1
|
Xu T, Zhang L, Zhou F, Fu K, Gan X, Chen Z, Zhang R, Lan C, Wang L, Kendrick KM, Yao D, Becker B. Distinct neural computations scale the violation of expected reward and emotion in social transgressions. Commun Biol 2025; 8:106. [PMID: 39838081 PMCID: PMC11751440 DOI: 10.1038/s42003-025-07561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025] Open
Abstract
Traditional decision-making models conceptualize humans as adaptive learners utilizing the differences between expected and actual rewards (prediction errors, PEs) to maximize outcomes, but rarely consider the influence of violations of emotional expectations (emotional PEs) and how it differs from reward PEs. Here, we conducted a fMRI experiment (n = 43) using a modified Ultimatum Game to examine how reward and emotional PEs affect punishment decisions in terms of rejecting unfair offers. Our results revealed that reward relative to emotional PEs exerted a stronger prediction to punishment decisions. On the neural level, the left dorsomedial prefrontal cortex (dmPFC) was strongly activated during reward receipt whereas the emotions engaged the bilateral anterior insula. Reward and emotional PEs were also encoded differently in brain-wide multivariate patterns, with a more sensitive neural signature observed within fronto-insular circuits for reward PE. We further identified a fronto-insular network encompassing the left anterior cingulate cortex, bilateral insula, left dmPFC and inferior frontal gyrus that encoded punishment decisions. In addition, a stronger fronto-insular pattern expression under reward PE predicted more punishment decisions. These findings underscore that reward and emotional violations interact to shape decisions in complex social interactions, while the underlying neurofunctional PEs computations are distinguishable.
Collapse
Affiliation(s)
- Ting Xu
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Zhang
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| | - Kun Fu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiyi Chen
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Ran Zhang
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| | - Chunmei Lan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dezhong Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- Department of Psychology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Li K, Zhang R, Feng T. Functional connectivity in procrastination and emotion regulation. Brain Cogn 2024; 182:106240. [PMID: 39515273 DOI: 10.1016/j.bandc.2024.106240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Procrastination, an irrational delay of intended action, leads to numerous adverse effects in many life domains, such as low academic performance, poor mental health, and financial distress. Previous studies have revealed a substantial negative correlation between emotional regulation and procrastination. However, the neural basis for the association between emotion regulation and procrastination remains unclear. Therefore, we employed the voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) methods to explore the neural substrates underlying how emotion regulation is responsible for procrastination (N = 243). In line with our hypothesis, the results showed a significant negative correlation between emotion regulation ability and procrastination. Additionally, the VBM analysis showed that emotion regulation ability was positively correlated with gray matter (GM) volumes in the right dorsal-lateral prefrontal cortex (dlPFC). The mediation analysis revealed that emotion regulation ability mediated the relationship between the GM volumes of the right dlPFC and procrastination. Furthermore, the RSFC results indicated that right dlPFC-left insula functional connectivity was positively associated with emotion regulation ability. Emotion regulation ability further mediated the relationship between the right dlPFC-left insula functional connectivity and procrastination. The current findings suggest that the neural pathway related to cognitive control over aversive emotion may be responsible for the close relationship between emotion regulation and procrastination, which provides a novel perspective for explaining the tight association between emotion regulation and procrastination.
Collapse
Affiliation(s)
- Keli Li
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Rong Zhang
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China.
| |
Collapse
|
3
|
Cheng S, Qiu X, Mo L, Li S, Xu F, Zhang D. Asynchronous Involvement of VLPFC and DLPFC During Negative Emotion Processing: An Online Transcranial Magnetic Stimulation Study. Neuroscience 2024; 551:237-245. [PMID: 38838979 DOI: 10.1016/j.neuroscience.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
The ventrolateral prefrontal cortex (VLPFC) and dorsolateral prefrontal cortex (DLPFC) have been found to play important roles in negative emotion processing. However, the specific time window of their involvement remains unknown. This study addressed this issue in three experiments using single-pulse transcranial magnetic stimulation (TMS). We found that TMS applied over the VLPFC at 400 ms after negative emotional exposure significantly enhanced negative feelings compared to the vertex condition. Furthermore, TMS applied over the DLPFC at both 0 ms and 600 ms after negative emotional exposure also resulted in deteriorated negative feelings. These findings provide potential evidence for the VLPFC-dependent semantic processing (∼400 ms) and the DLPFC-dependent attentional and cognitive control (∼0/600 ms) in negative emotion processing. The asynchronous involvement of these frontal cortices not only deepens our understanding of the neural mechanisms underlying negative emotion processing but also provides valuable temporal parameters for neurostimulation therapy targeting patients with mood disorders.
