1
|
Rexach J, Lee H, Martinez-Agosto JA, Németh AH, Fogel BL. Clinical application of next-generation sequencing to the practice of neurology. Lancet Neurol 2020; 18:492-503. [PMID: 30981321 DOI: 10.1016/s1474-4422(19)30033-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 01/05/2023]
Abstract
Next-generation sequencing technologies allow for rapid and inexpensive large-scale genomic analysis, creating unprecedented opportunities to integrate genomic data into the clinical diagnosis and management of neurological disorders. However, the scale and complexity of these data make them difficult to interpret and require the use of sophisticated bioinformatics applied to extensive datasets, including whole exome and genome sequences. Detailed analysis of genetic data has shown that accurate phenotype information is essential for correct interpretation of genetic variants and might necessitate re-evaluation of the patient in some cases. A multidisciplinary approach that incorporates bioinformatics, clinical evaluation, and human genetics can help to address these challenges. However, despite numerous studies that show the efficacy of next-generation sequencing in establishing molecular diagnoses, pathogenic mutations are generally identified in fewer than half of all patients with genetic neurological disorders, exposing considerable gaps in the understanding of the human genome and providing opportunities to focus research on improving the usefulness of genomics in clinical practice. Looking forward, the emergence of precision health in neurological care will increasingly apply genomic data analysis to pharmacogenetics, preventive medicine, and patient-targeted therapies.
Collapse
Affiliation(s)
- Jessica Rexach
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hane Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Julian A Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford Centre for Genomic Medicine, Oxford University Hospitals National Health Service Foundation Trust, Oxford, UK
| | - Brent L Fogel
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Clinical Neurogenomics Research Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Reynolds RH, Hardy J, Ryten M, Gagliano Taliun SA. Informing disease modelling with brain-relevant functional genomic annotations. Brain 2019; 142:3694-3712. [PMID: 31603214 PMCID: PMC6885670 DOI: 10.1093/brain/awz295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/05/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
The past decade has seen a surge in the number of disease/trait-associated variants, largely because of the union of studies to share genetic data and the availability of electronic health records from large cohorts for research use. Variant discovery for neurological and neuropsychiatric genome-wide association studies, including schizophrenia, Parkinson's disease and Alzheimer's disease, has greatly benefitted; however, the translation of these genetic association results to interpretable biological mechanisms and models is lagging. Interpreting disease-associated variants requires knowledge of gene regulatory mechanisms and computational tools that permit integration of this knowledge with genome-wide association study results. Here, we summarize key conceptual advances in the generation of brain-relevant functional genomic annotations and amongst tools that allow integration of these annotations with association summary statistics, which together provide a new and exciting opportunity to identify disease-relevant genes, pathways and cell types in silico. We discuss the opportunities and challenges associated with these developments and conclude with our perspective on future advances in annotation generation, tool development and the union of the two.
Collapse
Affiliation(s)
- Regina H Reynolds
- Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London, UK
| | - John Hardy
- Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London, UK
- UK Dementia Research Institute at University College London (UCL), London, UK
| | - Mina Ryten
- Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London, UK
| | - Sarah A Gagliano Taliun
- Center for Statistical Genetics and Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Boutwell BB, White MA. Gene regulation and the architecture of complex human traits in the genomics era. Curr Opin Psychol 2019; 27:93-97. [PMID: 30933894 PMCID: PMC10868639 DOI: 10.1016/j.copsyc.2019.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
Virtually all human psychological and behavioral traits are at least partially heritable. For nearly a century, classical genetic studies have sought to understand how genetic variation contributes to human variation in these traits. More recently, genome-wide association studies have identified large numbers of specific genetic variants linked with complex traits. Many of these variants fall outside of protein-coding genes, in putative gene regulatory elements. This suggests that some fraction of causal human genetic variation acts through gene regulation. New developments in the field of regulatory genomics offer resources and methods to understand how genetic variants that alter gene expression contribute to human psychology and risk for psychiatric disease.
