1
|
MacDonald AW, Patzelt E, Kurth-Nelson Z, Barch DM, Carter CS, Gold JM, Ragland JD, Silverstein SM. Computational modeling of reversal learning impairments in schizophrenia and bipolar disorder reveals shared failure to exploit rewards. JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE 2025; 134:262-271. [PMID: 40063391 PMCID: PMC11955188 DOI: 10.1037/abn0000944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
The distinction between the concepts of schizophrenia and bipolar disorder is fundamental to the Kraepelinian tradition in psychiatry. One mechanism undergirding this distinction, a difference in reward sensitivity, has been championed by a number of scholars. As part of the Cognitive Neuroscience Test Reliability and Clinical applications for Serious mental illnesses consortium, 225 participants including people with schizophrenia (n = 69), schizoaffective disorder (n = 55), and bipolar affective disorder (n = 53) performed a probabilistic reversal learning task. This task switches the rewarded stimulus at various times throughout the task. Our analyses leveraged a Hidden Markov Model to examine trial-by-trial decisions of participants to reveal the differences between patient groups in their response to reward feedback. Whereas no patient group showed difficulty reversing their preferred categories after a switch in the task's contingencies and bipolar patient performance was spared in some other ways, all patient groups made more errors throughout the task because of a greater tendency to shift away from rewarded categories (i.e., win-switching). Furthermore, patients' cognitive ability is specifically related to this aspect of the task. Rather than validating a Kraepelinian dichotomy, these findings suggest that a failure to exploit rewards may reflect a mechanistic deficit common across both affective and nonaffective psychoses related to cognitive impairments in patients. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | - Deanna M Barch
- Department of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington University in St. Louis
| | | | | | | | | |
Collapse
|
2
|
Sanganahalli BG, Mihailovic JM, Vekaria HJ, Coman D, Yackzan AT, Flemister A, Aware C, Wenger K, Hubbard WB, Sullivan PG, Hyder F, Lin AL. mTOR inhibition enhances synaptic and mitochondrial function in Alzheimer's disease in an APOE genotype-dependent manner. J Cereb Blood Flow Metab 2024; 44:1745-1758. [PMID: 38879800 PMCID: PMC11494852 DOI: 10.1177/0271678x241261942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/11/2024] [Accepted: 05/24/2024] [Indexed: 10/18/2024]
Abstract
Apolipoprotein ε4 (APOE4) carriers develop brain metabolic dysfunctions decades before the onset of Alzheimer's disease (AD). A goal of the study is to identify if rapamycin, an inhibitor for the mammalian target of rapamycin (mTOR) inhibitor, would enhance synaptic and mitochondrial function in asymptomatic mice with human APOE4 gene (E4FAD) before they showed metabolic deficits. A second goal is to determine whether there may be genetic-dependent responses to rapamycin when compared to mice with human APOE3 alleles (E3FAD), a neutral AD genetic risk factor. We fed asymptomatic E4FAD and E3FAD mice with control or rapamycin diets for 16 weeks from starting from 3 months of age. Neuronal mitochondrial oxidative metabolism and excitatory neurotransmission rates were measured using in vivo 1H-[13C] proton-observed carbon-edited magnetic resonance spectroscopy, and isolated mitochondrial bioenergetic measurements using Seahorse. We found that rapamycin enhanced neuronal mitochondrial function, glutamate-glutamine cycling, and TCA cycle rates in the asymptomatic E4FAD mice. In contrast, rapamycin enhances glycolysis, non-neuronal activities, and inhibitory neurotransmission of the E3FAD mice. These findings indicate that rapamycin might be able to mitigate the risk for AD by enhancing brain metabolic functions for cognitively intact APOE4 carriers, and the responses to rapamycin are varied by APOE genotypes. Consideration of precision medicine may be needed for future rapamycin therapeutics.
Collapse
Affiliation(s)
- Basavaraju G Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Jelena M Mihailovic
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Hemendra J Vekaria
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Lexington VA Health Care System, Lexington, KY, USA
| | - Daniel Coman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Andrew T Yackzan
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | | | - Chetan Aware
- Department of Radiology, University of Missouri, Columbia, MO, USA
| | - Kathryn Wenger
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - W Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Lexington VA Health Care System, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Patrick G Sullivan
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Lexington VA Health Care System, Lexington, KY, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ai-Ling Lin
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Fan Y, Tao Y, Wang J, Gao Y, Wei W, Zheng C, Zhang X, Song XM, Northoff G. Irregularity of visual motion perception and negative symptoms in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:82. [PMID: 39349502 PMCID: PMC11443095 DOI: 10.1038/s41537-024-00496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/20/2024] [Indexed: 10/02/2024]
Abstract
Schizophrenia (SZ) is a severe psychiatric disorder characterized by perceptual, emotional, and behavioral abnormalities, with cognitive impairment being a prominent feature of the disorder. Recent studies demonstrate irregularity in SZ with increased variability on the neural level. Is there also irregularity on the psychophysics level like in visual perception? Here, we introduce a methodology to analyze the irregularity in a trial-by-trial way to compare the SZ and healthy control (HC) subjects. In addition, we use an unsupervised clustering algorithm K-means + + to identify SZ subgroups in the sample, followed by validation of the subgroups based on intraindividual visual perception variability and clinical symptomatology. The K-means + + method divided SZ patients into two subgroups by measuring durations across trials in the motion discrimination task, i.e., high, and low irregularity of SZ patients (HSZ, LSZ). We found that HSZ and LSZ subgroups are associated with more negative and positive symptoms respectively. Applying a mediation model in the HSZ subgroup, the enhanced irregularity mediates the relationship between visual perception and negative symptoms. Together, we demonstrate increased irregularity in visual perception of a HSZ subgroup, including its association with negative symptoms. This may serve as a promising marker for identifying and distinguishing SZ subgroups.
