compounds in Traditional Korean Medicine, Bopyeo-Tang, Using High-Performance Liquid Chromatography-Photodiode Array Detector and Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2024; 29:1171. [PMID: 38474683 DOI: 10.3390/molecules29051171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Bopyeo-tang (BPT) is composed of six medicinal herbs (Morus alba L., Rehmannia glutinosa (Gaertn.) DC., Panax ginseng C.A.Mey., Aster tataricus L.f., Astragalus propinquus Schischkin, and Schisandra chinensis (Turcz.) Baill.) and has been used for the treatment of lung diseases. This study focused on establishing an analytical method that can simultaneously quantify nine target compounds (i.e., hydroxymethylfurfural, mulberroside A, chlorogenic acid, calycosin-7-O-glucoside, 3,5-dicaffeoylquinic acid, quercetin, kaempferol, schizandrin, and gomisin A) from a BPT sample using high-performance liquid chromatography with a photodiode array detector (HPLC-PDA) and ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS). The separation of compounds in both analyses was performed on a C18 reversed-phase column using the gradient elution of water-acetonitrile as the mobile phase. In particular, the multiple reaction monitoring mode was applied for quick and accurate detection in UPLC-MS/MS analysis. As a result of analyzing the two methods, HPLC-PDA and UPLC-MS/MS, the coefficient of determination of the regression equation for each compound was ≥0.9952, and recovery was 85.99-106.40% (relative standard deviation (RSD) < 9.58%). Precision testing of the nine compounds was verified (RSD < 10.0%). The application of these analytical assays under optimized conditions for quantitative analysis of the BPT sample gave 0.01-4.70 mg/g. Therefore, these two assays could be used successfully to gather basic data for clinical research and the quality control of BPT.
Collapse
Affiliation(s)
- Chang-Seob Seo
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
6
|
Tao L, Liao J, Zheng R, Zhang X, Shang H. Association of Drinking Herbal Tea with Activities of Daily Living among Elderly: A Latent Class Analysis. Nutrients 2023; 15:2796. [PMID: 37375699 DOI: 10.3390/nu15122796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this study was to explore whether drinking herbal tea and tea would positively benefit activities of daily living (ADL) in the elderly. We used data from the Chinese longitudinal healthy longevity survey (CLHLS) to explore the association. Drinking herbal tea and drinking tea were divided into three groups using latent class analysis (LCA): frequently, occasionally, and rarely. ADL disability was measured by the ADL score. Multivariate COX proportional hazards models with competing risks were used to explore the impact of drinking herbal tea and tea on ADL disability, statistically adjusted for a range of potential confounders. A total of 7441 participants (mean age 81.8 years) were included in this study. The proportions of frequently and occasionally drinking herbal tea were 12.0% and 25.7%, respectively. Additionally, 29.6% and 28.2% of participants reported drinking tea, respectively. Multivariate COX regression showed that compared with rarely drinking, frequently drinking herbal tea could effectively reduce the incidence of ADL disability (HR = 0.85, 95% CI = 0.77-0.93, p = 0.005), whereas tea drinking had a relatively weaker effect (HR = 0.92, 95% CI = 0.83-0.99, p = 0.040). Subgroup analysis found that frequently drinking herbal tea was more protective for males under 80 years old (HR = 0.74 and 0.79, respectively), while frequently drinking tea was somewhat protective for women (HR = 0.92). The results indicate that drinking herbal tea and tea may be associated with a lower incidence of ADL disability. However, the risks associated with using Chinese herb plants still deserve attention.
Collapse
Affiliation(s)
- Liyuan Tao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| | - Jiaojiao Liao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- Department of Health Research Methods, Evidence and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Xiaoyu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|