1
|
DeYoung CG, Blain SD, Latzman RD, Grazioplene RG, Haltigan JD, Kotov R, Michelini G, Venables NC, Docherty AR, Goghari VM, Kallen AM, Martin EA, Palumbo IM, Patrick CJ, Perkins ER, Shackman AJ, Snyder ME, Tobin KE. The hierarchical taxonomy of psychopathology and the search for neurobiological substrates of mental illness: A systematic review and roadmap for future research. JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE 2024; 133:697-715. [PMID: 39480338 PMCID: PMC11529694 DOI: 10.1037/abn0000903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Understanding the neurobiological mechanisms involved in psychopathology has been hindered by the limitations of categorical nosologies. The Hierarchical Taxonomy of Psychopathology (HiTOP) is an alternative dimensional system for characterizing psychopathology, derived from quantitative studies of covariation among diagnoses and symptoms. HiTOP provides more promising targets for clinical neuroscience than traditional psychiatric diagnoses and can facilitate cumulative integration of existing research. We systematically reviewed 164 human neuroimaging studies with sample sizes of 194 or greater that have investigated dimensions of psychopathology classified within HiTOP. Replicated results were identified for constructs at five different levels of the hierarchy, including the overarching p-factor, the externalizing superspectrum, the thought disorder and internalizing spectra, the distress subfactor, and the depression symptom dimension. Our review highlights the potential of dimensional clinical neuroscience research and the usefulness of HiTOP while also suggesting limitations of existing work in this relatively young field. We discuss how HiTOP can be integrated synergistically with neuroscience-oriented, transdiagnostic frameworks developed by the National Institutes of Health, including the Research Domain Criteria, Addictions Neuroclinical Assessment, and the National Institute on Drug Abuse's Phenotyping Assessment Battery, and how researchers can use HiTOP to accelerate clinical neuroscience research in humans and other species. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Colin G. DeYoung
- University of Minnesota, Psychology Dept. and Neuroscience and Cognitive Science (NACS) Program
| | - Scott D. Blain
- University of Michigan, Psychology Dept. and Neuroscience and Cognitive Science (NACS) Program
| | - Robert D. Latzman
- Takeda, Psychology Dept. and Neuroscience and Cognitive Science (NACS) Program
| | | | - John D. Haltigan
- University of Toronto, Centre for Addiction and Mental Health, Psychology Dept. and Neuroscience and Cognitive Science (NACS) Program
| | - Roman Kotov
- Stony Brook University, Psychology Dept. and Neuroscience and Cognitive Science (NACS) Program
| | - Giorgia Michelini
- Queen Mary, University of London, Psychology Dept. and Neuroscience and Cognitive Science (NACS) Program
| | - Noah C. Venables
- University of Minnesota, Psychology Dept. and Neuroscience and Cognitive Science (NACS) Program
| | - Anna R. Docherty
- University of Utah, Huntsman Mental Health Institute, Psychology Dept. and Neuroscience and Cognitive Science (NACS) Program
| | - Vina M. Goghari
- University of Toronto Scarborough, Psychology Dept. and Neuroscience and Cognitive Science (NACS) Program
| | - Alexander M. Kallen
- Florida State University, Psychology Dept. and Neuroscience and Cognitive Science (NACS) Program
| | - Elizabeth A. Martin
- University of California, Psychology Dept. and Neuroscience and Cognitive Science (NACS) Program
| | - Isabella M. Palumbo
- Georgia State University, Psychology Dept. and Neuroscience and Cognitive Science (NACS) Program
| | - Christopher J. Patrick
- Florida State University, Psychology Dept. and Neuroscience and Cognitive Science (NACS) Program
| | - Emily R. Perkins
- University of Pennsylvania, Psychology Dept. and Neuroscience and Cognitive Science (NACS) Program
| | - Alexander J. Shackman
- University of Maryland, Psychology Dept. and Neuroscience and Cognitive Science (NACS) Program
| | - Madeline E. Snyder
- University of California, Psychology Dept. and Neuroscience and Cognitive Science (NACS) Program
| | - Kaitlyn E. Tobin
- Georgia State University, Psychology Dept. and Neuroscience and Cognitive Science (NACS) Program
| | | |
Collapse
|
2
|