Collapse
Affiliation(s)
- Yi Fan
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yunhai Tao
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jue Wang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan Gao
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wei
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chanying Zheng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Xiaotong Zhang
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, China
- College of Electrical Engineering, Zhejiang University, Hangzhou, China
| | - Xue Mei Song
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.
| | - Georg Northoff
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Hughes H, Brady LJ, Schoonover KE. GABAergic dysfunction in postmortem dorsolateral prefrontal cortex: implications for cognitive deficits in schizophrenia and affective disorders. Front Cell Neurosci 2024; 18:1440834. [PMID: 39381500 PMCID: PMC11458443 DOI: 10.3389/fncel.2024.1440834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
The microcircuitry within superficial layers of the dorsolateral prefrontal cortex (DLPFC), composed of excitatory pyramidal neurons and inhibitory GABAergic interneurons, has been suggested as the neural substrate of working memory performance. In schizophrenia, working memory impairments are thought to result from alterations of microcircuitry within the DLPFC. GABAergic interneurons, in particular, are crucially involved in synchronizing neural activity at gamma frequency, the power of which increases with working memory load. Alterations of GABAergic interneurons, particularly parvalbumin (PV) and somatostatin (SST) subtypes, are frequently observed in schizophrenia. Abnormalities of GABAergic neurotransmission, such as deficiencies in the 67 kDA isoform of GABA synthesis enzyme (GAD67), vesicular GABA transporter (vGAT), and GABA reuptake transporter 1 (GAT1) in presynaptic boutons, as well as postsynaptic alterations in GABA A receptor subunits further contribute to impaired inhibition. This review explores GABAergic abnormalities of the postmortem DLPFC in schizophrenia, with a focus on the roles of interneuron subtypes involved in cognition, and GABAergic neurotransmission within presynaptic boutons and postsynaptic alterations. Where available, comparisons between schizophrenia and affective disorders that share cognitive pathology such as bipolar disorder and major depressive disorder will be made. Challenges in directly measuring GABA levels are addressed, emphasizing the need for innovative techniques. Understanding GABAergic abnormalities and their implications for neural circuit dysfunction in schizophrenia is crucial for developing targeted therapies.
Collapse
Affiliation(s)
- Hannah Hughes
- Graduate Biomedical Sciences Program, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Lillian J. Brady
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Kirsten E. Schoonover
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
- Department of Psychology and Sociology, College of Arts and Sciences, Tuskegee University, Tuskegee, AL, United States
| |
Collapse
|
5
|
Lian K, Li Y, Yang W, Ye J, Liu H, Wang T, Yang G, Cheng Y, Xu X. Hub genes, a diagnostic model, and immune infiltration based on ferroptosis-linked genes in schizophrenia. IBRO Neurosci Rep 2024; 16:317-328. [PMID: 38390236 PMCID: PMC10882140 DOI: 10.1016/j.ibneur.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Background Schizophrenia (SCZ) is a prevalent and serious mental disorder, and the exact pathophysiology of this condition is not fully understood. In previous studies, it has been proven that ferroprotein levels are high in SCZ. It has also been shown that this inflammatory response may modify fibromodulin. Accumulating evidence indicates a strong link between metabolism and ferroptosis. Therefore, the present study aims to identify ferroptosis-linked hub genes to further investigate the role that ferroptosis plays in the development of SCZ. Material and methods From the GEO database, four microarray data sets on SCZ (GSE53987, GSE38481, GSE18312, and GSE38484) and ferroptosis-linked genes were extracted. Using the prefrontal cortex expression matrix of SCZ patients and healthy individuals as the control group from GSE53987, weighted gene co-expression network analysis (WGCNA) was performed to discover SCZ-linked module genes. From the feed, genes associated with ferroptosis were retrieved. The intersection of the module and ferroptosis-linked genes was done to obtain the hub genes. Then, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and Gene Set Enrichment Analysis (GSEA) were conducted. The SCZ diagnostic model was established using logistic regression, and the GSE38481, GSE18312, and GSE38484 data sets were used to validate the model. Finally, hub genes linked to immune infiltration were examined. Results A total of 13 SCZ module genes and 7 hub genes linked to ferroptosis were obtained: DECR1, GJA1, EFN2L2, PSAT1, SLC7A11, SOX2, and YAP1. The GO/KEGG/GSEA study indicated that these hub genes were predominantly enriched in mitochondria and lipid metabolism, oxidative stress, immunological inflammation, ferroptosis, Hippo signaling pathway, AMP-activated protein kinase pathway, and other associated biological processes. The diagnostic model created using these hub genes was further confirmed using the data sets of three blood samples from patients with SCZ. The immune infiltration data showed that immune cell dysfunction enhanced ferroptosis and triggered SCZ. Conclusion In this study, seven critical genes that are strongly associated with ferroptosis in patients with SCZ were discovered, a valid clinical diagnostic model was built, and a novel therapeutic target for the treatment of SCZ was identified by the investigation of immune infiltration.
Collapse
Affiliation(s)
- Kun Lian
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
- Department of Neurosurgery, People's Hospital of Yiliang County
| | - Yongmei Li
- Department of Rehabilitation, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Wei Yang
- Department of Psychiatry, The Second People's Hospital of Yuxi, Yuxi, Yunnan 653100, China
| | - Jing Ye
- Sleep Medical Center, The First People's Hospital of Yunnan, Kunming, Yunnan 650101, China
| | - Hongbing Liu
- Department of Psychiatry, Lincang Psychiatric Hospital, Lincang, Yunnan 677000, China
| | - Tianlan Wang
- Department of Psychiatry, Lincang Psychiatric Hospital, Lincang, Yunnan 677000, China
| | - Guangya Yang
- Department of Psychiatry, Lincang Psychiatric Hospital, Lincang, Yunnan 677000, China
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
- Yunnan Clinical Research Center for Mental Disorders, Kunming, Yunnan 650000, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| |
Collapse
|
6
|
Li H, Ye Q, Wang D, Shi B, Xu W, Zhang S, Han X, Zhang XY, Thompson GJ. Resting State Brain Networks under Inverse Agonist versus Complete Knockout of the Cannabinoid Receptor 1. ACS Chem Neurosci 2024; 15:1669-1683. [PMID: 38575140 PMCID: PMC11027912 DOI: 10.1021/acschemneuro.3c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
The cannabinoid receptor 1 (CB1) is famous as the target of Δ9-tetrahydrocannabinol (THC), which is the active ingredient of marijuana. Suppression of CB1 is frequently suggested as a drug target or gene therapy for many conditions (e.g., obesity, Parkinson's disease). However, brain networks affected by CB1 remain elusive, and unanticipated psychological effects in a clinical trial had dire consequences. To better understand the whole brain effects of CB1 suppression we performed in vivo imaging on mice under complete knockout of the gene for CB1 (cnr1-/-) and also under the CB1 inverse agonist rimonabant. We examined white matter structural changes and brain function (network activity and directional uniformity) in cnr1-/- mice. In cnr1-/- mice, white matter (in both sexes) and functional directional uniformity (in male mice) were altered across the brain but network activity was largely unaltered. Conversely, under rimonabant, functional directional uniformity was not altered but network activity was altered in cortical regions, primarily in networks known to be altered by THC (e.g., neocortex, hippocampal formation). However, rimonabant did not alter many brain regions found in both our cnr1-/- results and previous behavioral studies of cnr1-/- mice (e.g., thalamus, infralimbic area). This suggests that chronic loss of cnr1 is substantially different from short-term suppression, subtly rewiring the brain but largely maintaining the network activity. Our results help explain why pathological mutations in CB1 (e.g., chronic pain) do not always provide insight into the side effects of CB1 suppression (e.g., clinical depression), and thus urge more preclinical studies for any drugs that suppress CB1.