Collapse
Affiliation(s)
- Si Cheng
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China; School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Xiufu Qiu
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Licheng Mo
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Sijin Li
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Feng Xu
- Shenzhen Yingchi Technology Co. Ltd, Shenzhen 518057, China
| | - Dandan Zhang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518060, China; Magnetic Resonance Imaging (MRI) Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
4
|
Luo Q, Shao R. The positive and negative emotion functions related to loneliness: a systematic review of behavioural and neuroimaging studies. PSYCHORADIOLOGY 2023; 3:kkad029. [PMID: 38666115 PMCID: PMC10917374 DOI: 10.1093/psyrad/kkad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 04/28/2024]
Abstract
Loneliness is associated with high prevalences of major psychiatric illnesses such as major depression. However, the underlying emotional mechanisms of loneliness remained unclear. We hypothesized that loneliness originates from both decreases in positive emotional processing and increases in negative emotion processing. To test this, we conducted a systematic review of 29 previous studies (total participants n = 19 560, mean age = 37.16 years, female proportion = 59.7%), including 18 studies that included questionnaire measures of emotions only, and 11 studies that examined the brain correlates of emotions. The main findings were that loneliness was negatively correlated with general positive emotions and positively correlated with general negative emotions. Furthermore, limited evidence indicates loneliness exhibited negative and positive correlations with the brain positive (e.g. the striatum) and negative (e.g. insula) emotion systems, respectively, but the sign of correlation was not entirely consistent. Additionally, loneliness was associated with the structure and function of the brain emotion regulation systems, particularly the prefrontal cortex, but the direction of this relationship remained ambiguous. We concluded that the existing evidence supported a bivalence model of loneliness, but several critical gaps existed that could be addressed by future studies that include adolescent and middle-aged samples, use both questionnaire and task measures of emotions, distinguish between general emotion and social emotion as well as between positive and negative emotion regulation, and adopt a longitudinal design that allows us to ascertain the causal relationships between loneliness and emotion dysfunction. Our findings provide new insights into the underlying emotion mechanisms of loneliness that can inform interventions for lonely individuals.
Collapse
Affiliation(s)
- Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, P.R. China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Robin Shao
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 511370, P.R. China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 511436, P.R. China
| |
Collapse
|
5
|
Kenwood MM, Oler JA, Tromp DPM, Fox AS, Riedel MK, Roseboom PH, Brunner KG, Aggarwal N, Murray EA, Kalin NH. Prefrontal influences on the function of the neural circuitry underlying anxious temperament in primates. OXFORD OPEN NEUROSCIENCE 2022; 2:kvac016. [PMID: 37583705 PMCID: PMC10426770 DOI: 10.1093/oons/kvac016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 08/17/2023]
Abstract
Anxious temperament, characterized by heightened behavioral and physiological reactivity to potential threat, is an early childhood risk factor for the later development of stress-related psychopathology. Using a well-validated nonhuman primate model, we tested the hypothesis that the prefrontal cortex (PFC) is critical in regulating the expression of primate anxiety-like behavior, as well as the function of subcortical components of the anxiety-related neural circuit. We performed aspiration lesions of a narrow 'strip' of the posterior orbitofrontal cortex (OFC) intended to disrupt both cortex and axons entering, exiting and coursing through the pOFC, particularly those of the uncinate fasciculus (UF), a white matter tract that courses adjacent to and through this region. The OFC is of particular interest as a potential regulatory region because of its extensive reciprocal connections with amygdala, other subcortical structures and other frontal lobe regions. We validated this lesion method by demonstrating marked lesion-induced decreases in the microstructural integrity of the UF, which contains most of the fibers that connect the ventral PFC with temporal lobe structures as well as with other frontal regions. While the lesions resulted in modest decreases in threat-related behavior, they substantially decreased metabolism in components of the circuit underlying threat processing. These findings provide evidence for the importance of structural connectivity between the PFC and key subcortical structures in regulating the functions of brain regions known to be involved in the adaptive and maladaptive expression of anxiety.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kevin G Brunner
- Wisconsin National Primate Research Center, Univ. of Wisconsin, Madison, WI
| | | | - Elisabeth A Murray
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, NIMH, Bethesda, MD
| | - Ned H Kalin
- Psychiatry, Univ. of Wisconsin, Madison, WI
- Wisconsin National Primate Research Center, Univ. of Wisconsin, Madison, WI
| |
Collapse
|
6
|
Namkung H, Thomas KL, Hall J, Sawa A. Parsing neural circuits of fear learning and extinction across basic and clinical neuroscience: Towards better translation. Neurosci Biobehav Rev 2022; 134:104502. [PMID: 34921863 DOI: 10.1016/j.neubiorev.2021.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022]
Abstract
Over the past decades, studies of fear learning and extinction have advanced our understanding of the neurobiology of threat and safety learning. Animal studies can provide mechanistic/causal insights into human brain regions and their functional connectivity involved in fear learning and extinction. Findings in humans, conversely, may further enrich our understanding of neural circuits in animals by providing macroscopic insights at the level of brain-wide networks. Nevertheless, there is still much room for improvement in translation between basic and clinical research on fear learning and extinction. Through the lens of neural circuits, in this article, we aim to review the current knowledge of fear learning and extinction in both animals and humans, and to propose strategies to fill in the current knowledge gap for the purpose of enhancing clinical benefits.