Collapse
Affiliation(s)
- Brian B Boutwell
- Criminology and Criminal Justice, Saint Louis University, 3550 Lindell Blvd., St. Louis, MO 63013, United States.
| | - Michael A White
- Department of Genetics and Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Couch Biomedical Research Building, St. Louis, MO 63110, United States
| |
Collapse
|
4
|
Abstract
Tourette syndrome (TS) is a complex disorder characterized by repetitive, sudden, and involuntary movements or vocalizations, called tics. Tics usually appear in childhood, and their severity varies over time. In addition to frequent tics, people with TS are at risk for associated problems including attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), anxiety, depression, and problems with sleep. TS occurs in most populations and ethnic groups worldwide, and it is more common in males than in females. Previous family and twin studies have shown that the majority of cases of TS are inherited. TS was previously thought to have an autosomal dominant pattern of inheritance. However, several decades of research have shown that this is unlikely the case. Instead, TS most likely results from a variety of genetic and environmental factors, not changes in a single gene. In the past decade, there has been a rapid development of innovative genetic technologies and methodologies, as well as significant progress in genetic studies of psychiatric disorders. In this review, we will briefly summarize previous genetic epidemiological studies of TS and related disorders. We will also review previous genetic studies based on genome-wide linkage analyses and candidate gene association studies to comment on problems of previous methodological and strategic issues. Our main purpose for this review will be to summarize the new genetic discoveries of TS based on novel genetic methods and strategies, such as genome-wide association studies (GWASs), whole exome sequencing (WES), and whole genome sequencing (WGS). We will also compare the new genetic discoveries of TS with other major psychiatric disorders in order to understand the current status of TS genetics and its relationship with other psychiatric disorders.
Collapse
|
5
|
Nurnberger JI, Austin J, Berrettini WH, Besterman AD, DeLisi LE, Grice DE, Kennedy JL, Moreno-De-Luca D, Potash JB, Ross DA, Schulze TG, Zai G. What Should a Psychiatrist Know About Genetics? Review and Recommendations From the Residency Education Committee of the International Society of Psychiatric Genetics. J Clin Psychiatry 2018; 80:17nr12046. [PMID: 30549495 PMCID: PMC6480395 DOI: 10.4088/jcp.17nr12046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/01/2018] [Indexed: 01/23/2023]
Abstract
The International Society of Psychiatric Genetics (ISPG) created a Residency Education Committee with the purpose of identifying key genetic knowledge that should be taught in psychiatric training programs. Thirteen committee members were appointed by the ISPG Board of Directors, based on varied training, expertise, gender, and national origin. The Committee has met quarterly for the past 2 years, with periodic reports to the Board and to the members of the Society. The information summarized includes the existing literature in the field of psychiatric genetics and the output of ongoing large genomics consortia. An outline of clinically relevant areas of genetic knowledge was developed, circulated, and approved. This document was expanded and annotated with appropriate references, and the manuscript was developed. Specific information regarding the contribution of common and rare genetic variants to major psychiatric disorders and treatment response is now available. Current challenges include the following: (1) Genetic testing is recommended in the evaluation of autism and intellectual disability, but its use is limited in current clinical practice. (2) Commercial pharmacogenomic testing is widely available, but its utility has not yet been clearly established. (3) Other methods, such as whole exome and whole genome sequencing, will soon be clinically applicable. The need for informed genetic counseling in psychiatry is greater than ever before, knowledge in the field is rapidly growing, and genetic education should become an integral part of psychiatric training.
Collapse
Affiliation(s)
- John I Nurnberger
- 320 W 15th St, Indianapolis, IN 46202.