Collapse
Affiliation(s)
- Hui Li
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Qiong Ye
- High
Magnetic Field Laboratory, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Da Wang
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Bowen Shi
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Wenjing Xu
- Institute
of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key
Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai 200433, China
| | - Shuning Zhang
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Xiaoyang Han
- Institute
of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key
Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai 200433, China
| | - Xiao-Yong Zhang
- Institute
of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key
Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai 200433, China
| | | |
Collapse
|
7
|
Tiwari AK, Adhikari A, Mishra LC, Srivastava A. Current Status of Our Understanding for Brain Integrated Functions and its Energetics. Neurochem Res 2022; 47:2499-2512. [PMID: 35689788 DOI: 10.1007/s11064-022-03633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
Human/animal brain is a unique organ with substantially high metabolism but it contains no energy reserve that is the reason it requires continuous supply of O2 and energy fluxes through CBF. The main source of energy remains glucose as the other biomolecules do not able to cross the blood-brain barrier. The speed of glucose metabolism is heterogeneous throughout the brain. One of the major flux consumption is Neuron-astrocyte cycling of glutamate and glutamine in glutamatergic neurons (approximately 80% of glucose metabolism in brain). The quantification of cellular glucose and other related substrate in resting, activated state can be analyzed through [18 F]FDG -positron-emission tomography (studying CMRglc) and [13 C/31P -MRS: for neuroenergetics & neurotransmitter cycling &31P-MRS: for energy induction & redox state). Merging basic in vitro studies with these techniques will help to develop new treatment paradigms for human brain diseased conditions.
Collapse
Affiliation(s)
- Anjani Kumar Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), 226025, Lucknow, Uttar Pradesh, India.
| | - Anupriya Adhikari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), 226025, Lucknow, Uttar Pradesh, India
| | - Lokesh Chandra Mishra
- Department of Zoology, Hansraj College, University of Delhi, North Campus, 110007, Delhi, India
| | | |
Collapse
|
8
|
Farina MG, Sandhu MRS, Parent M, Sanganahalli BG, Derbin M, Dhaher R, Wang H, Zaveri HP, Zhou Y, Danbolt NC, Hyder F, Eid T. Small loci of astroglial glutamine synthetase deficiency in the postnatal brain cause epileptic seizures and impaired functional connectivity. Epilepsia 2021; 62:2858-2870. [PMID: 34536233 PMCID: PMC9006438 DOI: 10.1111/epi.17072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The astroglial enzyme glutamine synthetase (GS) is deficient in small loci in the brain in adult patients with different types of focal epilepsy; however, the role of this deficiency in the pathogenesis of epilepsy has been difficult to assess due to a lack of sufficiently sensitive and specific animal models. The aim of this study was to develop an in vivo approach for precise and specific deletions of the GS gene in the postnatal brain. METHODS We stereotaxically injected various adeno-associated virus (AAV)-Cre recombinase constructs into the hippocampal formation and neocortex in 22-70-week-old GSflox/flox mice to knock out the GS gene in a specific and focal manner. The mice were subjected to seizure threshold determination, continuous video-electroencephalographic recordings, advanced in vivo neuroimaging, and immunocytochemistry for GS. RESULTS The construct AAV8-glial fibrillary acidic protein-green fluorescent protein-Cre eliminated GS in >99% of astrocytes in the injection center with a gradual return to full GS expression toward the periphery. Such focal GS deletion reduced seizure threshold, caused spontaneous recurrent seizures, and diminished functional connectivity. SIGNIFICANCE These results suggest that small loci of GS deficiency in the postnatal brain are sufficient to cause epilepsy and impaired functional connectivity. Additionally, given the high specificity and precise spatial resolution of our GS knockdown approach, we anticipate that this model will be extremely useful for rigorous in vivo and ex vivo studies of astroglial GS function at the brain-region and single-cell levels.
Collapse
Affiliation(s)
- Maxwell G Farina
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mani Ratnesh S Sandhu
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Maxime Parent
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Basavaraju G Sanganahalli
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Matthew Derbin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Roni Dhaher
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Helen Wang
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hitten P Zaveri
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yun Zhou
- Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Niels C Danbolt
- Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Sun D, Guo H, Womer FY, Yang J, Tang J, Liu J, Zhu Y, Duan J, Peng Z, Wang H, Tan Q, Zhu Q, Wei Y, Xu K, Zhang Y, Tang Y, Zhang X, Xu F, Wang J, Wang F. Frontal-posterior functional imbalance and aberrant function developmental patterns in schizophrenia. Transl Psychiatry 2021; 11:495. [PMID: 34580274 PMCID: PMC8476507 DOI: 10.1038/s41398-021-01617-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/28/2021] [Accepted: 08/20/2021] [Indexed: 12/01/2022] Open
Abstract
Schizophrenia (SZ) is a neurodevelopmental disorder. There remain significant gaps in understanding the neural trajectory across development in SZ. A major research focus is to clarify the developmental functional changes of SZ and to identify the specific timing, the specific brain regions, and the underlying mechanisms of brain alterations during SZ development. Regional homogeneity (ReHo) characterizing brain function was collected and analyzed on humans with SZ (hSZ) and healthy controls (HC) cross-sectionally, and methylazoxymethanol acetate (MAM) rats, a neurodevelopmental model of SZ, and vehicle rats longitudinally from adolescence to adulthood. Metabolomic and proteomic profiling in adult MAM rats and vehicle rats was examined and bioanalyzed. Compared to HC or adult vehicle rats, similar ReHo alterations were observed in hSZ and adult MAM rats, characterized by increased frontal (medial prefrontal and orbitofrontal cortices) and decreased posterior (visual and associated cortices) ReHo. Longitudinal analysis of MAM rats showed aberrant ReHo patterns as decreased posterior ReHo in adolescence and increased frontal and decreased posterior ReHo in adulthood. Accordingly, it was suggested that the visual cortex was a critical locus and adolescence was a sensitive window in SZ development. In addition, metabolic and proteomic alterations in adult MAM rats suggested that central carbon metabolism disturbance and mitochondrial dysfunction were the potential mechanisms underlying the ReHo alterations. This study proposed frontal-posterior functional imbalance and aberrant function developmental patterns in SZ, suggesting that the adolescent visual cortex was a critical locus and a sensitive window in SZ development. These findings from linking data between hSZ and MAM rats may have a significant translational contribution to the development of effective therapies in SZ.