Qu M, Gao B, Jiang Y, Li Y, Pei C, Xie L, Zhang Y, Song Q, Miao Y. Atrophy patterns in hippocampus and amygdala subregions of depressed patients with Parkinson's disease. Brain Imaging Behav 2024; 18:475-484. [PMID: 38170304 PMCID: PMC11222218 DOI: 10.1007/s11682-023-00844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
We aimed to explore the subregional atrophy patterns of the amygdala and hippocampus in Parkinson's disease (PD) with depression and their correlation with the severity of the depressive symptom. MRI scans were obtained for 34 depressed PD patients (DPD), 22 nondepressed PD patients (NDPD), and 28 healthy controls (HC). Amygdala and hippocampal subregions were automatically segmented, and the intergroup volume difference was compared. The relationships between the volumes of the subregions and depression severity were investigated. Logistic analysis and Receiver operator characteristic curve were used to find independent predictors of DPD. Compared with the HC group, atrophy of the bilateral lateral nucleus, left accessory basal nucleus, right cortical nucleus, right central nucleus, and right medial nucleus subregions of the amygdala were visible in the DPD group, while the right lateral nucleus subregion of the amygdala was smaller in the DPD group than in the NDPD group. The DPD group showed significant atrophy in the left molecular layer, left GC-DG, left CA3, and left CA4 subregions compared with the HC group for hippocampal subregion volumes. Also, the right lateral nuclei volume and disease duration were independent predictors of DPD. To sum up, DPD patients showed atrophy in multiple amygdala subregions and left asymmetric hippocampal subregions. The decreased amygdala and hippocampal subregion volumes were correlated with the severity of depressive symptoms. The volume of right lateral nuclei and disease duration could be used as a biomarker to detect DPD.
Collapse
Affiliation(s)
- Mingrui Qu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Bingbing Gao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Yuhan Jiang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Yuan Li
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Chenhui Pei
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | | | - Yukun Zhang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Qingwei Song
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Yanwei Miao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Xigang District, Dalian, 116011, China.
| |
Collapse
|
3
|
Drzewiecki CM, Fox AS. Understanding the heterogeneity of anxiety using a translational neuroscience approach. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:228-245. [PMID: 38356013 PMCID: PMC11039504 DOI: 10.3758/s13415-024-01162-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 02/16/2024]
Abstract
Anxiety disorders affect millions of people worldwide and present a challenge in neuroscience research because of their substantial heterogeneity in clinical presentation. While a great deal of progress has been made in understanding the neurobiology of fear and anxiety, these insights have not led to effective treatments. Understanding the relationship between phenotypic heterogeneity and the underlying biology is a critical first step in solving this problem. We show translation, reverse translation, and computational modeling can contribute to a refined, cross-species understanding of fear and anxiety as well as anxiety disorders. More specifically, we outline how animal models can be leveraged to develop testable hypotheses in humans by using targeted, cross-species approaches and ethologically informed behavioral paradigms. We discuss reverse translational approaches that can guide and prioritize animal research in nontraditional research species. Finally, we advocate for the use of computational models to harmonize cross-species and cross-methodology research into anxiety. Together, this translational neuroscience approach will help to bridge the widening gap between how we currently conceptualize and diagnose anxiety disorders, as well as aid in the discovery of better treatments for these conditions.
Collapse
Affiliation(s)
- Carly M Drzewiecki
- California National Primate Research Center, University of California, Davis, CA, USA.
| | - Andrew S Fox
- California National Primate Research Center, University of California, Davis, CA, USA.
