1
|
Patrushev SS, Kichkina DO, Moralev AD, Rybalova TV, Krasnov VI, Chernyak EI, Zenkova MA, Markov AV, Shults EE. Synthesis and exploration of anticancer potential of spirocyclic 1,2,3-triazoline and aziridine derivatives of natural eudesmanolide isoalantolactone. Bioorg Chem 2025; 155:108124. [PMID: 39798454 DOI: 10.1016/j.bioorg.2025.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/23/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025]
Abstract
Eudesmane-type sesquiterpene lactone isoalantolactone 1 is of great interest due to its availability, biological activity and synthetic application. Respective series of original spirocyclic (11S,5') (1,2,3-triazoline-eudesma-4,15-enolides) and (11S)-aziridine-eudesma-4,15-enolides were efficiently synthesized via a chemoselective 1,3-dipolar cycloaddition reaction of organic azides to the exocyclic double bond of the lactone ring of isoalantolactone or 13E-(aryl)isoalantolactones by heating in DMF or toluene. The thermal reactions of isoalantolactone with benzyl azide, 2-azidoethanol, or n-butyl azide in 2-methoxyethanol afforded 13-(alkyamino)isoalantolactones formed as a mixture of (Z) and (E)-isomers. The results of in vitro biological assays showed that novel spirocyclic isoalantolactone derivatives exhibited cytotoxicity against human breast cancer and glioblastoma cells at low micromolar concentrations. The most cytotoxic and selective (11S,5')-spiro-1,2,3-triazoline from 13E-(fluorophenyl)isoalantolactone 20 (IC50(MCF-7) = 8 ± 0.1 µM, SI(MCF-7) > 12.5) was found to induce ROS-dependent death of MCF-7 human breast cancer cells via mitochondrial apoptosis. The corresponding (11S)-spiroaziridine derivatives 21 at non-toxic concentrations (10 and 20 µM) effectively suppressed motility, clonogenicity and adhesion of glioblastoma cells and exhibited synergistic cytotoxicity in combination with temozolomide. In silico analysis revealed the potential ability of the 13-aryl (11S)-spiroaziridine derivative 21 to bypass the blood-brain barrier and exhibit anti-glioblastoma activity probably based on the direct interaction with Hsp90α.
Collapse
Affiliation(s)
- Sergey S Patrushev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 9, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova St. 2, Novosibirsk 630090, Russia
| | - Daria O Kichkina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova St. 2, Novosibirsk 630090, Russia
| | - Arseny D Moralev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova St. 2, Novosibirsk 630090, Russia
| | - Tatyana V Rybalova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 9, Novosibirsk 630090, Russia
| | - Vyacheslav I Krasnov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 9, Novosibirsk 630090, Russia
| | - Elena I Chernyak
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 9, Novosibirsk 630090, Russia
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Andrey V Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova St. 2, Novosibirsk 630090, Russia.
| | - Elvira E Shults
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 9, Novosibirsk 630090, Russia.
| |
Collapse
|
2
|
He M, Lim XY, Li J, Li L, Zhang T. Mechanisms of acupuncture at Zusanli (ST36) and its combinational acupoints for stress gastric ulcer based on the correlation between Zang-fu and acupoints. JOURNAL OF INTEGRATIVE MEDICINE 2025; 23:1-11. [PMID: 39736482 DOI: 10.1016/j.joim.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 08/12/2024] [Indexed: 01/01/2025]
Abstract
Gastric ulcer (GU) is a common digestive system disease. Acupuncture, as one of the external treatments of traditional Chinese medicine (TCM), has the characteristics of multi-target, multi-pathway and multi-level action in the treatment of GU. The relationship between meridian points and Zang-fu is an important part of the theory of TCM, which is crucial for the diagnosis and treatment of diseases. There is an external and internal link between acupoints and Zang-fu. The pathological reaction of Zang-fu can manifest as acupoint sensitization, while stimulation of acupoints can play a therapeutic role in the internal Zang-fu. Therefore, the acupoint has the functions of reflecting and treating diseases. This review explores the tender points on the body surface of patients with GU and the rules of acupoint selection. In addition, Zusanli (ST36), as one of the most used acupoints of the stomach meridian, was selected to show the mechanisms behind acupoint stimulation in the treatment of GU in greater detail, specifically in the well-studied model of the stress GU (SGU). Hence, the mechanisms of acupuncture at ST36 and points commonly used in combination with ST36 to treat SGU are discussed further. Treatment effects can be achieved through anti-inflammatory and antioxidant activities, gastric mucosal injury repair, and interaction with the brain-gut axis. In summary, this review provides evidence for a comprehensive understanding of the phenomena and mechanism of acupoint functions for GU. Please cite this article as: He M, Lim XY, Li J, Li L, Zhang T. Mechanisms of acupuncture at Zusanli (ST36) and its combinational acupoints for stress gastric ulcer based on the correlation between Zang-fu and acupoints. J Integr Med. 2025; 23(1): 1-11.