Collapse
Affiliation(s)
- Dandan Sun
- Department of Cardiovascular Ultrasound, The People's Hospital of China Medical University & The People's Hospital of Liaoning Province, Shenyang, China
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Huiling Guo
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Fay Y Womer
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Jingyu Yang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jingwei Tang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Juan Liu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Zhu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Jia Duan
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Zhengwu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qingrong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiwen Zhu
- Liaoning Key Laboratory of Cognitive Neuroscience, Shenyang Medical College, Shenyang, China
| | - Yange Wei
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Ke Xu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Yanqing Tang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Xizhe Zhang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Fei Wang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China.
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Abstract
Prior research has demonstrated that the frontal lobes play a critical role in the top-down control of behavior, and damage to the frontal cortex impairs performance on tasks that require executive control [Burgess, P. W., & Stuss, D. T. Fifty years of prefrontal cortex research: Impact on assessment. Journal of the International Neuropsychological Society, 23, 755-767, 2017; Stuss, D. T., & Levine, B. Adult clinical neuropsychology: Lessons from studies of the frontal lobes. Annual Review of Psychology, 53, 401-433, 2002]. Across executive functioning tasks, performance deficits are often quantified as the number of false alarms per total number of nontarget trials. However, most studies of frontal lobe function focus on individual task performance and do not discuss commonalities of errors committed across different tasks. Here, we describe a neurocognitive account that explores the link between deficient frontal lobe function and increased false alarms across an array of experimental tasks from a variety of task domains. We review evidence for heightened false alarms following frontal deficits in episodic long-term memory tests, working memory tasks (e.g., n-back), attentional tasks (e.g., continuous performance tasks), interference control tasks (e.g., recent probes), and inhibitory control tasks (e.g., go/no-go). We examine this relationship via neuroimaging studies, lesion studies, and across age groups and pathologies that impact the pFC, and we propose 11 issues in cognitive processing that can result in false alarms. In our review, some overlapping neural regions were implicated in the regulation of false alarms. Ultimately, however, we find evidence for the fractionation and localization of certain frontal processes related to the commission of specific types of false alarms. We outline avenues for additional research that will enable further delineation of the fractionation of the frontal lobes' regulation of false alarms.
Collapse
|
11
|
Guo H, Xiao Y, Sun D, Yang J, Wang J, Wang H, Pan C, Li C, Zhao P, Zhang Y, Wu J, Zhang X, Wang F. Early-Stage Repetitive Transcranial Magnetic Stimulation Altered Posterior-Anterior Cerebrum Effective Connectivity in Methylazoxymethanol Acetate Rats. Front Neurosci 2021; 15:652715. [PMID: 34093113 PMCID: PMC8176023 DOI: 10.3389/fnins.2021.652715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
The aim of the current resting-state functional magnetic resonance imaging (fMRI) study was to investigate the potential mechanism of schizophrenia through the posterior-anterior cerebrum imbalance in methylazoxymethanol acetate (MAM) rats and to evaluate the effectiveness of repetitive transcranial magnetic stimulation (rTMS) as an early-stage intervention. The rats were divided into four groups: the MAM-sham group, vehicle-sham group, MAM-rTMS group, and vehicle-rTMS group. The rTMS treatment was targeted in the visual cortex (VC) in adolescent rats. Granger Causality Analysis (GCA) was used to evaluate the effective connectivity between regions of interest. Results demonstrated a critical right VC-nucleus accumbens (Acb)-orbitofrontal cortex (OFC) pathway in MAM rats; significant differences of effective connectivity (EC) were found between MAM-sham and vehicle-sham groups (from Acb shell to OFC: t = -2.553, p = 0.021), MAM-rTMS and MAM-sham groups (from VC to Acb core: t = -2.206, p = 0.043; from Acb core to OFC: t = 4.861, p < 0.001; from Acb shell to OFC: t = 4.025, p = 0.001), and MAM-rTMS and vehicle-rTMS groups (from VC to Acb core: t = -2.482, p = 0.025; from VC to Acb shell: t = -2.872, p = 0.012; from Acb core to OFC: t = 4.066, p = 0.001; from Acb shell to OFC: t = 3.458, p = 0.004) in the right hemisphere. Results of the early-stage rTMS intervention revealed that right nucleus accumbens played the role as a central hub, and VC was a potentially novel rTMS target region during adolescent schizophrenia. Moreover, the EC of right nucleus accumbens shell and orbitofrontal cortex was demonstrated to be a potential biomarker. To our knowledge, this was the first resting-state fMRI study using GCA to assess the deficits of a visual-reward neural pathway and the effectiveness of rTMS treatment in MAM rats. More randomized controlled trials in both animal models and schizophrenia patients are needed to further elucidate the disease characteristics.
Collapse
Affiliation(s)
- Huiling Guo
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Yao Xiao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China.,Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dandan Sun
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jingyu Yang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunyu Pan
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China.,School of Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Chao Li
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Pengfei Zhao
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine and Dentistry, The Neuroscience and Mental Health Institute (NMHI), University of Alberta, Alberta, AB, Canada
| | - Jinfeng Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Xizhe Zhang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.,Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Abstract
Positron emission tomography (PET) is a non-invasive imaging technology employed to describe metabolic, physiological, and biochemical processes in vivo. These include receptor availability, metabolic changes, neurotransmitter release, and alterations of gene expression in the brain. Since the introduction of dedicated small-animal PET systems along with the development of many novel PET imaging probes, the number of PET studies using rats and mice in basic biomedical research tremendously increased over the last decade. This article reviews challenges and advances of quantitative rodent brain imaging to make the readers aware of its physical limitations, as well as to inspire them for its potential applications in preclinical research. In the first section, we briefly discuss the limitations of small-animal PET systems in terms of spatial resolution and sensitivity and point to possible improvements in detector development. In addition, different acquisition and post-processing methods used in rodent PET studies are summarized. We further discuss factors influencing the test-retest variability in small-animal PET studies, e.g., different receptor quantification methodologies which have been mainly translated from human to rodent receptor studies to determine the binding potential and changes of receptor availability and radioligand affinity. We further review different kinetic modeling approaches to obtain quantitative binding data in rodents and PET studies focusing on the quantification of endogenous neurotransmitter release using pharmacological interventions. While several studies have focused on the dopamine system due to the availability of several PET tracers which are sensitive to dopamine release, other neurotransmitter systems have become more and more into focus and are described in this review, as well. We further provide an overview of latest genome engineering technologies, including the CRISPR/Cas9 and DREADD systems that may advance our understanding of brain disorders and function and how imaging has been successfully applied to animal models of human brain disorders. Finally, we review the strengths and opportunities of simultaneous PET/magnetic resonance imaging systems to study drug-receptor interactions and challenges for the translation of PET results from bench to bedside.
