1
|
Figueira MI, Marques R, Cardoso HJ, Fonseca LRS, Duarte AP, Silvestre S, Socorro S. Effect of Diosgenin in Suppressing Viability and Promoting Apoptosis of Human Prostate Cancer Cells: An Interplay with the G Protein-Coupled Oestrogen Receptor? Int J Mol Sci 2024; 25:12006. [PMID: 39596074 PMCID: PMC11593390 DOI: 10.3390/ijms252212006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Diosgenin is a phytosteroid sapogenin with reported antitumoral activity. Despite the evidence indicating a lower incidence of prostate cancer (PCa) associated with a higher consumption of phytosteroids and the beneficial role of these compounds, only a few studies have investigated the effects of diosgenin in PCa, and its mechanisms of action remain to be disclosed. The present study investigated the effect of diosgenin in modulating PCa cell fate and glycolytic metabolism and explored its potential interplay with G protein-coupled oestrogen receptor (GPER). Non-neoplastic (PNT1A) and neoplastic (LNCaP, DU145, and PC3) human prostate cell lines were stimulated with diosgenin in the presence or absence of the GPER agonist G1 and upon GPER knockdown. Diosgenin decreased the cell viability, as indicated by the MTT assay results, which also demonstrated that castrate-resistant PCa cells were the most sensitive to treatment (PC3 > DU145 > LNCaP > PNT1A; IC50 values of 14.02, 23.21, 56.12, and 66.10 µM, respectively). Apoptosis was enhanced in diosgenin-treated cells, based on the increased caspase-3-like activity, underpinned by the altered expression of apoptosis regulators evaluated by Western blot analysis, which indicated the activation of the extrinsic pathway. Exposure to diosgenin also altered glucose metabolism. Overall, the effects of diosgenin were potentiated in the presence of G1. Moreover, diosgenin treatment augmented GPER expression, and the knockdown of the GPER gene suppressed the proapoptotic effects of diosgenin in PC3 cells. Our results support the antitumorigenic role of diosgenin and its interest in PCa therapy, alone or in combination with G1, mainly targeting the more aggressive stages of the disease.
Collapse
Affiliation(s)
- Marília I. Figueira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.I.F.); (H.J.C.); (L.R.S.F.); (A.P.D.); (S.S.)
| | - Ricardo Marques
- Instituto Politécnico da Guarda (IPG), 6300-559 Guarda, Portugal;
| | - Henrique J. Cardoso
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.I.F.); (H.J.C.); (L.R.S.F.); (A.P.D.); (S.S.)
| | - Lara R. S. Fonseca
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.I.F.); (H.J.C.); (L.R.S.F.); (A.P.D.); (S.S.)
| | - Ana P. Duarte
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.I.F.); (H.J.C.); (L.R.S.F.); (A.P.D.); (S.S.)
| | - Samuel Silvestre
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.I.F.); (H.J.C.); (L.R.S.F.); (A.P.D.); (S.S.)
| | - Sílvia Socorro
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.I.F.); (H.J.C.); (L.R.S.F.); (A.P.D.); (S.S.)
| |
Collapse
|
2
|
Sadwal S, Bharati S, Dar ZA, Kaur S. Chemopreventive potential of hydroethanolic Murraya koenigii leaves extract against DMBA induced breast carcinogenesis: In-silico and in-vivo study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117124. [PMID: 37678421 DOI: 10.1016/j.jep.2023.117124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/28/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Murraya koenigii (MK), a member of the Rutaceae family and widely known as the curry-leaf tree, is indigenous to India, Sri Lanka, and other south Asian nations. It is a renowned medicinal herb because of the wide range of bioactive components found in its leaves, such as girinimbine, koenimbine, mahanimbine and mahanine among others. All these bioactive components make this plant beneficial for treating a variety of ailments and diseases. Biological and pharmacological activities of MK include anti-oxidant, anti-microbial, anti-ulcer, anti-helminthic, anti-malarial, anti-trichomonal, hepatoprotective, anti-diabetic, etc. AIM OF THE STUDY: The present study aimed to evaluate the possible protective effect of hydroethanolic Murraya koenigii leaves extract (HEMKLE) against 7,12-Dimethylbenz[a]anthracene (DMBA)-induced breast cancer in rats, which further paves the way for future breast cancer treatment. MATERIALS AND METHODS For the preparation of hydroethanolic Murraya koenigii leaves extract (HEMKLE), Murraya koenigii (MK) leaves were taken from the botanical garden of the Panjab University campus, Chandigarh, and authenticated from the Department of Botany, Panjab University (accession number 22417). The phytochemical characterization of HEMKLE was performed using liquid chromatography-mass spectrometry (LC-MS). Following this, an in-silico molecular docking analysis was performed using Maestro Schrodinger software, and an in-vivo study was conducted. For the in-vivo study, female SD rats were divided into four different groups. Group I (C), Group II (DMBA), Group III (HEMKLE), and Group IV (HEMKLE + DMBA). Histopathogy, oxidative and antioxidant status, immunohistochemistry of estrogen receptor-α, TUNEL assays, mRNA and protein expression of apoptotic pathway genes were conducted in in-vivo study. RESULTS In LC-MS, major phytochemical constituents including flavonoids and carbazole alkaloids were identified. In-silico docking study revealed the strong binding affinity between the identified compounds with caspase-3. Additionally, koenine displayed the highest binding affinity/minimum energy of -9.21 kcal/mol with 6BDV as compared to other phytochemicals. Furthermore, in-vivo experimentation revealed that HEMKLE administration in Group IV(HEMKLE + DMBA) significantly inhibits the tumor incidence and volume as compared to alone DMBA treated group. The antioxidant action of HEMKLE was proven from the in-vivo analysis of antioxidant marker enzymes, histopathology, immunohistochemistry of ER-α studies. Further, increase number of TUNEL positive cells was observed in co-treated animals as compared to alone DMBA treated animals. In Group IV (HEMKLE + DMBA), upregulated expression of pro-apoptotic genes and downregulated expression of anti-apoptotic gene were observed when compared to Group II(DMBA) suggested the apoptotic effect of HEMKLE. CONCLUSION The results of the present study provide clear evidence of the chemopreventive capabilities of HEMKLE in rats with DMBA-induced breast cancer. The observed outcomes could potentially be attributed to the existence of diverse phytochemicals within the HEMKLE.