Collapse
Affiliation(s)
- Mu He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xue Yee Lim
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ling Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Zhang YL, Li Y, An FX, Sun CY. Peucedanum praeruptorum Dunn leaf aqueous extract protects against alcoholic gastric injury by inhibiting inflammation and oxidative stress in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118628. [PMID: 39053717 DOI: 10.1016/j.jep.2024.118628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Peucedanum praeruptorum Dunn (PPD) was used to treat gastrointestinal disease in China before the Tang Dynasty, and it was considered a "Top-grade" herb in Shennong Bencaojing, known for its ability to relieve the stomach Qi and indigestion. AIM OF THE STUDY Alcohol consumption can induce severe gastric mucosal injury that lacks effective and safe interventions. We aimed to investigate the gastroprotective effects of Peucedanum praeruptorum Dunn leaf (PPL) after bolting in alcohol-induced gastric damage in mice. MATERIALS AND METHODS Mice were orally administered PPL aqueous extract at doses of 2.5, 5, and 10 g/kg for 5 consecutive days prior to the induction of gastric damage model with ethanol. Gastric tissue was stained by hematoxylin and eosin (H&E), and the levels of pro-inflammatory cytokines and oxidative stress indicators were determined using ELISA and RT-qPCR. RNA-seq was used to detect differentially expressed genes (DEGs) in the gastric tissue, while Western blotting was employed to measure the expressions of IL-17, TNF-a, and AKT pathways. RESULTS Treatment with PPL alleviated alcohol-induced gastric damage in mice, whereas dried root (PPD) and stem (PPS) of Peucedanum praeruptorum Dunn had no gastroprotective function. The content of peucedanocoumarin I was higher in the dried PPL compared to PPD and PPS, with an increase in peucedanocoumarin I content in PPL after boiling. Additionally, PPL administration (5, 10 g/kg) decreased pro-inflammatory factors, such as interleukin-6 (IL-6), IL-8, IL-4, IL-1β, IL-18, and tumor necrosis factor (TNF-a) in alcohol-induced gastric injury mice (p < 0.05), and improved oxidative stress markers, including superoxide dismutase enzymes (SOD), catalase (CAT), and malondialdehyde (MDA) (p < 0.05). RNA-seq data revealed that PPL treatment inhibited alcohol-induced inflammation-related signals, including IL-17 and TNF pathways, and restored alcohol-inhibited gastric digestive and metabolic functions, such as xenobiotics metabolism of cytochrome P450, and protein digestion and absorption pathways. Notably, treatment with PPL downregulated the expressions of IL-17 A, TNF-a, monocyte chemoattractant protein-1 (MCP-1), and AKT-phosphorylation induced by ethanol exposure (p < 0.05). Thus, the aqueous extract of PPL provided protection against alcohol-induced gastric injury by mitigating inflammation and oxidative stress in mice, suggesting a potential novel therapeutic approach for alcohol-induced gastric damage.
