2
|
Tayabali AF, Dirieh Y, Groulx E, Elfarawi N, Di Fruscio S, Melanson K, Moteshareie H, Al-Gafari M, Navarro M, Bernatchez S, Demissie Z, Anoop V. Survival and virulence of Acinetobacter baumannii in microbial mixtures. BMC Microbiol 2024; 24:324. [PMID: 39243004 PMCID: PMC11378493 DOI: 10.1186/s12866-024-03471-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
Acinetobacter species such as A. venetianus and A. guillouiae have been studied for various biotechnology applications, including bioremediation of recalcitrant and harmful environmental contaminants, as well as bioengineering of enzymes and diagnostic materials. Bacteria used in biotechnology are often combined with other microorganisms in mixtures to formulate efficacious commercial products. However, if the mixture contained a closely related Acinetobacter pathogen such as A. baumannii (Ab), it remains unclear whether the survival and virulence of Ab would be masked or augmented. This uncertainty poses a challenge in ensuring the safety of such biotechnology products, since Ab is one of the most significant pathogens for both hospital and community -acquired infections. This research aimed to investigate the growth and virulence of Ab within a mixture of 11 bacterial species formulated as a mock microbial mixture (MM). Growth challenges with environmental stressors (i.e., temperature, pH, sodium, iron, and antibiotics) revealed that Ab could thrive under diverse conditions except in the presence of ciprofloxacin. When cultured alone, Ab exhibited significantly more growth in the presence of almost all the environmental stressors than when it was co-incubated with the MM. During the exposure of A549 lung epithelial cells to the MM, Ab growth was stimulated compared to that in standard mammalian culture media. Cytotoxicity caused by Ab was suppressed in the presence of the MM. Lymphocytes were significantly reduced in mice exposed to Ab with or without MM via intravenous injection. The levels of the splenic cytokines IL-1α, IL-1β, MCP-1, and MIP-1α were significantly reduced 24 h after exposure to Ab + MM. This study demonstrated that the presence of the MM marginally but significantly reduced the growth and virulence of Ab, which has implications for the safety of mixtures of microorganisms for biotechnological applications. Furthermore, these findings expand our understanding of the virulence of Ab during host-pathogen interactions.
Collapse
Affiliation(s)
- Azam F Tayabali
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| | - Yasmine Dirieh
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Emma Groulx
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Nusaybah Elfarawi
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Sabrina Di Fruscio
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Kristina Melanson
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Houman Moteshareie
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Mustafa Al-Gafari
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Martha Navarro
- Scientific Services Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Stéphane Bernatchez
- Biotechnology Sections 1 and 2, New Substances Assessment and Control Bureau, Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Zerihun Demissie
- Biotechnology Sections 1 and 2, New Substances Assessment and Control Bureau, Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Valar Anoop
- Biotechnology Sections 1 and 2, New Substances Assessment and Control Bureau, Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| |
Collapse
|
3
|
Wang P, Xie C, Zhang Y, Li H, Lu Y, Sun L, Hu X, Nie T, Li C, Li G, Lu X, Pang J, Yang X, Yu L, Li X, Wang X, You X. Negatively charged nanodiscs for the reduction of toxicity and enhanced efficacy of polymyxin B against Acinetobacter baumannii sepsis. Acta Biomater 2024; 184:323-334. [PMID: 38901753 DOI: 10.1016/j.actbio.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