- Department of Psychology, University of California, Davis, CA, USA.
| |
Collapse
|
4
|
Leehr EJ, Seeger FR, Böhnlein J, Gathmann B, Straube T, Roesmann K, Junghöfer M, Schwarzmeier H, Siminski N, Herrmann MJ, Langhammer T, Goltermann J, Grotegerd D, Meinert S, Winter NR, Dannlowski U, Lueken U. Association between resting-state connectivity patterns in the defensive system network and treatment response in spider phobia-a replication approach. Transl Psychiatry 2024; 14:137. [PMID: 38453896 PMCID: PMC10920691 DOI: 10.1038/s41398-024-02799-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 03/09/2024] Open
Abstract
Although highly effective on average, exposure-based treatments do not work equally well for all patients with anxiety disorders. The identification of pre-treatment response-predicting patient characteristics may enable patient stratification. Preliminary research highlights the relevance of inhibitory fronto-limbic networks as such. We aimed to identify pre-treatment neural signatures differing between exposure treatment responders and non-responders in spider phobia and to validate results through rigorous replication. Data of a bi-centric intervention study comprised clinical phenotyping and pre-treatment resting-state functional connectivity (rsFC) data of n = 79 patients with spider phobia (discovery sample) and n = 69 patients (replication sample). RsFC data analyses were accomplished using the Matlab-based CONN-toolbox with harmonized analyses protocols at both sites. Treatment response was defined by a reduction of >30% symptom severity from pre- to post-treatment (Spider Phobia Questionnaire Score, primary outcome). Secondary outcome was defined by a reduction of >50% in a Behavioral Avoidance Test (BAT). Mean within-session fear reduction functioned as a process measure for exposure. Compared to non-responders and pre-treatment, results in the discovery sample seemed to indicate that responders exhibited stronger negative connectivity between frontal and limbic structures and were characterized by heightened connectivity between the amygdala and ventral visual pathway regions. Patients exhibiting high within-session fear reduction showed stronger excitatory connectivity within the prefrontal cortex than patients with low within-session fear reduction. Whereas these results could be replicated by another team using the same data (cross-team replication), cross-site replication of the discovery sample findings in the independent replication sample was unsuccessful. Results seem to support negative fronto-limbic connectivity as promising ingredient to enhance response rates in specific phobia but lack sufficient replication. Further research is needed to obtain a valid basis for clinical decision-making and the development of individually tailored treatment options. Notably, future studies should regularly include replication approaches in their protocols.
Collapse
Affiliation(s)
- Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
| | - Fabian R Seeger
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Joscha Böhnlein
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Bettina Gathmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
- Otto-Creutzfeld Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Kati Roesmann
- Otto-Creutzfeld Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
- Institute for Clinical Psychology and Psychotherapy, University of Siegen, Siegen, Germany
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
- Institute of Psychology, Unit of Clinical Psychology and Psychotherapy in Childhood and Adolescence, University of Osnabrück, Osnabrück, Germany
| | - Markus Junghöfer
- Otto-Creutzfeld Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Hanna Schwarzmeier
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Niklas Siminski
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Martin J Herrmann
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Till Langhammer
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils R Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Ulrike Lueken
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| |
Collapse
|
5
|
Abstract
This overview critically appraises the literature on the treatment of pediatric anxiety disorders. The two established treatments for these conditions comprise cognitive-behavioral therapy (CBT) and antidepressant medications. Many youths receiving these treatments fail to achieve remission, which creates a need for new treatments. After summarizing the literature on CBT and currently available medications, the authors describe research that lays a foundation for improvements in the treatment of pediatric anxiety disorders. This foundation leverages neuroscientific investigations, also described in the overview, which provide insights on mechanisms of successful treatment.