Collapse
Affiliation(s)
| | - Yan Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Feng-Xia An
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Chao-Yue Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China.
| |
Collapse
|
4
|
Wang C, Zhao X, Jiang J, Jia M, Shi W, Wu Z, Feng S, Fan G, Lou Y. Integrated chemical analysis, metabolic profiling, network pharmacology, molecular docking and toxicity prediction to reveal the active ingredients and their safety of raw and prepared rhubarbs in the treatment of gastric ulcers. Front Pharmacol 2024; 15:1481091. [PMID: 39624840 PMCID: PMC11608977 DOI: 10.3389/fphar.2024.1481091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/31/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Rhubarb, containing raw rhubarb (RR) and two processed products (steamed rhubarb, SR; carbonized rhubarb, CR), is commonly used in high-doses for the treatment of peptic ulcer, especially gastric ulcer (GU). However, their active ingredients, therapeutic targets, and potential mechanism remain unclear. Meanwhile, the safety of these active ingredients is also worth studying. METHODS An offline two-dimensional low-pressure liquid chromatography/high-performance liquid chromatography coupled with high resolution mass spectrometry method was applied to identify the chemical constituents of RR, SR, and CR. Then, the plasma and urine samples of rats after oral administration of RR, SR, and CR were studied for metabolite profiling. Based on the analysis of ingredients in vivo, the key active constituents, core therapeutic targets and key signaling pathways of RR, SR, and CR against GU were screened via network pharmacology and molecular docking. Finally, the efficacy and safety of these key active ingredients were evaluated. RESULTS Totally, 183, 120 and 115 compounds were identified or tentatively characterized from RR, SR and CR, respectively. Meanwhile, 190, 182 and 180 components were identified after oral administration of RR, SR and CR. By network pharmacology and molecular docking, torachrysone, hydroxyemodin, 6-methylrhein, rhein and emodin anthrone might be the predominant effective constituents in RR, SR, and CR with AKT1 and EGFR being their key targets during the treatment of GU. Moreover, EGFR/PI3K/AKT signaling pathway might play a crucial role in the therapeutic mechanism of GU. In silio ADMET predictions categorized 5 compounds as drugs with good oral bioavailability, but these components may induce liver injury. CONCLUSION Overall, our results not only clarified the active substances and molecular mechanism for enhancing our understanding about the traditional efficacy, but also pay attention to the clinical safety issues of raw and prepared rhubarbs.
Collapse
Affiliation(s)
- Chenxi Wang
- Department of Pharmacy, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xin Zhao
- Department of Pharmacy, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jingjing Jiang
- Department of Pharmacy, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Mengqi Jia
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenqing Shi
- Department of Pharmacy, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shiyu Feng
- Shanghai University of Finance and Economics, Shanghai, China
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuefen Lou
- Department of Pharmacy, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- School of Foreign Studies, Shanghai University of Finance and Economics, Shanghai, China
| |
Collapse
|
5
|
Zhao Y, Guo K, Yan Y, Jiang B. Cucurbitacin IIb alleviates colitis via regulating gut microbial composition and metabolites. Heliyon 2024; 10:e38051. [PMID: 39347394 PMCID: PMC11437856 DOI: 10.1016/j.heliyon.2024.e38051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Cucurbitacin IIb, a member of the triterpenoid family, exerts beneficial effects on intestinal diseases, including enteritis and bacillary dysentery. However, its effects and mechanisms of action on colitis have not yet been explored. In this study, we used a mouse model of dextran sulfate sodium (DSS)-induced colitis and explored the effects of cucurbitacin IIb on colitis symptoms, inflammatory responses, microbiota, and metabolite profiles. The results showed that cucurbitacin IIb alleviated colitis symptoms including body weight loss, an increase in the disease activity index, and elevated levels of myeloperoxidase and eosinophil peroxidase content. Additionally, it ameliorated intestinal morphology impairment, reduced the phosphorylation of NFκB protein, and mitigated accumulation of pro-inflammatory cytokines IL-6 and IL-1β. Furthermore, cucurbitacin IIb alleviated alterations in gut microbial composition and metabolites in DSS-treated mice. However, antibiotic treatment diminishes the beneficial effects of cucurbitacin IIb on colitis. We further found that transplantation of fresh feces or heat-inactivated feces from mice treated with cucurbitacin IIb to DSS-treated mice alleviated colitis, similar to the effects of cucurbitacin IIb. Collectively, our results suggest that cucurbitacin IIb exerted anti-inflammatory effects in colitis by regulating the microbiota composition and metabolites, thereby alleviating colitis symptoms.