Collapse
|
13
|
Li G, Han X, Gao W, Song Z, Zhao S, Sun F, Ma H, Cui A, Tang X, Ma G. Influence of EGR3 Transfection on Imaging and Behavior in Rats and Therapeutic Effect of Risperidone in Schizophrenia Model. Front Psychiatry 2020; 11:00787. [PMID: 33192626 PMCID: PMC7542223 DOI: 10.3389/fpsyt.2020.00787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/22/2020] [Indexed: 01/02/2023] Open
Abstract
Schizophrenia is a type of neurodevelopmental psychiatric disorder. However, to date, scientists have not discovered the etiology and effective treatment of this condition. We injected the early growth response gene (EGR3) into the bilateral hippocampus to build a schizophrenia rat model. Behavioral phenotyping and resting-state functional magnetic resonance imaging (rs-fMRI) were used to analyze the behavioral and cerebral alterations in the schizophrenia rat model. The efficacy of risperidone therapy was also evaluated. We divided 34 rats into four groups: schizophrenia model group (E group), sham-operation group (FE group), healthy control group (H group), and risperidone therapy group (T group). Open field test and Morris water maze were conducted as behavioral experiments. Next, we performed rs-fMRI after four weeks of EGR3 transfection and risperidone treatment and analyzed imaging data using regional homogeneity (ReHo), the amplitude of low-frequency fluctuations (ALFF), and functional connectivity (FC). We examined the difference in behavioral and neural activation among the four groups and considered the correlations between behavior and imaging results. EGR3 gene transfection decreased the total moved distance in the open field test and the duration in the Q5 zone of the Morris water maze. Risperidone treatment reversed the trend and improved the performance of rats in these behavioral tests. Schizophrenia induced several neural alterations in ALFF and ReHo metrics of the rat brain, and risperidone could partly reverse these alterations. The results suggest that similar research is required for schizophrenia and that risperidone may be a novel treatment for dysregulated neural activation in schizophrenia.
Collapse
Affiliation(s)
- Guangfei Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiaowei Han
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Peking Union Medical College, Beijing, China
| | - Wenwen Gao
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Zeyu Song
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Shuai Zhao
- Changzhi Medical College, Changzhi, China
| | - Feiyi Sun
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hong Ma
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ailing Cui
- Anatomy Department, Changzhi Medical College, Changzhi, China
| | - Xiaoying Tang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
14
|
Parent M, Chitturi J, Santhakumar V, Hyder F, Sanganahalli BG, Kannurpatti SS. Kaempferol Treatment after Traumatic Brain Injury during Early Development Mitigates Brain Parenchymal Microstructure and Neural Functional Connectivity Deterioration at Adolescence. J Neurotrauma 2020; 37:966-974. [PMID: 31830867 PMCID: PMC7175625 DOI: 10.1089/neu.2019.6486] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Targeting mitochondrial ion homeostasis using Kaempferol, a mitochondrial Ca2+ uniporter channel activator, improves energy metabolism and behavior soon after a traumatic brain injury (TBI) in developing rats. Because of broad TBI pathophysiology and brain mitochondrial heterogeneity, Kaempferol-mediated early-stage behavioral and brain metabolic benefits may accrue from diverse sources within the brain. We hypothesized that Kaempferol influences TBI outcome by differentially impacting the neural, vascular, and synaptic/axonal compartments. After TBI at early development (P31), functional magnetic resonance imaging and diffusion tensor imaging (DTI) were applied to determine imaging outcomes at adolescence (2 months post-injury). Vehicle and Kaempferol treatments were made at 1, 24, and 48 h post-TBI, and their effects were assessed at adolescence. A significant increase in neural connectivity was observed after Kaempferol treatment as assessed by the spatial extent and strength of the somatosensory cortical and hippocampal resting-state functional connectivity (RSFC) networks. However, no significant RSFC changes were observed in the thalamus. DTI measures of fractional anisotropy (FA) and apparent diffusion coefficient, representing synaptic/axonal and microstructural integrity, showed significant improvements after Kaempferol treatment, with highest changes in the frontal and parietal cortices and hippocampus. Kaempferol treatment also increased corpus callosal FA, indicating measurable improvement in the interhemispheric structural connectivity. TBI prognosis was significantly altered at adolescence by early Kaempferol treatment, with improved neural connectivity, neurovascular coupling, and parenchymal microstructure in select brain regions. However, Kaempferol failed to improve vasomotive function across the whole brain, as measured by cerebrovascular reactivity. The differential effects of Kaempferol treatment on various brain functional compartments support diverse cellular-level mitochondrial functional outcomes in vivo.
Collapse
Affiliation(s)
- Maxime Parent
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Jyothsna Chitturi
- Department of Radiology, Rutgers Biomedical and Health Sciences–New Jersey Medical School, Newark, New Jersey
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Medical Science Building, Newark, New Jersey
- Department of Molecular, Cell and Systems Neuroscience, University of California at Riverside, Riverside, California
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Basavaraju G. Sanganahalli
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Sridhar S. Kannurpatti
- Department of Radiology, Rutgers Biomedical and Health Sciences–New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
15
|
Duan L, Zhu G. Mapping Theme Trends and Knowledge Structure of Magnetic Resonance Imaging Studies of Schizophrenia: A Bibliometric Analysis From 2004 to 2018. Front Psychiatry 2020; 11:27. [PMID: 32116844 PMCID: PMC7019376 DOI: 10.3389/fpsyt.2020.00027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recently, magnetic resonance imaging (MRI) technology has been widely used to quantitatively analyze brain structure, morphology, and functional activities, as well as to clarify the neuropathological and neurobiological mechanisms of schizophrenia. However, although there have been many relevant results and conclusions, there has been no systematic assessment of this field. AIM To analyze important areas of research utilizing MRI in studies of schizophrenia and explore major trends and the knowledge structure using bibliometric analysis. METHODS Literature related to MRI studies of schizophrenia published in PubMed between January 1, 2004 and December 31, 2018 were retrieved in 5-year increments. The extracted major Medical Subject Headings (MeSH) terms/MeSH subheadings were analyzed quantitatively. Bi-clu-stering analysis, social network analysis (SNA), and strategic diagrams were employed to analyze the word matrix and co-occurrence matrix of high-frequency MeSH terms. RESULTS For the periods of 2004 to 2008, 2009 to 2013, and 2014 to 2018, the number of relevant retrieved publications were 916, 1,344, and 1,512 respectively, showing an overall growth trend. 26, 34, and 36 high-frequency major MeSH terms/MeSH subheadings were extracted in each period, respectively. In line with strategic diagrams, the main undeveloped theme clusters in 2004-2008 were effects of antipsychotics on brain structure and their curative efficacy. These themes were replaced in 2009-2013 by physiopathology mechanisms of schizophrenia, etiology of cognitive disorder, research on default mode network and schizophrenic psychology, and were partially replaced in 2014-2018 by studies of differences in the neurobiological basis for schizophrenia and other mental disorders. Based on SNA, nerve net/physiopathology and psychotic disorder/pathology were considered the emerging hotspots of research in 2009-2013 and 2014-2018. CONCLUSIONS MRI studies on schizophrenia were relatively diverse, but the theme clusters derived from each period may reflect the publication trends to some extent. Bibliometric research over a 15-year period may be helpful in depicting the overall scope of research interest and may generate novel ideas for researchers initiating new projects.