Collapse
Affiliation(s)
- Shilpa Sadwal
- Department of Biophysics, Panjab University, Chandigarh, India.
| | - Sanjay Bharati
- Manipal College of Health Profession, Manipal Academy of Higher Education, Karnataka, India.
| | - Zahid Ahmad Dar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| | | |
Collapse
|
3
|
Cao LQ, Sun H, Xie Y, Patel H, Bo L, Lin H, Chen ZS. Therapeutic evolution in HR+/HER2- breast cancer: from targeted therapy to endocrine therapy. Front Pharmacol 2024; 15:1340764. [PMID: 38327984 PMCID: PMC10847323 DOI: 10.3389/fphar.2024.1340764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Breast cancer, a complex and varied disease, has four distinct subtypes based on estrogen receptor and human epidermal growth factor receptor 2 (HER2) levels, among which a significant subtype known as HR+/HER2-breast cancer that has spurred numerous research. The prevalence of breast cancer and breast cancer-related death are the most serious threats to women's health worldwide. Current progress in treatment strategies for HR+/HER2-breast cancer encompasses targeted therapy, endocrine therapy, genomic immunotherapy, and supplementing traditional methods like surgical resection and radiotherapy. This review article summarizes the current epidemiology of HR+/HER2-breast cancer, introduces the classification of HR+/HER2-breast cancer and the commonly used treatment methods. The mechanisms of action of various drugs, including targeted therapy drugs and endocrine hormone therapy drugs, and their potential synergistic effects are deeply discussed. In addition, clinical trials of these drugs that have been completed or are still in progress are included.
Collapse
Affiliation(s)
- Lu-Qi Cao
- Institute for Biotechnology, St. John’s University, Queens, NY, United States
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Haidong Sun
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuhao Xie
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Harsh Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Hanli Lin
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John’s University, Queens, NY, United States
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| |
Collapse
|
4
|
Yu S, Zheng J, Zhang Y, Meng D, Wang Y, Xu X, Liang N, Shabiti S, Zhang X, Wang Z, Yang Z, Mi P, Zheng X, Li W, Chen H. The mechanisms of multidrug resistance of breast cancer and research progress on related reversal agents. Bioorg Med Chem 2023; 95:117486. [PMID: 37847948 DOI: 10.1016/j.bmc.2023.117486] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023]
Abstract
Chemotherapy is the mainstay in the treatment of breast cancer. However, many drugs that are commonly used in clinical practice have a high incidence of side effects and multidrug resistance (MDR), which is mainly caused by overexpression of drug transporters and related enzymes in breast cancer cells. In recent years, researchers have been working hard to find newer and safer drugs to overcome MDR in breast cancer. In this review, we provide the molecule mechanism of MDR in breast cancer, categorize potential lead compounds that inhibit single or multiple drug transporter proteins, as well as related enzymes. Additionally, we have summarized the structure-activity relationship (SAR) based on potential breast cancer MDR modulators with lower side effects. The development of novel approaches to suppress MDR is also addressed. These lead compounds hold great promise for exploring effective chemotherapy agents to overcome MDR, providing opportunities for curing breast cancer in the future.
Collapse
Affiliation(s)
- Shiwen Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Jinling Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yan Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Dandan Meng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yujue Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Xiaoyu Xu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Na Liang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Shayibai Shabiti
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Xu Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zixi Wang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zehua Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Pengbing Mi
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Xing Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Department of Pharmacy, Hunan Vocational College of Science and Technology, Third Zhongyi Shan Road, Changsha, Hunan Province 425101, PR China.
| | - Wenjun Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Hongfei Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China.
| |
Collapse
|