1
|
Weeks KL, Bernardo BC, Bell JR, Delbridge LMD, Mellor KM. New insights into diabetes-induced cardiac pathology. J Mol Cell Cardiol 2025; 203:76-81. [PMID: 40262687 DOI: 10.1016/j.yjmcc.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/24/2025]
Abstract
Individuals with diabetes have an elevated risk of heart disease, and there is a significant clinical need for evidence-based treatments. Heart disease in diabetes manifests as a distinct cardiopathology, with cardiac structural and functional remodeling underlying increased susceptibility to cardiac dysfunction and arrhythmias. An understanding of the mechanisms associated with cardiac vulnerability in diabetes is incomplete, but recent studies have advanced new insights into the roles of metabolic disturbances, gene dysregulation and epicardial adipose influence. This perspective article highlights these three promising new developments in proposed mechanisms, and discusses exciting advances in cardiac-targeting for potential treatment of diabetic heart disease.
Collapse
Affiliation(s)
- K L Weeks
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia; Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - B C Bernardo
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Victoria, Australia
| | - J R Bell
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia; Department of Microbiology, Anatomy, Physiology & Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - L M D Delbridge
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - K M Mellor
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia; Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Break MKB, Syed RU, Hussein W, Alqarni S, Magam SM, Nawaz M, Shaikh S, Otaibi AA, Masood N, Younes KM. Noncoding RNAs as therapeutic targets in autophagy-related diabetic cardiomyopathy. Pathol Res Pract 2024; 256:155225. [PMID: 38442448 DOI: 10.1016/j.prp.2024.155225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Diabetic cardiomyopathy, a multifaceted complication of diabetes mellitus, remains a major challenge in clinical management due to its intricate pathophysiology. Emerging evidence underscores the pivotal role of autophagy dysregulation in the progression of diabetic cardiomyopathy, providing a novel avenue for therapeutic intervention. Noncoding RNAs (ncRNAs), a diverse class of regulatory molecules, have recently emerged as promising candidates for targeted therapeutic strategies. The exploration of various classes of ncRNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) reveal their intricate regulatory networks in modulating autophagy and influencing the pathophysiological processes associated with diabetic cardiomyopathy. The nuanced understanding of the molecular mechanisms underlying ncRNA-mediated autophagic regulation offers a rationale for the development of precise and effective therapeutic interventions. Harnessing the regulatory potential of ncRNAs presents a promising frontier for the development of targeted and personalized therapeutic strategies, aiming to ameliorate the burden of diabetic cardiomyopathy in affected individuals. As research in this field advances, the identification and validation of specific ncRNA targets hold immense potential for the translation of these findings into clinically viable interventions, ultimately improving outcomes for patients with diabetic cardiomyopathy. This review encapsulates the current understanding of the intricate interplay between autophagy and diabetic cardiomyopathy, with a focus on the potential of ncRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia; Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia.
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia.
| | - Weiam Hussein
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, Aden University, Aden 6075, Yemen
| | - Saad Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Sami M Magam
- Basic Science Department, Preparatory Year, University of Hail, Hail City 1560, Kingdom of Saudi Arabia; Department of Marine Chemistry and Pollution, Faculty of Marine Science and Environment, Hodeidah University, Hodeidah City, Yemen
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sameer Shaikh
- Division of Oral Diagnosis and Oral Medicine, Department of OMFS and Diagnostic Sciences, College of Dentistry, University of Hail, Ha'il, Saudi Arabia
| | - Ahmed Al Otaibi
- Chemistry Department, Faculty of Science, University of Ha'il, P.O. Box 2440, Ha'il 81451, Saudi Arabia
| | - Najat Masood
- Chemistry Department, Faculty of Science, University of Ha'il, P.O. Box 2440, Ha'il 81451, Saudi Arabia
| | - Kareem M Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia; Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
3
|
Bryja A, Zadka Ł, Farzaneh M, Zehtabi M, Ghasemian M, Dyszkiewicz-Konwińska M, Mozdziak P, Zabel M, Podhorska-Okołów M, Dzięgiel P, Piotrowska-Kempisty H, Kempisty B. Small extracellular vesicles - A host for advanced bioengineering and "Trojan Horse" of non-coding RNAs. Life Sci 2023; 332:122126. [PMID: 37769803 DOI: 10.1016/j.lfs.2023.122126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Small extracellular vesicles (sEVs) are a type of membranous vesicles that can be released by cells into the extracellular space. The relationship between sEVs and non-coding RNAs (ncRNAs) is highly intricate and interdependent. This symbiotic relationship plays a pivotal role in facilitating intercellular communication and holds profound implications for a myriad of biological processes. The concept of sEVs and their ncRNA cargo as a "Trojan Horse" highlights their remarkable capacity to traverse biological barriers and surreptitiously deliver their cargo to target cells, evading detection by the host-immune system. Accumulating evidence suggests that sEVs may be harnessed as carriers to ferry therapeutic ncRNAs capable of selectively silencing disease-driving genes, particularly in conditions such as cancer. This approach presents several advantages over conventional drug delivery methods, opening up new possibilities for targeted therapy and improved treatment outcomes. However, the utilization of sEVs and ncRNAs as therapeutic agents raises valid concerns regarding the possibility of unforeseen consequences and unintended impacts that may emerge from their application. It is important to consider the fundamental attributes of sEVs and ncRNAs, including by an in-depth analysis of the practical and clinical potentials of exosomes, serving as a representative model for sEVs encapsulating ncRNAs.
Collapse
Affiliation(s)
- Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wrocław, Poland
| | - Łukasz Zadka
- Division of Ultrastructural Research, Wroclaw Medical University, Wrocław, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ghasemian
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, USA
| | - Maciej Zabel
- Division of Ultrastructural Research, Wroclaw Medical University, Wrocław, Poland; Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wrocław, Poland; Division of Anatomy and Histology, University of Zielona Gora, Zielona Góra, Poland
| | | | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wrocław, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland; Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wrocław, Poland; Prestage Department of Poultry Science, North Carolina State University, Raleigh, USA; Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic; Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Toruń, Poland.
| |
Collapse
|