Collapse
Affiliation(s)
- Ho Namkung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK; School of Biosciences, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK; School of Medicine, Cardiff University, Cardiff, UK
| | - Akira Sawa
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21287, USA.
| |
Collapse
|
7
|
Folloni D, Fouragnan E, Wittmann MK, Roumazeilles L, Tankelevitch L, Verhagen L, Attali D, Aubry JF, Sallet J, Rushworth MFS. Ultrasound modulation of macaque prefrontal cortex selectively alters credit assignment-related activity and behavior. SCIENCE ADVANCES 2021; 7:eabg7700. [PMID: 34910510 PMCID: PMC8673758 DOI: 10.1126/sciadv.abg7700] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 10/28/2021] [Indexed: 05/30/2023]
Abstract
Credit assignment is the association of specific instances of reward to the specific events, such as a particular choice, that caused them. Without credit assignment, choice values reflect an approximate estimate of how good the environment was when the choice was made—the global reward state—rather than exactly which outcome the choice caused. Combined transcranial ultrasound stimulation (TUS) and functional magnetic resonance imaging in macaques demonstrate credit assignment–related activity in prefrontal area 47/12o, and when this signal was disrupted with TUS, choice value representations across the brain were impaired. As a consequence, behavior was no longer guided by choice value, and decision-making was poorer. By contrast, global reward state–related activity in the adjacent anterior insula remained intact and determined decision-making after prefrontal disruption.
Collapse
Affiliation(s)
- Davide Folloni
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
| | - Elsa Fouragnan
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
- School of Psychology, University of Plymouth, Plymouth, UK
| | - Marco K. Wittmann
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
| | - Lea Roumazeilles
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
| | - Lev Tankelevitch
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6525 HR, Netherlands
| | - David Attali
- Physics for Medicine Paris, ESPCI Paris, INSERM, CNRS, PSL Research University, Paris, France
- GHU PARIS Psychiatrie and Neurosciences, site Sainte-Anne, Service Hospitalo-Universitaire, Pôle Hospitalo-Universitaire, Paris 15, F-75014 Paris, France
- Université de Paris, F-75005 Paris, France
| | - Jean-François Aubry
- Physics for Medicine Paris, ESPCI Paris, INSERM, CNRS, PSL Research University, Paris, France
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 18 Avenue Doyen Lepine, 69500 Bron, France
| | - Matthew F. S. Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Bryant RA, Erlinger M, Felmingham K, Klimova A, Williams LM, Malhi G, Forbes D, Korgaonkar MS. Reappraisal-related neural predictors of treatment response to cognitive behavior therapy for post-traumatic stress disorder. Psychol Med 2021; 51:2454-2464. [PMID: 32366351 DOI: 10.1017/s0033291720001129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Although trauma-focused cognitive behavior therapy (TF-CBT) is the frontline treatment for post-traumatic stress disorder (PTSD), one-third of patients are treatment non-responders. To identify neural markers of treatment response to TF-CBT when participants are reappraising aversive material. METHODS This study assessed PTSD patients (n = 37) prior to TF-CBT during functional magnetic brain resonance imaging (fMRI) when they reappraised or watched traumatic images. Patients then underwent nine sessions of TF-CBT, and were then assessed for symptom severity on the Clinician-Administered PTSD Scale. FMRI responses for cognitive reappraisal and emotional reactivity contrasts of traumatic images were correlated with the reduction of PTSD severity from pretreatment to post-treatment. RESULTS Symptom improvement was associated with decreased activation of the left amygdala during reappraisal, but increased activation of bilateral amygdala and hippocampus during emotional reactivity prior to treatment. Lower connectivity of the left amygdala to the subgenual anterior cingulate cortex, pregenual anterior cingulate cortex, and right insula, and that between the left hippocampus and right amygdala were also associated with symptom improvement. CONCLUSIONS These findings provide evidence that optimal treatment response to TF-CBT involves the capacity to engage emotional networks during emotional processing, and also to reduce the engagement of these networks when down-regulating emotions.
Collapse
Affiliation(s)
- Richard A Bryant
- University of New South Wales, School, Sydney, Australia
- Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Westmead, Australia
| | - May Erlinger
- Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Westmead, Australia
| | - Kim Felmingham
- Department of Psychological Medicine, University of Melbourne, Melbourne, Australia
| | - Aleksandra Klimova
- Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Westmead, Australia
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, San Francisco, USA
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC) VA Palo Alto Health Care System, San Francisco, USA
| | - Gin Malhi
- Department of Psychiatry, University of Sydney, Sydney, Australia
| | - David Forbes
- Phoenix Australia, University of Melbourne, Melbourne, Australia
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Westmead, Australia
- Department of Psychiatry, University of Sydney, Sydney, Australia
| |
Collapse
|
9
|
Klink PC, Aubry JF, Ferrera VP, Fox AS, Froudist-Walsh S, Jarraya B, Konofagou EE, Krauzlis RJ, Messinger A, Mitchell AS, Ortiz-Rios M, Oya H, Roberts AC, Roe AW, Rushworth MFS, Sallet J, Schmid MC, Schroeder CE, Tasserie J, Tsao DY, Uhrig L, Vanduffel W, Wilke M, Kagan I, Petkov CI. Combining brain perturbation and neuroimaging in non-human primates. Neuroimage 2021; 235:118017. [PMID: 33794355 PMCID: PMC11178240 DOI: 10.1016/j.neuroimage.2021.118017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Brain perturbation studies allow detailed causal inferences of behavioral and neural processes. Because the combination of brain perturbation methods and neural measurement techniques is inherently challenging, research in humans has predominantly focused on non-invasive, indirect brain perturbations, or neurological lesion studies. Non-human primates have been indispensable as a neurobiological system that is highly similar to humans while simultaneously being more experimentally tractable, allowing visualization of the functional and structural impact of systematic brain perturbation. This review considers the state of the art in non-human primate brain perturbation with a focus on approaches that can be combined with neuroimaging. We consider both non-reversible (lesions) and reversible or temporary perturbations such as electrical, pharmacological, optical, optogenetic, chemogenetic, pathway-selective, and ultrasound based interference methods. Method-specific considerations from the research and development community are offered to facilitate research in this field and support further innovations. We conclude by identifying novel avenues for further research and innovation and by highlighting the clinical translational potential of the methods.