Collapse
Affiliation(s)
- Yinyin Zhao
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, 315000, China
| | - Kangxiao Guo
- Pharmaceutical College, Changsha Health Vocational College, Changsha, 410699, China
| | - Yongwang Yan
- Pharmaceutical College, Changsha Health Vocational College, Changsha, 410699, China
| | - Binyuan Jiang
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
| |
Collapse
|
6
|
Yang G, Yang L, Xu F. Isoalantolactone: a review on its pharmacological effects. Front Pharmacol 2024; 15:1453205. [PMID: 39376605 PMCID: PMC11456459 DOI: 10.3389/fphar.2024.1453205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024] Open
Abstract
Isoalantolactone (ISA) is a sesquiterpene lactone that could be isolated from Inula helenium as well as many other herbal plants belonging to Asteraceae. Over the past 2 decades, lots of researches have been made on ISA, which owns multiple pharmacological effects, such as antimicrobial, anticancer, anti-inflammatory, neuroprotective, antidepressant-like activity, as well as others. The anticancer effects of ISA involve proliferation inhibition, ROS overproduction, apoptosis induction and cell cycle arrest. Through inhibiting NF-κB signaling, ISA exerts its anti-inflammatory effects which are involved in the neuroprotection of ISA. This review hackled the reported pharmacological effects of ISA and associated mechanisms, providing an update on understanding its potential in drug development.
Collapse
Affiliation(s)
- Guang Yang
- Department of Traditional Chinese Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Fei Xu
- Department of Acupuncture and Moxibustion, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Guo Y, Wu Y, Huang T, Huang D, Zeng Q, Wang Z, Hu Y, Liang P, Chen H, Zheng Z, Liang T, Zhai D, Jiang C, Liu L, Zhu H, Liu Q. Licorice flavonoid ameliorates ethanol-induced gastric ulcer in rats by suppressing apoptosis via PI3K/AKT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117739. [PMID: 38301986 DOI: 10.1016/j.jep.2024.117739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 02/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice is the dry roots and rhizomes of Glycyrrhiza uralensis Fisch., Glycyrrhiza glabra L. and Glycyrrhiza inflata Bat., which was first recorded in Shengnong's herbal classic. Licorice flavonoid (LF) is the main compound isolated from licorice with an indispensable action in treating gastric ulcer (GU). However, the underlying mechanisms need to be further explored. AIM OF THE STUDY This study aimed to investigate and further elucidate the mechanisms of LF against ethanol-induced GU using an integrated approach. MATERIALS AND METHODS The anti-GU effects of LF were evaluated in an ethanol-induced gastric injury rat model. Then, the metabolomics approach was applied to explore the specific metabolites and metabolic pathways. Next, the network pharmacology combined with metabolomics strategy was employed to predict the targets and pathways of LF for GU. Finally, these predictions were validated by molecular docking, RT-qPCR, and western blotting. RESULTS LF had a positive impact on gastric injury and regulated the expression of GU-related factors. Upon serum metabolomics analysis, 25 metabolic biomarkers of LF in GU treatment were identified, which were primarily involved in amino acid metabolism, carbohydrate metabolism, and other related processes. Subsequently, a "components-targets-metabolites" network was constructed, revealing six key targets (HSP90AA1, AKT1, MAPK1, EGFR, ESR1, PIK3CA) that may be associated with GU treatment. More importantly, KEGG analysis highlighted the importance of the PI3K/AKT pathway including key targets, as a critical route through which LF exerted its anti-GU effects. Molecular docking analyses confirmed that the core components of LF exhibited a strong affinity for key targets. Furthermore, RT-qPCR and western blotting results indicated that LF could reverse the expression of these targets, activate the PI3K/AKT pathway, and ultimately reduce apoptosis. CONCLUSION LF exerted a gastroprotective effect against gastric ulcer induced by ethanol, and the therapeutic mechanism may involve improving metabolism and suppressing apoptosis through the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Yinglin Guo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Tairun Huang
- Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Dehao Huang