The treatment of sepsis caused by multidrug-resistant (MDR) Gram-negative bacterial infections remains challenging. With these pathogens exhibiting resistance to carbapenems and new generation cephalosporins, the traditional antibiotic polymyxin B (PMB) has reemerged as a critical treatment option. However, its severe neurotoxicity and nephrotoxicity greatly limit the clinical application. Therefore, we designed negatively charged high-density lipoprotein (HDL) mimicking nanodiscs as a PMB delivery system, which can simultaneously reduce toxicity and enhance drug efficacy. The negative charge prevented the PMB release in physiological conditions and binding to cell membranes, significantly reducing toxicity in mammalian cells and mice. Notably, nanodisc-PMB exhibits superior efficacy than free PMB in sepsis induced by carbapenem-resistant Acinetobacter baumannii (CRAB) strains. Nanodisc-PMB shows promise as a treatment for carbapenem-resistant Gram-negative bacterial sepsis, especially caused by Acinetobacter baumannii, and the nanodiscs could be repurposed for other toxic antibiotics as an innovative delivery system. STATEMENT OF SIGNIFICANCE: Multidrug-resistant Gram-negative bacteria, notably carbapenem-resistant Acinetobacter baumannii, currently pose a substantial challenge due to the scarcity of effective treatments, rendering Polymyxins a last-resort antibiotic option. However, their therapeutic application is significantly limited by severe neurotoxic and nephrotoxic side effects. Prevailing polymyxin delivery systems focus on either reducing toxicity or enhancing bioavailability yet fail to simultaneously achieve both. In this scenario, we have developed a distinctive HDL-mimicking nanodisc for polymyxin B, which not only significantly reduces toxicity but also improves efficacy against Gram-negative bacteria, especially in sepsis caused by CRAB. This research offers an innovative drug delivery system for polymyxin B. Such advancement could notably improve the therapeutic landscape and make a significant contribution to the arsenal against these notorious pathogens.
Collapse
Affiliation(s)
- Penghe Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Chunyang Xie
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Youwen Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Haibin Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yun Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xinxin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tongying Nie
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Guoqing Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xi Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Liyan Yu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
5
|
Lin S, Mao X, He W. Causal association of circulating cytokines with sepsis: a Mendelian randomization study. Front Immunol 2023; 14:1281845. [PMID: 37915587 PMCID: PMC10616607 DOI: 10.3389/fimmu.2023.1281845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Observational studies have reported an association between circulating cytokines and sepsis. However, the precise causal relationship between these factors remains unclear. The objective of this study was to explore the causal link between circulating cytokines and sepsis using genetic data within the framework of Mendelian Randomization (MR). METHODS We performed a two-sample MR analysis to investigate this causality relationship in individuals of European ancestry. The publicly available genome-wide association studies (GWAS) statistics were used. We selected eligible instrumental single nucleotide polymorphisms (SNPs) that were significantly related to the circulating cytokines. Multiple MR analysis approaches were carried out, which included inverse variance weighted (IVW), Weighted Median, MR-Egger, Weighted Mode, Simple Mode, and MR pleiotropy residual sum and outlier (MR-PRESSO) methods. RESULTS We found evidence to support the causal role of genetically predicted circulating levels on decreased risk of sepsis, including RANTES (OR = 0.920, 95% CI: 0.849-0.997, P = 0.041) and basic fibroblast growth factor (basic-FGF) (OR = 0.869, 95% CI: 0.766-0.986, P = 0.029). Additionally, MR analysis positive causal association of between beta-nerve growth factor (β-NGF) and sepsis (OR = 1.120, 95% CI: 1.037-1.211, P = 0.004). The results of MR-Egger, Weighted Median, Weighted Mode, and Simple Mode methods were consistent with the IVW estimates. Sensitivity analysis showed no horizontal pleiotropy to bias the causal estimates. CONCLUSION This MR study provides first novel evidence that genetically predicted causal association of circulating levels of RANTES, basic-FGF, and β-NGF with altered sepsis risk. The findings shed light on the potential involvement of these cytokines in sepsis pathogenesis. Although requiring additional confirmation, the results contribute new insights into cytokine mediators in sepsis and suggest promising future research directions.
Collapse
Affiliation(s)
- Shan Lin
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xueyan Mao
- Department of Medical Intensive Care Unit, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wanmei He
- Department of Medical Intensive Care Unit, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|