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jehannine Austin
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Wade H Berrettini
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Aaron D Besterman
- University of California Los Angeles Semel Institute of Neuroscience and Human Behavior, Los Angeles, California, USA
| | - Lynn E DeLisi
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | | | - James L Kennedy
- Centre for Addiction and Mental Health and University of Toronto, Toronto, Ontario, Canada
| | | | - James B Potash
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David A Ross
- Yale University School of Medicine, Hartford, Connecticut, USA
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, Germany
| | - Gwyneth Zai
- Centre for Addiction and Mental Health and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Woo HJ, Reifman J. Collective interaction effects associated with mammalian behavioral traits reveal genetic factors connecting fear and hemostasis. BMC Psychiatry 2018; 18:175. [PMID: 29871603 PMCID: PMC5989392 DOI: 10.1186/s12888-018-1753-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/21/2018] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Investigation of the genetic architectures that influence the behavioral traits of animals can provide important insights into human neuropsychiatric phenotypes. These traits, however, are often highly polygenic, with individual loci contributing only small effects to the overall association. The polygenicity makes it challenging to explain, for example, the widely observed comorbidity between stress and cardiac disease. METHODS We present an algorithm for inferring the collective association of a large number of interacting gene variants with a quantitative trait. Using simulated data, we demonstrate that by taking into account the non-uniform distribution of genotypes within a cohort, we can achieve greater power than regression-based methods for high-dimensional inference. RESULTS We analyzed genome-wide data sets of outbred mice and pet dogs, and found neurobiological pathways whose associations with behavioral traits arose primarily from interaction effects: γ-carboxylated coagulation factors and downstream neuronal signaling were highly associated with conditioned fear, consistent with our previous finding in human post-traumatic stress disorder (PTSD) data. Prepulse inhibition in mice was associated with serotonin transporter and platelet homeostasis, and noise-induced fear in dogs with hemostasis. CONCLUSIONS Our findings suggest a novel explanation for the observed comorbidity between PTSD/anxiety and cardiovascular diseases: key coagulation factors modulating hemostasis also regulate synaptic plasticity affecting the learning and extinction of fear.
Collapse
Affiliation(s)
- Hyung Jun Woo
- 0000 0001 0036 4726grid.420210.5Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD USA
| | - Jaques Reifman
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, USA.
| |
Collapse
|
7
|
Kular L, Kular S. Epigenetics applied to psychiatry: Clinical opportunities and future challenges. Psychiatry Clin Neurosci 2018; 72:195-211. [PMID: 29292553 DOI: 10.1111/pcn.12634] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/12/2017] [Accepted: 12/26/2017] [Indexed: 12/11/2022]
Abstract
Psychiatric disorders are clinically heterogeneous and debilitating chronic diseases resulting from a complex interplay between gene variants and environmental factors. Epigenetic processes, such as DNA methylation and histone posttranslational modifications, instruct the cell/tissue to correctly interpret external signals and adjust its functions accordingly. Given that epigenetic modifications are sensitive to environment, stable, and reversible, epigenetic studies in psychiatry could represent a promising approach to better understanding and treating disease. In the present review, we aim to discuss the clinical opportunities and challenges arising from the epigenetic research in psychiatry. Using selected examples, we first recapitulate key findings supporting the role of adverse life events, alone or in combination with genetic risk, in epigenetic programming of neuropsychiatric systems. Epigenetic studies further report encouraging findings about the use of methylation changes as diagnostic markers of disease phenotype and predictive tools of progression and response to treatment. Then we discuss the potential of using targeted epigenetic pharmacotherapy, combined with psychosocial interventions, for future personalized medicine for patients. Finally, we review the methodological limitations that could hinder interpretation of epigenetic data in psychiatry. They mainly arise from heterogeneity at the individual and tissue level and require future strategies in order to reinforce the biological relevance of epigenetic data and its translational use in psychiatry. Overall, we suggest that epigenetics could provide new insights into a more comprehensive interpretation of mental illness and might eventually improve the nosology, treatment, and prevention of psychiatric disorders.