- Huizhou Jiuhui Pharmaceutical Co., Ltd., Huizhou, 516000, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Peiyi Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hongkai Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zeying Zheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Tao Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Dan Zhai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hongxia Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Li J, Ma Z, Yang Z, Yang M, Li C, Li M, Li X, Chen X, Ma H, Chen W, Ye X, Li X. Integrating transcriptomics and network pharmacology to reveal the mechanisms of total Rhizoma Coptidis alkaloids against nonalcoholic steatohepatitis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117600. [PMID: 38103844 DOI: 10.1016/j.jep.2023.117600] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Non-alcoholic steatohepatitis (NASH) has emerged as a major cause of cirrhosis and hepatocellular carcinoma, posing a significant threat to public health. Rhizoma Coptidis, a traditional Chinese medicinal herb has been shown to have significant curative effects on liver diseases. Total Rhizoma Coptidis Alkaloids (TRCA) is a primarily alkaloid mixture extracted from Rhizoma Coptidis, and its constituents are widely accepted to have hepatoprotective effects. AIM OF THE STUDY This work aimed to investigate the efficacy and potential mechanisms of TRCA in ameliorating NASH through both in vitro experiments and in vivo mouse models. MATERIALS AND METHODS The study employed a mice model induced by a high-fat diet (HFD) to evaluate the effectiveness and pharmacological mechanisms of TRCA in alleviating NASH. Transcriptomic sequencing and network pharmacology were used to explore the possible targets and mechanisms of TRCA to ameliorate NASH. Further validation was performed in free fatty acid (FFA)-induced human hepatocytes (LO2) and human hepatocellular carcinoma cells (HepG2). RESULTS TRCA effectively ameliorated the main features of NASH such as lipid accumulation, hepatitis and hepatic fibrosis in the liver tissue of mice induced by HFD, as well as improved glucose tolerance and insulin resistance in mice. Combined with transcriptomic and network pharmacological analyses, 68 core targets associated with the improvement of NASH by TRCA were obtained. According to the KEGG results, the core targets were significantly enriched in the PI3K-AKT signaling pathway whereas TRCA ameliorated the aberrant down-regulation of the PI3K-AKT signaling pathway induced by HFD. Furthermore, the five highest-ranked genes were obtained by PPI network analysis. Moreover, our findings suggest that TRCA may impede the progression of HFD-induced NASH by regulating the expression of PPARG, MMP9, ALB, CCL2, and EGFR. CONCLUSIONS TRCA can ameliorate HFD-induced liver injury by modulating aberrant downregulation of the PI3K-AKT signaling pathway. Key proteins such as PPARG, MMP9, ALB, CCL2, and EGFR may be critical targets for TRCA to ameliorate NASH. This finding supports using Rhizoma Coptidis, a well-known herbal medicine, as a potential therapeutic agent for NASH.
Collapse
Affiliation(s)
- Juan Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Zhengcai Ma
- School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Zhipeng Yang
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Maochun Yang
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Changsheng Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Mengmeng Li
- School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xiaoduo Li
- School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xiantao Chen
- School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Hang Ma
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Wanqun Chen
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400000, China.
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xuegang Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
9
|
Zhang J, Liu J, Liu JW, Zhu QM, Zhang M, Zhang R, Ma XC, Lv X, Yu ZL, Sun CP. Targeting Keap1 with Inulae Herba activated the Nrf2 receptor to alleviate LPS-mediated acute lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117358. [PMID: 37890806 DOI: 10.1016/j.jep.2023.117358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inulae Herba (IH) is known as Jinfeicao recorded in Chinese Pharmacopoeia with effects of lowering qi and eliminating phlegm, and used for the treatment of pulmonary diseases. However, its protective mechanism on pulmonary diseases, especially acute lung injury (ALI), is still undefined. AIM OF THE STUDY This study aimed to explore anti-inflammatory and anti-oxidation effects of IH and its underlying mechanism for treating ALI. MATERIALS AND METHODS We constructed a lipopolysaccharide (LPS)-ALI mouse model to reveal the therapeutical effect of IH. Western blot, real-time quantitative PCR, flow cytometry, small RNA interference, immunohistochemical staining, and the dual-luciferase experiment were performed to study the mechanism of IH for treating ALI. RESULTS IH attenuated LPS-mediated pathological changes (e.g. pneumonedema and pulmonary congestion) through inactivation of macrophages in an ALI mouse model. The result of flow cytometry demonstrated that IH regulated the homeostasis of M1 (CD80+CD206-) and M2 (CD80+CD206+) phenotype macrophages. Furthermore, IH suppressed mRNA expressions of M1 phenotype markers, such as iNOS and IL-6, whereas promoted mRNA expressions of M2 phenotype markers, such as ARG1 and RETNLA in LPS-mediated mice. Notably, IH targeted Keap1 to activate the Nrf2 receptor, exerting its anti-inflammatory and anti-oxidation effects proved by using immunohistochemical staining, dual-luciferase, and Keap1 knockdown technologies. CONCLUSION These findings suggested that targeting Keap1 with IH alleviated LPS-mediated ALI, and it could serve as a herbal agent for developing anti-ALI drugs.