Collapse
Affiliation(s)
- Li Duan
- Department of Psychiatry, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Gang Zhu
- Department of Psychiatry, the First Affiliated Hospital of China Medical University, Shenyang, China
- Central Laboratory, the First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Weeks JJ, Rupprecht LE, Grace AA, Donny EC, Sved AF. Nicotine Self-administration Is Not Increased in the Methylazoxymethanol Acetate Rodent Model of Schizophrenia. Nicotine Tob Res 2020; 22:204-212. [PMID: 30899959 PMCID: PMC7297085 DOI: 10.1093/ntr/ntz048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 03/20/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Patients with schizophrenia (SCZ) smoke at a rate of 4-5 times higher than the general population, contributing to negative health consequences in this group. One possible explanation for this increased smoking is that individuals with SCZ find nicotine (NIC) more reinforcing. However, data supporting this possibility are limited. METHODS The present experiments examined self-administration of NIC, alone or in combination with other reinforcers, across a range of doses in the methylazoxymethanol acetate (MAM) rodent model of SCZ. RESULTS MAM and control animals did not differ in NIC self-administration across a range of doses and schedules of reinforcement, in both standard 1-hour self-administration sessions and 23-hour extended access sessions. However, MAM animals responded less for sucrose or reinforcing visual stimuli alone or when paired with NIC. CONCLUSIONS To the extent that MAM-treated rats are a valid model of SCZ, these results suggest that increased NIC reinforcement does not account for increased smoking in SCZ patients. IMPLICATIONS This study is the first to utilize nicotine self-administration, the gold standard for studying nicotine reinforcement, in the methylazoxymethanol acetate model of schizophrenia, which is arguably the most comprehensive animal model of the disease currently available. Our assessment found no evidence of increased nicotine reinforcement in methylazoxymethanol acetate animals, suggesting that increased reinforcement may not perpetuate increased smoking in schizophrenia patients.
Collapse
Affiliation(s)
- Jillian J Weeks
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA
| | | | - Anthony A Grace
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA
- Department of Neuroscience, School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Eric C Donny
- Department of Physiology and Pharmacology, School of Medicine, Wake Forest University, Winston-Salem, NC
| | - Alan F Sved
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA
- Department of Neuroscience, School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
17
|
Ustundag MF, Ozcan H, Gencer AG, Yilmaz ED, Uğur K, Oral E, Bilici M. Nitric oxide, asymmetric dimethylarginine, symmetric dimethylarginine and L-arginine levels in psychotic exacerbation of schizophrenia and bipolar disorder manic episode. Saudi Med J 2020; 41:38-45. [PMID: 31915793 PMCID: PMC7001079 DOI: 10.15537/smj.2020.1.24817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/04/2019] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES To examine the changes in nitric oxide (NO), asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), and L-arginine levels in schizophrenia during acute psychotic exacerbation and in bipolar disorder during mania and to compare those changes to healthy controls. METHODS Thirty schizophrenia patients with acute psychotic exacerbation and 30 bipolar disorder patients with mania, who attended the Psychiatry Department, Erenköy Hospital for Mental and Nervous Diseases, Istanbul, Turkey, in 2010. Thirty healthy controls were included. The diagnosis was made using the Structured Clinical Interview for Axis I Disorders (SCID-I) interviews. Patients' demographic data were recorded, and NO, SDMA, L-arginine, and ADMA levels were studied. RESULTS Nitric oxide levels in schizophrenia patients were significantly lower than the control group. Nitric oxide levels in the bipolar group were lower than the control group but the difference was not statistically significant. The levels of SDMA, ADMA, and L-arginine were found to be significantly higher in schizophrenia and bipolar disorder patients than the control group. The disease duration was slightly negatively correlated with NO levels in bipolar patients. In schizophrenia patients, the disease severity was slightly positively correlated with NO levels. CONCLUSION Significant changes in NO, SDMA, ADMA, and L-arginine levels in schizophrenia and bipolar disorder patients suggest that NO and inhibitors of NO might be implicated in the neurobiology of schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Mehmet F Ustundag
- Department of Psychiatry, Erenköy Hospital for Mental and Nervous Diseases, Istanbul, Turkey. E-mail.
| | | | | | | | | | | | | |
Collapse
|
18
|
Krzystanek M, Pałasz A. NMDA Receptor Model of Antipsychotic Drug-Induced Hypofrontality. Int J Mol Sci 2019; 20:ijms20061442. [PMID: 30901926 PMCID: PMC6471005 DOI: 10.3390/ijms20061442] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 11/18/2022] Open
Abstract
Schizophrenia is a chronic mental disease, affecting around 1% of the general population. Schizophrenia is characterized by productive, negative, affective, and disorganization symptoms, and cognitive deficits. Cognitive deficits prevail in most of the schizophrenia patients and are one of the most disabling symptoms. They usually occur before the acute episode of the disease and tend to become chronic with no satisfactory treatment from antipsychotic drugs. Because of their early manifestation in patients’ lives, cognitive deficits are suggested to be the primary symptom of schizophrenia. The pathogenesis of cognitive deficits in schizophrenia is not fully understood. They are linked with hypofrontality, which is a decrease in blood flow and glucose metabolism in the prefrontal lobe of schizophrenia-suffering patients. Hypofrontality is linked with disturbances of the corticolimbothalamic circuit, important for cognition and memory in humans. The circuit consists of a group of neuroanatomic structures and hypothetically any disturbance in them may result in cognitive deficits. We present a translational preclinical model of understanding how antipsychotic medication may decrease the N-methyl-D-aspartic acid (NMDA) receptors’ activity and produce dysfunctions in the corticolimbothalamic circuit and hypofrontality. From several pharmacological experiments on rats, including mainly our own recent findings, we collected data that suggest that antipsychotic medication may maintain and escalate hypofrontality in schizophrenia, decreasing NMDA receptor activity in the corticolimbothalamic circuit in the human brain. We discuss our findings within the literature of the subject.