Collapse
Affiliation(s)
- P Christiaan Klink
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| | - Jean-François Aubry
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France
| | - Vincent P Ferrera
- Department of Neuroscience & Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Andrew S Fox
- Department of Psychology & California National Primate Research Center, University of California, Davis, CA, USA
| | | | - Béchir Jarraya
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France; Foch Hospital, UVSQ, Suresnes, France
| | - Elisa E Konofagou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, USA
| | - Adam Messinger
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Anna S Mitchell
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Michael Ortiz-Rios
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Hiroyuki Oya
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neurosurgery, University of Iowa, Iowa city, IA, USA
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, United Kingdom
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | | | - Jérôme Sallet
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom; Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Michael Christoph Schmid
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | - Charles E Schroeder
- Nathan Kline Institute, Orangeburg, NY, USA; Columbia University, New York, NY, USA
| | - Jordy Tasserie
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Doris Y Tsao
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience; Howard Hughes Medical Institute; Computation and Neural Systems, Caltech, Pasadena, CA, USA
| | - Lynn Uhrig
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Neurosciences Department, KU Leuven Medical School, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven Belgium; Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Melanie Wilke
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Department of Cognitive Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Igor Kagan
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany.
| | - Christopher I Petkov
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
10
|
Liu Z, Hu Y, Zhang Y, Liu W, Zhang L, Wang Y, Yang H, Wu J, Cheng W, Yang Z. Altered gray matter volume and structural co-variance in adolescents with social anxiety disorder: evidence for a delayed and unsynchronized development of the fronto-limbic system. Psychol Med 2021; 51:1742-1751. [PMID: 32178746 DOI: 10.1017/s0033291720000495] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Social anxiety disorder (SAD) is a prevalent mental disorder diagnosed in childhood and adolescence. Theories regarding brain development and SAD suggest a close link between neurodevelopmental dysfunction at the adolescent juncture and SAD, but direct evidence is rare. This study aims to examine brain structural abnormalities in adolescents with SAD. METHODS High-resolution T1-weighted images were obtained from 31 adolescents with SAD (15-17 years) and 42 matching healthy controls (HC). We evaluated symptom severity with the Social Anxiety Scale for Children (SASC) and the Screen for Child Anxiety Related Emotional Disorders (SCARED). We used voxel-based morphometry analysis to detect regional gray matter volume abnormalities and structural co-variance analysis to investigate inter-regional coordination patterns. RESULTS We found significantly higher gray matter volume in the orbitofrontal cortex (OFC) and the insula in adolescents with SAD compared to HC. We also observed significant co-variance of the gray matter volume between the OFC and amygdala, and the OFC and insula in HC, but these co-variance relationships diminished in SAD. CONCLUSIONS These findings provide the first evidence that the brain structural deficits in adolescents with SAD are not only in the core regions of the fronto-limbic system, but also represented by the diminished coordination in the development of these regions. The delayed and unsynchronized development pattern of the fronto-limbic system supports SAD as an adolescent-sensitive developmental mental disorder.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Hu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunyi Wang
- Department of Psychological Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanshu Yang
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Wu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhong Cheng
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychological Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Yang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Psychological and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Abstract
The common marmoset (Callithrix jacchus), a small New World primate, is receiving substantial attention in the neuroscience and biomedical science fields because its anatomical features, functional and behavioral characteristics, and reproductive features and its amenability to available genetic modification technologies make it an attractive experimental subject. In this review, I outline the progress of marmoset neuroscience research and summarize both the current status (opportunities and limitations) of and the future perspectives on the application of marmosets in neuroscience and disease modeling.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; .,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
12
|
Cléry JC, Hori Y, Schaeffer DJ, Gati JS, Pruszynski JA, Everling S. Whole brain mapping of somatosensory responses in awake marmosets investigated with ultra-high-field fMRI. J Neurophysiol 2020; 124:1900-1913. [PMID: 33112698 DOI: 10.1152/jn.00480.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The common marmoset (Callithrix jacchus) is a small-bodied New World primate that is becoming an important model to study brain functions. Despite several studies exploring the somatosensory system of marmosets, all results have come from anesthetized animals using invasive techniques and postmortem analyses. Here, we demonstrate the feasibility for getting high-quality and reproducible somatosensory mapping in awake marmosets with functional magnetic resonance imaging (fMRI). We acquired fMRI sequences in four animals, while they received tactile stimulation (via air-puffs), delivered to the face, arm, or leg. We found a topographic body representation with the leg representation in the most medial part, the face representation in the most lateral part, and the arm representation between leg and face representation within areas 3a, 3b, and 1/2. A similar sequence from leg to face from caudal to rostral sites was identified in areas S2 and PV. By generating functional connectivity maps of seeds defined in the primary and second somatosensory regions, we identified two clusters of tactile representation within the posterior and midcingulate cortex. However, unlike humans and macaques, no clear somatotopic maps were observed. At the subcortical level, we found a somatotopic body representation in the thalamus and, for the first time in marmosets, in the putamen. These maps have similar organizations, as those previously found in Old World macaque monkeys and humans, suggesting that these subcortical somatotopic organizations were already established before Old and New World primates diverged. Our results show the first whole brain mapping of somatosensory responses acquired in a noninvasive way in awake marmosets.NEW & NOTEWORTHY We used somatosensory stimulation combined with functional MRI (fMRI) in awake marmosets to reveal the topographic body representation in areas S1, S2, thalamus, and putamen. We showed the existence of a body representation organization within the thalamus and the cingulate cortex by computing functional connectivity maps from seeds defined in S1/S2, using resting-state fMRI data. This noninvasive approach will be essential for chronic studies by guiding invasive recording and manipulation techniques.