Collapse
Affiliation(s)
- Juan Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China; College of Pharmacy, Dalian Medical University, Dalian, 116044, China; School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518061, China
| | - Jing Liu
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China; College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Jing-Wen Liu
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China; College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Qi-Meng Zhu
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China; College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Min Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China; College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Rui Zhang
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiao-Chi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China.
| | - Xia Lv
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Zhen-Long Yu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Cheng-Peng Sun
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China; College of Pharmacy, Dalian Medical University, Dalian, 116044, China; School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
10
|
Wang X, Chen L, Chang L, He Y, He T, Wang R, Wei S, Jing M, Zhou X, Li H, Zhao Y. Mechanism of Wuzhuyu decoction on alcohol-induced gastric ulcers using integrated network analysis and metabolomics. Front Pharmacol 2024; 14:1308995. [PMID: 38259271 PMCID: PMC10800891 DOI: 10.3389/fphar.2023.1308995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Gastric ulcers (GUs) are prevalent digestive disorders worldwide. Wuzhuyu Decoction (WZYT) is a traditional Chinese medicine that has been employed for centuries to alleviate digestive ailments like indigestion and vomiting. This study aims to explore the potential effects and underlying mechanisms of WZYT on alcohol induced gastric ulcer treatment. Methods: We employed macroscopic assessment to evaluate the gastric ulcer index (UI), while the enzyme-linked immunosorbent assay (ELISA) was utilized for detecting biochemical indicators. Pathological tissue analysis involved hematoxylin-eosin (H&E) staining and Periodic Acid-Schiff (PAS) staining to assess gastric tissue damage. Additionally, the integration of network analysis and metabolomics facilitated the prediction of potential targets. Validation was conducted using Western blotting. Results: The research revealed that WZYT treatment significantly reduced the gastric ulcer index (UI) and regulation of alcohol-induced biochemical indicators levels. Additionally, improvements were observed in pathological tissue. Network analysis results indicated that 62 compounds contained in WZYT modulate alcohol-induced gastric ulcers by regulating 183 genes. The serum metabolomics indicated significant changes in the content of 19 metabolites after WZYT treatment. Two pivotal targets, heme oxygenase 1 (HMOX1) and albumin (ALB), are believed to assume a significant role in the treatment of gastric ulcers by the construction of "compounds-target-metabolite" networks. Western blot analysis confirmed that WZYT has the capacity to elevate the expression of HMOX1 and ALB targets. Conclusion: The integration of network analysis and metabolomics provides a scientific basis to propel the clinical use of WZYT for GUs. Our study provides a theoretical basis for the use of Wuzhuyu decoction in the treatment of gastric ulcers.