Collapse
Affiliation(s)
- Marek Krzystanek
- Department and Clinic of Psychiatric Rehabilitation, Department of Psychiatry and Psychotherapy, School of Medicine in Katowice, Ziołowa 45/47, 40-635 Katowice, Poland.
| | - Artur Pałasz
- Department of Histology, School of Medicine in Katowice, Medyków 18, 40-752 Katowice, Poland.
| |
Collapse
|
19
|
Parent M, Li Y, Santhakumar V, Hyder F, Sanganahalli BG, Kannurpatti SS. Alterations of Parenchymal Microstructure, Neuronal Connectivity, and Cerebrovascular Resistance at Adolescence after Mild-to-Moderate Traumatic Brain Injury in Early Development. J Neurotrauma 2019; 36:601-608. [PMID: 29855211 PMCID: PMC6354598 DOI: 10.1089/neu.2018.5741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity in children. To investigate outcome of early developmental TBI during adolescence, a rat model of fluid percussion injury was developed, where previous work reported deficits in sensorimotor behavior and cortical blood flow at adolescence.1 Based on the nonlocalized outcome, we hypothesized that multiple neurophysiological components of brain function, namely neuronal connectivity, synapse/axonal microstructural integrity, and neurovascular function, are altered and magnetic resonance imaging (MRI) methods could be used to determine regional alterations. Adolescent outcomes of developmental TBI were studied 2 months after injury, using functional MRI (fMRI) and diffusion tensor imaging (DTI). fMRI-based resting-state functional connectivity (RSFC), representing neural connectivity, was significantly altered between sham and TBI. RSFC strength decreased in the cortex, hippocampus, and thalamus, accompanied by decrease in spatial extent of their corresponding RSFC networks and interhemispheric asymmetry. Cerebrovascular reactivity to arterial CO2 changes diminished after TBI across both hemispheres, with a more pronounced decrease in the ipsilateral hippocampus, thalamus, and motor cortex. DTI measures of fractional anisotropy and apparent diffusion coefficient, reporting on axonal and microstructural integrity of the brain, indicated similar interhemispheric asymmetry, with highest change in the ipsilateral hippocampus and regions adjoining the ipsilateral thalamus, hypothalamus, and amygdala. TBI-induced corpus callosal microstructural alterations indicated measurable changes in interhemispheric structural connectivity. Hippocampus, thalamus, and select cortical regions were most consistently affected in multiple imaging markers. The multi-modal MRI results demonstrate cortical and subcortical alterations in neural connectivity, cerebrovascular resistance, and parenchymal microstructure in the adolescent brain, indicating the highly diffuse and persistent nature of the lateral fluid percussion TBI early in development.
Collapse
Affiliation(s)
- Maxime Parent
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Ying Li
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical and Health Sciences–New Jersey Medical School, Newark, New Jersey
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical and Health Sciences–New Jersey Medical School, Newark, New Jersey
- Department of Molecular, Cell and Systems Neuroscience, University of California at Riverside, Riverside, California
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Basavaraju G. Sanganahalli
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Sridhar S. Kannurpatti
- Department of Radiology, Rutgers Biomedical and Health Sciences–New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
20
|
Reinwald JR, Becker R, Mallien AS, Falfan-Melgoza C, Sack M, Clemm von Hohenberg C, Braun U, Cosa Linan A, Gass N, Vasilescu AN, Tollens F, Lebhardt P, Pfeiffer N, Inta D, Meyer-Lindenberg A, Gass P, Sartorius A, Weber-Fahr W. Neural Mechanisms of Early-Life Social Stress as a Developmental Risk Factor for Severe Psychiatric Disorders. Biol Psychiatry 2018; 84:116-128. [PMID: 29397900 DOI: 10.1016/j.biopsych.2017.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 11/21/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND To explore the domain-general risk factor of early-life social stress in mental illness, rearing rodents in persistent postweaning social isolation has been established as a widely used animal model with translational relevance for neurodevelopmental psychiatric disorders such as schizophrenia. Although changes in resting-state brain connectivity are a transdiagnostic key finding in neurodevelopmental diseases, a characterization of imaging correlates elicited by early-life social stress is lacking. METHODS We performed resting-state functional magnetic resonance imaging of postweaning social isolation rats (N = 23) 9 weeks after isolation. Addressing well-established transdiagnostic connectivity changes of psychiatric disorders, we focused on altered frontal and posterior connectivity using a seed-based approach. Then, we examined changes in regional network architecture and global topology using graph theoretical analysis. RESULTS Seed-based analyses demonstrated reduced functional connectivity in frontal brain regions and increased functional connectivity in posterior brain regions of postweaning social isolation rats. Graph analyses revealed a shift of the regional architecture, characterized by loss of dominance of frontal regions and emergence of nonfrontal regions, correlating to our behavioral results, and a reduced modularity in isolation-reared rats. CONCLUSIONS Our result of functional connectivity alterations in the frontal brain supports previous investigations postulating social neural circuits, including prefrontal brain regions, as key pathways for risk for mental disorders arising through social stressors. We extend this knowledge by demonstrating more widespread changes of brain network organization elicited by early-life social stress, namely a shift of hubness and dysmodularity. Our results highly resemble core alterations in neurodevelopmental psychiatric disorders such as schizophrenia, autism, and attention-deficit/hyperactivity disorder in humans.