Collapse
Affiliation(s)
- Justine C Cléry
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Yuki Hori
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - David J Schaeffer
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Joseph S Gati
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - J Andrew Pruszynski
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
13
|
Camacho MC, King LS, Ojha A, Garcia CM, Sisk LM, Cichocki AC, Humphreys KL, Gotlib IH. Cerebral blood flow in 5- to 8-month-olds: Regional tissue maturity is associated with infant affect. Dev Sci 2020; 23:e12928. [PMID: 31802580 PMCID: PMC8931704 DOI: 10.1111/desc.12928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
Infancy is marked by rapid neural and emotional development. The relation between brain function and emotion in infancy, however, is not well understood. Methods for measuring brain function predominantly rely on the BOLD signal; however, interpretation of the BOLD signal in infancy is challenging because the neuronal-hemodynamic relation is immature. Regional cerebral blood flow (rCBF) provides a context for the infant BOLD signal and can yield insight into the developmental maturity of brain regions that may support affective behaviors. This study aims to elucidate the relations among rCBF, age, and emotion in infancy. One hundred and seven mothers reported their infants' (infant age M ± SD = 6.14 ± 0.51 months) temperament. A subsample of infants completed MRI scans, 38 of whom produced usable perfusion MRI during natural sleep to quantify rCBF. Mother-infant dyads completed the repeated Still-Face Paradigm, from which infant affect reactivity and recovery to stress were quantified. We tested associations of infant age at scan, temperament factor scores, and observed affect reactivity and recovery with voxel-wise rCBF. Infant age was positively associated with CBF in nearly all voxels, with peaks located in sensory cortices and the ventral prefrontal cortex, supporting the formulation that rCBF is an indicator of tissue maturity. Temperamental Negative Affect and recovery of positive affect following a stressor were positively associated with rCBF in several cortical and subcortical limbic regions, including the orbitofrontal cortex and inferior frontal gyrus. This finding yields insight into the nature of affective neurodevelopment during infancy. Specifically, infants with relatively increased prefrontal cortex maturity may evidence a disposition toward greater negative affect and negative reactivity in their daily lives yet show better recovery of positive affect following a social stressor.
Collapse
Affiliation(s)
| | | | - Amar Ojha
- Stanford University, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
14
|
Expected value and sensitivity to punishment modulate insular cortex activity during risky decision making. Sci Rep 2020; 10:11920. [PMID: 32681146 PMCID: PMC7367818 DOI: 10.1038/s41598-020-68644-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/29/2020] [Indexed: 11/08/2022] Open
Abstract
The exact contribution of the insula to risky decision making remains unclear, as are the specific outcome parameters and inter-individual characteristics that modulate insular activity prior to a risky choice. This fMRI study examines the contributions of outcome valence, magnitude, probability, and expected value (EV) to insular activity during risky decision making, and explores the influence of sensitivity to reward and to punishment, and anxiety, to insular activity. Participants (N = 31) performed a gambling task requiring choice between two roulettes with different outcome magnitude, probability and EV, under gain and loss conditions separately, and filled questionnaires assessing sensitivity to punishment/reward, and state/trait anxiety. Parametric analyses were conducted to examine the modulation of brain activity during decision making in relation to each task parameter. Correlations were examined between insular activity and psychometric questionnaires. EV of the selected roulette was associated with right posterior insula activation during decision making. Higher sensitivity to punishment was associated with lower bilateral insular activation. These findings suggest that the right posterior insula is involved in tracking the EV of a risky option during decision making. The involvement of the insula when making risky decisions also appears to be influenced by inter-individual differences in sensitivity to punishment.