Collapse
Affiliation(s)
- Xin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lisheng Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lei Chang
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- College of Pharmacy, Southern Medical University, Guangzhou, China
| | - Yong He
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting He
- Integrative Medical Center, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruilin Wang
- Integrative Medical Center, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shizhang Wei
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Manyi Jing
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Haotian Li
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanling Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Wang R, Tang S, Huang L, Chen Z, Li Y, Liu S, Song F, Men L, Liu Z. Integrated ultra-high-performance liquid chromatography coupled with quadrupole-orbitrap mass spectrometry-based components analysis and network pharmacology strategy of Gancao Xiexin Decoction in treating gastric ulcer. J Sep Sci 2024; 47:e2300751. [PMID: 38234032 DOI: 10.1002/jssc.202300751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
Gancao Xiexin Decoction (GCXXD) is a traditional Chinese decoction that is often used in treating gastric ulcers. However, the substance basis and mechanism of action remain unclear. In this study, in vivo and in vitro components of GCXXD were analyzed by ultra-high-performance liquid chromatography coupled with quadrupole-orbitrap mass spectrometry. The compound Discover platform was used to ultimately enable rapid identification of compounds. Acquire X intelligent data acquisition technology software was innovatively adopted. In the process of collecting drug-containing plasma, all components detected in blank plasma samples were excluded to eliminate the interference and influence of endogenous components in plasma, making the analysis results more accurate and reliable. At the same time, the possibility of selecting precursor parent ions with low concentration levels within the chromatographic peak can be increased, improving the coverage and integrality of the detection of components in vivo. Also, the targeted network pharmacology strategy combined with molecular docking was established to explore the mechanism of GCXXD in treating gastric ulcers. As a result, 113 components were identified, 41 of which could enter the bloodstream and exert therapeutic effects in vivo. The main effective components are glycyrrhizic acid, 6-gingerol, jatrorrhizine, wogonin, palmatine, and liquiritigenin, main targets in vivo were related to ALB, IL6, and VEGF, which play an important role in anti-inflammatory and promoting angiogenesis. In summary, this study adopted a comprehensive analysis strategy to reveal the pharmacodynamic material basis and mechanism of GCXXD against gastric ulcers, providing a scientific basis for its clinical application.
Collapse
Affiliation(s)
- Rongjin Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Shoufang Tang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Limei Huang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Ziyi Chen
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yuwen Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Lihui Men
- College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
12
|
Feng L, A. L, Bao T, Mu X, Ta N, Duan Q, Ta L, Chen Y, Bai L, Fu M. An integrated network analysis, RNA-seq and in vivo validation approaches to explore the protective mechanism of Mongolian medicine formulae Ruda-6 against indomethacin-induced gastric ulcer in rats. Front Pharmacol 2023; 14:1181133. [PMID: 37637418 PMCID: PMC10449537 DOI: 10.3389/fphar.2023.1181133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Gastric ulcer (GU) is one of the most prevalent digestive diseases that seriously affects people's health. Previous studies have demonstrated the anti-GU effect of Ruda-6 (RD-6), a classic formulae of traditional Mongolian medicine. However, the underlying mechanism of RD-6 against GU remains elusive. Thus, we conducted an integrative approach of network analysis, RNA-seq, and in vivo validation experiment to elucidate the therapeutic mechanisms of RD-6 in preventing GU. A network analysis was performed to predict the potential targets of RD-6. Rats were pretreated with RD-6 at different doses for 21 days, followed by GU induction with indomethacin injection. The ulcer index and inhibition rates were calculated, and the levels of inflammatory related factors were determined by ELISA. The gastroprotective mechanism of RD-6 against ulceration was verified by RNA-seq and the key pathway was detected by in vivo validation. As the network analysis predicted, RD-6 exerts anti-GU effects by regulating 75 targets and 160 signaling pathways. Animal experiment results suggested that pretreatment with RD-6 significantly ameliorated the gastric mucosal injury and inflammatory response, as evidenced by a reduced ulcer index, decreased interleukin (IL)-1β, IL-6, and IL-17 levels, and increased prostaglandin E2 (PGE2) levels in the GU model rats induced by indomethacin. RNA-seq data identified four potential hub genes that were primarily involved in the IL-17 signaling pathway. Furthermore, in vivo validation experiment showed that RD-6 inhibited the IL-17 signaling pathway by down-regulating the expression of IL17RA, proto-oncogene C-Fos (FOS), IL1B and prostaglandin-endoperoxide synthase 2 (PTGS2). Taken together, the present study provides evidence that RD-6 could effectively protect against indomethacin-induced GU, which might be attributed to suppressed inflammation. The IL-17 signaling pathway may be one of the crucial mechanisms that mediates the effect of RD-6.
Collapse
Affiliation(s)
- Lan Feng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
| | - Lisha A.
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Terigele Bao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
| | - Xiyele Mu
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
| | - Na Ta
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
| | - Qiang Duan
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Inner Mongolia Minzu University, Tongliao, China
| | - La Ta
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yongsheng Chen
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Inner Mongolia Minzu University, Tongliao, China
| | - Laxinamujila Bai
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
| | - Minghai Fu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|