Collapse
Affiliation(s)
- Jonathan Rochus Reinwald
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Robert Becker
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Anne Stephanie Mallien
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Claudia Falfan-Melgoza
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Markus Sack
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Christian Clemm von Hohenberg
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Urs Braun
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Systems Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Alejandro Cosa Linan
- Research Group In Silico Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Natalia Gass
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Andrei-Nicolae Vasilescu
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Fabian Tollens
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Philipp Lebhardt
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Natascha Pfeiffer
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Dragos Inta
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Department of Psychiatry, University of Basel, Basel, Switzerland
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Alexander Sartorius
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Weber-Fahr
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
21
|
Duarte JMN, Xin L. Magnetic Resonance Spectroscopy in Schizophrenia: Evidence for Glutamatergic Dysfunction and Impaired Energy Metabolism. Neurochem Res 2018; 44:102-116. [PMID: 29616444 PMCID: PMC6345729 DOI: 10.1007/s11064-018-2521-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 01/03/2023]
Abstract
In the past couple of decades, major efforts were made to increase reliability of metabolic assessments by magnetic resonance methods. Magnetic resonance spectroscopy (MRS) has been valuable for providing in vivo evidence and investigating biomarkers in neuropsychiatric disorders, namely schizophrenia. Alterations of glutamate and glutamine levels in brains of schizophrenia patients relative to healthy subjects are generally interpreted as markers of glutamatergic dysfunction. However, only a small fraction of MRS-detectable glutamate is involved in neurotransmission. Here we review and discuss brain metabolic processes that involve glutamate and that are likely to be implicated in neuropsychiatric disorders.
Collapse
Affiliation(s)
- João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, BMC C11, Sölvegatan 19, 221 84, Lund, Sweden. .,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| | - Lijing Xin
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Abstract
Metabolism is central to neuroimaging because it can reveal pathways by which neuronal and glial cells use nutrients to fuel their growth and function. We focus on advanced magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) methods used in brain metabolic studies. 17O-MRS and 31P-MRS, respectively, provide rates of oxygen use and ATP synthesis inside mitochondria, whereas 19F-MRS enables measurement of cytosolic glucose metabolism. Calibrated functional MRI (fMRI), an advanced form of fMRI that uses contrast generated by deoxyhemoglobin, provides maps of oxygen use that track neuronal firing across brain regions. 13C-MRS is the only noninvasive method of measuring both glutamatergic neurotransmission and cell-specific energetics with signaling and nonsignaling purposes. Novel MRI contrasts, arising from endogenous diamagnetic agents and exogenous paramagnetic agents, permit pH imaging of glioma. Overall, these magnetic resonance methods for imaging brain metabolism demonstrate translational potential to better understand brain disorders and guide diagnosis and treatment.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Department of Biomedical Engineering, Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, and Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut 06520;
| | - Douglas L Rothman
- Department of Biomedical Engineering, Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, and Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut 06520;
| |
Collapse
|
23
|
Functional networks and network perturbations in rodents. Neuroimage 2017; 163:419-436. [DOI: 10.1016/j.neuroimage.2017.09.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022] Open
|
24
|
Ruda-Kucerova J, Babinska Z, Stark T, Micale V. Suppression of Methamphetamine Self-Administration by Ketamine Pre-treatment Is Absent in the Methylazoxymethanol (MAM) Rat Model of Schizophrenia. Neurotox Res 2017; 32:121-133. [PMID: 28421529 DOI: 10.1007/s12640-017-9718-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 12/23/2022]
Abstract
Ketamine may prove to be a potential candidate in treating the widespread drug addiction/substance abuse epidemic among patients with schizophrenia. Clinical studies have shown ketamine to reduce cocaine and heroin cravings. However, the use of ketamine remains controversial as it may exacerbate the symptoms of schizophrenia. Therefore, the aim of this study is to characterize the effects of ketamine on drug addiction in schizophrenia using the methylazoxymethanol (MAM) acetate rat model on operant IV methamphetamine (METH) self-administration. MAM was administered intraperitoneally (22 mg/kg) on gestational day 17. Locomotor activity test and later IV self-administration (IVSA) were then performed in the male offspring followed by a period of forced abstinence and relapse of METH taking. After reaching stable intakes in the relapse phase, ketamine (5 mg/kg) was administered intraperitoneally 30 min prior to the self-administration session. As documented previously, the MAM rats showed a lack of habituation in the locomotor activity test but developed stable maintenance of METH self-administration with no difference in operant behaviour to control animals. Results show that ketamine treatment significantly reduced the METH intake in the control animals but not in MAM animals. Ketamine effect on METH self-administration may be explained by increased glutamatergic signalling in the prefrontal cortex caused by the N-methyl-D-aspartate antagonism and disinhibition of GABA interneurons which was shown to be impaired in the MAM rats. This mechanism may at least partly explain the clinically proven anti-craving potential of ketamine and allow development of more specific anti-craving medications with fewer risks.
Collapse
Affiliation(s)
- Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Zuzana Babinska
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Vincenzo Micale
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
25
|
Feeney EJ, Groman SM, Taylor JR, Corlett PR. Explaining Delusions: Reducing Uncertainty Through Basic and Computational Neuroscience. Schizophr Bull 2017; 43:263-272. [PMID: 28177090 PMCID: PMC5605246 DOI: 10.1093/schbul/sbw194] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Delusions, the fixed false beliefs characteristic of psychotic illness, have long defied understanding despite their response to pharmacological treatments (e.g., D2 receptor antagonists). However, it can be challenging to discern what makes beliefs delusional compared with other unusual or erroneous beliefs. We suggest mapping the putative biology to clinical phenomenology with a cognitive psychology of belief, culminating in a teleological approach to beliefs and brain function supported by animal and computational models. We argue that organisms strive to minimize uncertainty about their future states by forming and maintaining a set of beliefs (about the organism and the world) that are robust, but flexible. If uncertainty is generated endogenously, beliefs begin to depart from consensual reality and can manifest into delusions. Central to this scheme is the notion that formal associative learning theory can provide an explanation for the development and persistence of delusions. Beliefs, in animals and humans, may be associations between representations (e.g., of cause and effect) that are formed by minimizing uncertainty via new learning and attentional allocation. Animal research has equipped us with a deep mechanistic basis of these processes, which is now being applied to delusions. This work offers the exciting possibility of completing revolutions of translation, from the bedside to the bench and back again. The more we learn about animal beliefs, the more we may be able to apply to human beliefs and their aberrations, enabling a deeper mechanistic understanding.
Collapse
Affiliation(s)
- Erin J Feeney
- Department of Psychiatry, Ribicoff Research Facilities, Connecticut Mental Health Center, Yale University, Park Street, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Stephanie M Groman
- Department of Psychiatry, Ribicoff Research Facilities, Connecticut Mental Health Center, Yale University, Park Street, New Haven, CT, USA
| | - Jane R Taylor
- Department of Psychiatry, Ribicoff Research Facilities, Connecticut Mental Health Center, Yale University, Park Street, New Haven, CT, USA
| | - Philip R Corlett
- Department of Psychiatry, Ribicoff Research Facilities, Connecticut Mental Health Center, Yale University, Park Street, New Haven, CT, USA
| |
Collapse
|