Manara MC, Fiori V, Sparti A, Scotlandi K. CD99: A Key Regulator in Immune Response and Tumor Microenvironment.
Biomolecules 2025;
15:632. [PMID:
40427525 PMCID:
PMC12109474 DOI:
10.3390/biom15050632]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
CD99 is a membrane protein critical for various immunological functions, including T-cell activation, protein trafficking, cell apoptosis, and leukocyte movement. It is also highly expressed in certain malignant tumors, contributing to the development, invasion, immune evasion, and adaptation of tumor cells to stress stimuli, including drug resistance. CD99 is crucial at the intersection of normal biological processes and pathological conditions like cancer. While research indicates that CD99 may interact homotypically, there is evidence of some heterotypic ligands that align with its roles. The development of multiple anti-CD99 antibodies has shed light on its functions, particularly regarding interactions between tumor cells that overexpress CD99 and immune cells expressing the same protein within the microenvironment. Anti-CD99 antibodies effectively eliminate tumors and attract immune cells to the tumor area. Additionally, CD99 influences the expression of specific immune checkpoint molecules, such as CD47, paving the way for potential combinations of anti-CD99 with immune checkpoint inhibitors. This review explores CD99's role in normal physiology and cancer biology, focusing on how monoclonal antibodies affect CD99 expression and activity, thereby influencing cancer cells' interactions with their microenvironment. It summarizes key findings about how these changes impact cancer cell behavior and the effectiveness of treatments.
Collapse