Collapse
|
15
|
Trait Anxiety Mediated by Amygdala Serotonin Transporter in the Common Marmoset. J Neurosci 2020; 40:4739-4749. [PMID: 32393533 DOI: 10.1523/jneurosci.2930-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/06/2020] [Accepted: 03/19/2020] [Indexed: 01/04/2023] Open
Abstract
High trait anxiety is associated with altered activity across emotion regulation circuitry and a higher risk of developing anxiety disorders and depression. This circuitry is extensively modulated by serotonin. Here, to understand why some people may be more vulnerable to developing affective disorders, we investigated whether serotonin-related gene expression across the brain's emotion regulation circuitry may underlie individual differences in trait anxiety using the common marmoset (Callithrix jacchus, mixed sexes) as a model. First, we assessed the association of region-specific expression of the serotonin transporter (SLC6A4) and serotonin receptor (HTR1A, HTR2A, HTR2C) genes with anxiety-like behavior; and second, we investigated their causal role in two key features of the high trait anxious phenotype: high responsivity to anxiety-provoking stimuli and an exaggerated conditioned threat response. While the expression of the serotonin receptors did not show a significant relationship with anxiety-like behavior in any of the targeted brain regions, serotonin transporter expression, specifically within the right ventrolateral prefrontal cortex (vlPFC) and most strongly in the right amygdala, was associated positively with anxiety-like behavior. The causal relationship between amygdala serotonin levels and an animal's sensitivity to threat was confirmed via direct amygdala infusions of a selective serotonin reuptake inhibitor (SSRI), citalopram. Both anxiety-like behaviors, and conditioned threat-induced responses were reduced by the blockade of serotonin reuptake in the amygdala. Together, these findings provide evidence that high amygdala serotonin transporter expression contributes to the high trait anxious phenotype and suggest that reduction of threat reactivity by SSRIs may be mediated by their actions in the amygdala.SIGNIFICANCE STATEMENT Findings here contribute to our understanding of how the serotonin system underlies an individual's expression of threat-elicited negative emotions such as anxiety and fear within nonhuman primates. Exploration of serotonergic gene expression across brain regions implicated in emotion regulation revealed that serotonin transporter gene expression in the ventrolateral prefrontal cortex (vlPFC) and most strongly in the amygdala, but none of the serotonin receptor genes, were predictive of interindividual differences in anxiety-like behavior. Targeting of amygdala serotonin reuptake with selective serotonin reuptake inhibitors (SSRIs) confirmed the causal relationship between amygdala serotonin transporter and an animal's sensitivity to threat by reversing expression of two key features of the high trait-like anxiety phenotype: high responsivity to anxiety-provoking uncertain threat and responsivity to certain conditioned threat.
Collapse
|
16
|
Kondo T, Saito R, Otaka M, Yoshino-Saito K, Yamanaka A, Yamamori T, Watakabe A, Mizukami H, Schnitzer MJ, Tanaka KF, Ushiba J, Okano H. Calcium Transient Dynamics of Neural Ensembles in the Primary Motor Cortex of Naturally Behaving Monkeys. Cell Rep 2020; 24:2191-2195.e4. [PMID: 30134178 DOI: 10.1016/j.celrep.2018.07.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/05/2018] [Accepted: 07/16/2018] [Indexed: 11/26/2022] Open
Abstract
To understand brain circuits of cognitive behaviors under natural conditions, we developed techniques for imaging neuronal activities from large neuronal populations in the deep layer cortex of the naturally behaving common marmoset. Animals retrieved food pellets or climbed ladders as a miniature fluorescence microscope monitored hundreds of calcium indicator-expressing cortical neurons in the right primary motor cortex. This technique, which can be adapted to other brain regions, can deepen our understanding of brain circuits by facilitating longitudinal population analyses of neuronal representation associated with cognitive naturalistic behaviors and their pathophysiological processes.
Collapse
Affiliation(s)
- Takahiro Kondo
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Risa Saito
- Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | - Masaki Otaka
- Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | - Kimika Yoshino-Saito
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Saitama, Japan
| | - Akiya Watakabe
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Saitama, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Mark J Schnitzer
- James H. Clark Center for Biomedical Engineering and Sciences, Stanford University, Stanford, CA, USA; CNC Program, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Kenji F Tanaka
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan; Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan; Keio Institute of Pure and Applied Sciences (KiPAS), Kanagawa, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
17
|
Toledo TA, Hellman N, Lannon EW, Sturycz CA, Kuhn BL, Payne MF, Palit S, Güereca YM, Shadlow JO, Rhudy JL. Anger Inhibition and Pain Modulation. Ann Behav Med 2019; 53:1055-1068. [PMID: 31009029 PMCID: PMC6845048 DOI: 10.1093/abm/kaz016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The tendency to inhibit anger (anger-in) is associated with increased pain. This relationship may be explained by the negative affectivity hypothesis (anger-in increases negative affect that increases pain). Alternatively, it may be explained by the cognitive resource hypothesis (inhibiting anger limits attentional resources for pain modulation). METHODS A well-validated picture-viewing paradigm was used in 98 healthy, pain-free individuals who were low or high on anger-in to study the effects of anger-in on emotional modulation of pain and attentional modulation of pain. Painful electrocutaneous stimulations were delivered during and in between pictures to evoke pain and the nociceptive flexion reflex (NFR; a physiological correlate of spinal nociception). Subjective and physiological measures of valence (ratings, facial/corrugator electromyogram) and arousal (ratings, skin conductance) were used to assess reactivity to pictures and emotional inhibition in the high anger-in group. RESULTS The high anger-in group reported less unpleasantness, showed less facial displays of negative affect in response to unpleasant pictures, and reported greater arousal to the pleasant pictures. Despite this, both groups experienced similar emotional modulation of pain/NFR. By contrast, the high anger-in group did not show attentional modulation of pain. CONCLUSIONS These findings support the cognitive resource hypothesis and suggest that overuse of emotional inhibition in high anger-in individuals could contribute to cognitive resource deficits that in turn contribute to pain risk. Moreover, anger-in likely influenced pain processing predominantly via supraspinal (e.g., cortico-cortical) mechanisms because only pain, but not NFR, was associated with anger-in.