Collapse
Affiliation(s)
- Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sonia Kular
- Adult Psychiatry Unit of Laval Secteur Est, Laval, France
| |
Collapse
|
8
|
Qi Y, Zheng Y, Li Z, Xiong L. Progress in Genetic Studies of Tourette's Syndrome. Brain Sci 2017; 7:E134. [PMID: 29053637 PMCID: PMC5664061 DOI: 10.3390/brainsci7100134] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 12/23/2022] Open
Abstract
Tourette's Syndrome (TS) is a complex disorder characterized by repetitive, sudden, and involuntary movements or vocalizations, called tics. Tics usually appear in childhood, and their severity varies over time. In addition to frequent tics, people with TS are at risk for associated problems including attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), anxiety, depression, and problems with sleep. TS occurs in most populations and ethnic groups worldwide, and it is more common in males than in females. Previous family and twin studies have shown that the majority of cases of TS are inherited. TS was previously thought to have an autosomal dominant pattern of inheritance. However, several decades of research have shown that this is unlikely the case. Instead TS most likely results from a variety of genetic and environmental factors, not changes in a single gene. In the past decade, there has been a rapid development of innovative genetic technologies and methodologies, as well as significant progresses in genetic studies of psychiatric disorders. In this review, we will briefly summarize previous genetic epidemiological studies of TS and related disorders. We will also review previous genetic studies based on genome-wide linkage analyses and candidate gene association studies to comment on problems of previous methodological and strategic issues. Our main purpose for this review will be to summarize the new genetic discoveries of TS based on novel genetic methods and strategies, such as genome-wide association studies (GWASs), whole exome sequencing (WES) and whole genome sequencing (WGS). We will also compare the new genetic discoveries of TS with other major psychiatric disorders in order to understand the current status of TS genetics and its relationship with other psychiatric disorders.
Collapse
Affiliation(s)
- Yanjie Qi
- Laboratoire de Neurogénétique, Centre de Recherche, Institut Universitaire en Santé Mentale de Montréal, Montreal, QC H1N 3V2, Canada.
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
| | - Yi Zheng
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
- Center of Schizophrenia, Beijing Institute for Brain Disorders, Beijing 100088, China.
| | - Zhanjiang Li
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
- Center of Schizophrenia, Beijing Institute for Brain Disorders, Beijing 100088, China.
| | - Lan Xiong
- Laboratoire de Neurogénétique, Centre de Recherche, Institut Universitaire en Santé Mentale de Montréal, Montreal, QC H1N 3V2, Canada.
- Département de Psychiatrie, Faculté de Médecine, Université de Montréal, Montreal, QC H3C 3J7, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
9
|
Zheleznyakova GY, Piket E, Marabita F, Pahlevan Kakhki M, Ewing E, Ruhrmann S, Needhamsen M, Jagodic M, Kular L. Epigenetic research in multiple sclerosis: progress, challenges, and opportunities. Physiol Genomics 2017; 49:447-461. [PMID: 28754822 DOI: 10.1152/physiolgenomics.00060.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/24/2017] [Indexed: 01/02/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system. MS likely results from a complex interplay between predisposing causal gene variants (the strongest influence coming from HLA class II locus) and environmental risk factors such as smoking, infectious mononucleosis, and lack of sun exposure/vitamin D. However, little is known about the mechanisms underlying MS development and progression. Moreover, the clinical heterogeneity and variable response to treatment represent additional challenges to a comprehensive understanding and efficient treatment of disease. Epigenetic processes, such as DNA methylation and histone posttranslational modifications, integrate influences from the genes and the environment to regulate gene expression accordingly. Studying epigenetic modifications, which are stable and reversible, may provide an alternative approach to better understand and manage disease. We here aim to review findings from epigenetic studies in MS and further discuss the challenges and clinical opportunities arising from epigenetic research, many of which apply to other diseases with similar complex etiology. A growing body of evidence supports a role of epigenetic processes in the mechanisms underlying immune pathogenesis and nervous system dysfunction in MS. However, disparities between studies shed light on the need to consider possible confounders and methodological limitations for a better interpretation of the data. Nevertheless, translational use of epigenetics might offer new opportunities in epigenetic-based diagnostics and therapeutic tools for a personalized care of MS patients.
Collapse
Affiliation(s)
- Galina Y Zheleznyakova
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eliane Piket
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Francesco Marabita
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Majid Pahlevan Kakhki
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ewoud Ewing
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sabrina Ruhrmann
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|