Collapse
Affiliation(s)
- Tyler A Toledo
- Department of Psychology, The University of Tulsa, Tulsa, OK, USA
| | - Natalie Hellman
- Department of Psychology, The University of Tulsa, Tulsa, OK, USA
| | - Edward W Lannon
- Department of Psychology, The University of Tulsa, Tulsa, OK, USA
| | | | - Bethany L Kuhn
- Department of Psychology, The University of Tulsa, Tulsa, OK, USA
| | - Michael F Payne
- Department of Psychology, The University of Tulsa, Tulsa, OK, USA
| | - Shreela Palit
- Department of Psychology, The University of Tulsa, Tulsa, OK, USA
| | - Yvette M Güereca
- Department of Psychology, The University of Tulsa, Tulsa, OK, USA
| | - Joanna O Shadlow
- Department of Psychology, The University of Tulsa, Tulsa, OK, USA
| | - Jamie L Rhudy
- Department of Psychology, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
18
|
Abstract
Regions of the prefrontal and cingulate cortices play important roles in the regulation of behaviors elicited by threat. Dissecting out their differential involvement will greatly increase our understanding of the varied etiology of symptoms of anxiety. I review evidence for altered activity within the major divisions of the prefrontal cortex, including orbitofrontal, ventrolateral, dorsolateral, and ventromedial sectors, along with the anterior cingulate cortex in patients with clinical anxiety. This review is integrated with a discussion of current knowledge about the causal role of these different prefrontal and cingulate regions in threat-elicited behaviors from experimental studies in rodents and monkeys. I highlight commonalities and inconsistencies between species and discuss the current state of our translational success in relating findings across species. Finally, I identify key issues that, if addressed, may improve that success in the future.
Collapse
Affiliation(s)
- Angela C. Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
| |
Collapse
|
19
|
Riello M, Cecchini MP, Zanini A, Di Chiappari M, Tinazzi M, Fiorio M. Perception of phasic pain is modulated by smell and taste. Eur J Pain 2019; 23:1790-1800. [PMID: 31291496 DOI: 10.1002/ejp.1453] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pain perception is a multimodal experience composed of sensory, emotional and cognitive dimensions. Accumulating evidence suggests that the chemical senses can influence pain perception, but their relation with phasic pain is still unknown. The aim of this study was to investigate the influence of smell and taste having different valence on phasic pain. METHODS Twenty-eight healthy volunteers received sweet, bitter and neutral odours or gustatory substances while receiving painful stimuli consisting of electrical shocks. Tactile threshold, pain threshold and pain tolerance were collected using the psychophysical method of limits at baseline and in association with smell and taste. Perception of pain intensity and unpleasantness was measured with a numerical rating scale. RESULTS Sweet smell induced lower ratings of pain intensity than bitter smell when stimuli were delivered at pain threshold. Sweet smell also induced lower ratings of pain unpleasantness than neutral smell when stimuli were delivered at pain tolerance. Sweet taste induced lower ratings of pain unpleasantness than bitter taste when stimuli were delivered at pain threshold. Conversely, pain threshold and pain tolerance per se were not affected by smell and taste. CONCLUSIONS These findings highlight an effect of sweet substances in reducing the subjective perception of pain intensity and unpleasantness associated to phasic pain. SIGNIFICANCE By demonstrating the link between smell, taste and phasic pain this study may have a translational impact in clinical conditions characterized by so-called shock-like pain, such as neuropathic pain.
Collapse
Affiliation(s)
- Marianna Riello
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Maria Paola Cecchini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Alice Zanini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Miguel Di Chiappari
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mirta Fiorio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
20
|
Araújo Góis Morais PL, García-Amado M, Lima RRM, Córdoba-Claros A, Souza Cavalcante J, Clascá F, Nascimento ES. Cyto- and Myelo-Architecture of the Amygdaloid Complex of the Common Marmoset Monkey ( Callithrix jacchus). Front Neuroanat 2019; 13:36. [PMID: 30971903 PMCID: PMC6446959 DOI: 10.3389/fnana.2019.00036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/08/2019] [Indexed: 12/17/2022] Open
Abstract
The amygdaloid complex (AC) is a heterogeneous aggregate of nuclei located in the rostromedial region of the temporal lobe. In addition to being partly connected among themselves, the AC nuclei are strongly interconnected with the cerebral cortex, striatum, basal forebrain, hypothalamus and brainstem. Animal and human functional studies have established that the AC is a central hub of the neuronal networks supporting emotional responsivity, particularly its negative/aversive components. Dysfunction of AC circuits in humans has been implicated in anxiety, depression, schizophrenia and bipolar disorder. The small New-World marmoset monkey (Callithrix jacchus) has recently become a key model for neuroscience research. However, the nuclear and fiber tract organization of marmoset AC has not been examined in detail. Thus, the extent to which it can be compared to the AC of Old-World (human and macaque) primates is yet unclear. Here, using Nissl and acetylcholinesterase (AChE) histochemical stains as a reference, we analyzed the cytoarchitecture and nuclear parcellation of the marmoset AC. In addition, given the increasing relevance of tractographic localization for high-resolution in vivo imaging studies in non-human primates, we also identified the myelin fiber tracts present within and around the AC as revealed by the Gallyas method. The present study provides a detailed atlas of marmoset AC. Moreover, it reveals that, despite phylogenetic distance and brain size differences, every nucleus and myelinated axon bundle described in human and macaque studies can be confidently recognized in marmosets.
Collapse
Affiliation(s)
- Paulo Leonardo Araújo Góis Morais
- Department of Morphology, Universidade Federal do Rio Grande do Norte, Natal, Brazil.,Department of Anatomy & Neuroscience, School of Medicine, Autonoma de Madrid University, Madrid, Spain
| | - María García-Amado
- Department of Anatomy & Neuroscience, School of Medicine, Autonoma de Madrid University, Madrid, Spain
| | | | - Angélica Córdoba-Claros
- Department of Anatomy & Neuroscience, School of Medicine, Autonoma de Madrid University, Madrid, Spain
| | | | - Francisco Clascá
- Department of Anatomy & Neuroscience, School of Medicine, Autonoma de Madrid University, Madrid, Spain
| | | |
Collapse
|
21
|
Fox AS, Shackman AJ. The central extended amygdala in fear and anxiety: Closing the gap between mechanistic and neuroimaging research. Neurosci Lett 2019; 693:58-67. [PMID: 29195911 PMCID: PMC5976525 DOI: 10.1016/j.neulet.2017.11.056] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/30/2017] [Accepted: 11/26/2017] [Indexed: 12/19/2022]
Abstract
Anxiety disorders impose a staggering burden on public health, underscoring the need to develop a deeper understanding of the distributed neural circuits underlying extreme fear and anxiety. Recent work highlights the importance of the central extended amygdala, including the central nucleus of the amygdala (Ce) and neighboring bed nucleus of the stria terminalis (BST). Anatomical data indicate that the Ce and BST form a tightly interconnected unit, where different kinds of threat-relevant information can be integrated to assemble states of fear and anxiety. Neuroimaging studies show that the Ce and BST are engaged by a broad spectrum of potentially threat-relevant cues. Mechanistic work demonstrates that the Ce and BST are critically involved in organizing defensive responses to a wide range of threats. Studies in rodents have begun to reveal the specific molecules, cells, and microcircuits within the central extended amygdala that underlie signs of fear and anxiety, but the relevance of these tantalizing discoveries to human experience and disease remains unclear. Using a combination of focal perturbations and whole-brain imaging, a new generation of nonhuman primate studies is beginning to close this gap. This work opens the door to discovering the mechanisms underlying neuroimaging measures linked to pathological fear and anxiety, to understanding how the Ce and BST interact with one another and with distal brain regions to govern defensive responses to threat, and to developing improved intervention strategies.
Collapse
Affiliation(s)
- Andrew S Fox
- Department of Psychology and University of California, Davis, CA 95616, United States; California National Primate Research Center, University of California, Davis, CA 95616, United States.
| | - Alexander J Shackman
- Department of Psychology, University of Maryland, College Park, MD 20742, United States; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, United States; Maryland Neuroimaging Center, University of Maryland,College Park, MD 20742, United States.
| |
Collapse
|
22
|
Disturbed effective connectivity patterns in an intrinsic triple network model are associated with posttraumatic stress disorder. Neurol Sci 2018; 40:339-349. [PMID: 30448966 DOI: 10.1007/s10072-018-3638-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/07/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Disturbance of the triple network model was recently proposed to be associated with the occurrence of posttraumatic stress disorder (PTSD) symptoms. Based on resting-state dynamic causal modeling (rs-DCM) analysis, we investigated the neurobiological model at a neuronal level along with potential neuroimaging biomarkers for identifying individuals with PTSD. METHODS We recruited survivors of a devastating typhoon including 27 PTSD patients, 33 trauma-exposed controls (TECs), and 30 healthy controls without trauma exposure. All subjects underwent resting-state functional magnetic resonance imaging. Independent components analysis was used to identify triple networks. Detailed effective connectivity patterns were estimated by rs-DCM analysis. Spearman correlation analysis was performed on aberrant DCM parameters with clinical assessment results relevant to PTSD diagnosis. We also carried out step-wise binary logistic regression and receiver operating characteristic curve (ROC) analysis to confirm the capacity of altered effective connectivity parameters to distinguish PTSD patients. RESULTS Within the executive control network, enhanced positive connectivity from the left posterior parietal cortex to the left dorsolateral prefrontal cortex was correlated with intrusion symptoms and showed good performance (area under the receiver operating characteristic curve = 0.879) in detecting PTSD patients. In the salience network, we observed a decreased causal flow from the right amygdala to the right insula and a lower transit value for the right amygdala in PTSD patients relative to TECs. CONCLUSION Altered effective connectivity patterns in the triple network may reflect the occurrence of PTSD symptoms, providing a potential biomarker for detecting patients. Our findings shed new insight into the neural pathophysiology of PTSD.
Collapse
|
23
|
Nosjean A, de Chaumont F, Olivo-Marin JC, Granon S. Stress-induced brain activation: buffering role of social behavior and neuronal nicotinic receptors. Brain Struct Funct 2018; 223:4259-4274. [DOI: 10.1007/s00429-018-1745-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/30/2018] [Indexed: 11/28/2022]
|