Collapse
Affiliation(s)
- Andre Zugman
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch (EDB), National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| | - Anderson M. Winkler
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch (EDB), National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
- Division of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, Texas, United States
| | - Purnima Qamar
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch (EDB), National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| | - Daniel S. Pine
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch (EDB), National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
6
|
Kenwood MM, Souaiaia T, Kovner R, Fox AS, French DA, Oler JA, Roseboom PH, Riedel MK, Mueller SAL, Kalin NH. Gene expression in the primate orbitofrontal cortex related to anxious temperament. Proc Natl Acad Sci U S A 2023; 120:e2305775120. [PMID: 38011550 PMCID: PMC10710052 DOI: 10.1073/pnas.2305775120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/13/2023] [Indexed: 11/29/2023] Open
Abstract
Anxiety disorders are among the most prevalent psychiatric disorders, causing significant suffering and disability. Relative to other psychiatric disorders, anxiety disorders tend to emerge early in life, supporting the importance of developmental mechanisms in their emergence and maintenance. Behavioral inhibition (BI) is a temperament that emerges early in life and, when stable and extreme, is linked to an increased risk for the later development of anxiety disorders and other stress-related psychopathology. Understanding the neural systems and molecular mechanisms underlying this dispositional risk could provide insight into treatment targets for anxiety disorders. Nonhuman primates (NHPs) have an anxiety-related temperament, called anxious temperament (AT), that is remarkably similar to BI in humans, facilitating the design of highly translational models for studying the early risk for stress-related psychopathology. Because of the recent evolutionary divergence between humans and NHPs, many of the anxiety-related brain regions that contribute to psychopathology are highly similar in terms of their structure and function, particularly with respect to the prefrontal cortex. The orbitofrontal cortex plays a critical role in the flexible encoding and regulation of threat responses, in part through connections with subcortical structures like the amygdala. Here, we explore individual differences in the transcriptional profile of cells within the region, using laser capture microdissection and single nuclear sequencing, providing insight into the molecules underlying individual differences in AT-related function of the pOFC, with a particular focus on previously implicated cellular systems, including neurotrophins and glucocorticoid signaling.
Collapse
Affiliation(s)
- Margaux M. Kenwood
- Neuroscience Training Program, University of Wisconsin, Madison, WI53705
- Department of Psychiatry, University of Wisconsin, Madison, WI53719
| | - Tade Souaiaia
- Department of Cell Biology, State University of New York Downstate, New York, NY11228
| | - Rothem Kovner
- Yale School of Medicine, Yale University, New Haven, CT06510
| | - Andrew S. Fox
- Department of Psychology and California National Primate Research Center, University of California, Davis, CA95616
| | | | - Jonathan A. Oler
- Department of Psychiatry, University of Wisconsin, Madison, WI53719
| | | | | | | | - Ned H. Kalin
- Neuroscience Training Program, University of Wisconsin, Madison, WI53705
- Department of Psychiatry, University of Wisconsin, Madison, WI53719
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI53715
| |
Collapse
|
7
|
Giacometti C, Amiez C, Hadj-Bouziane F. Multiple routes of communication within the amygdala-mPFC network: A comparative approach in humans and macaques. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100103. [PMID: 37601951 PMCID: PMC10432920 DOI: 10.1016/j.crneur.2023.100103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/14/2023] [Accepted: 07/15/2023] [Indexed: 08/22/2023] Open
Abstract
The network formed by the amygdala (AMG) and the medial Prefrontal Cortex (mPFC), at the interface between our internal and external environment, has been shown to support some important aspects of behavioral adaptation. Whether and how the anatomo-functional organization of this network evolved across primates remains unclear. Here, we compared AMG nuclei morphological characteristics and their functional connectivity with the mPFC in humans and macaques to identify potential homologies and differences between these species. Based on selected studies, we highlight two subsystems within the AMG-mPFC circuits, likely involved in distinct temporal dynamics of integration during behavioral adaptation. We also show that whereas the mPFC displays a large expansion but a preserved intrinsic anatomo-functional organization, the AMG displays a volume reduction and morphological changes related to specific nuclei. We discuss potential commonalities and differences in the dialogue between AMG nuclei and mPFC in humans and macaques based on available data.
Collapse
Affiliation(s)
- C. Giacometti
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - C. Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - F. Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), University of Lyon 1, Lyon, France
| |
Collapse
|
8
|
Kim HC, Kaplan CM, Islam S, Anderson AS, Piper ME, Bradford DE, Curtin JJ, DeYoung KA, Smith JF, Fox AS, Shackman AJ. Acute nicotine abstinence amplifies subjective withdrawal symptoms and threat-evoked fear and anxiety, but not extended amygdala reactivity. PLoS One 2023; 18:e0288544. [PMID: 37471317 PMCID: PMC10358993 DOI: 10.1371/journal.pone.0288544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Tobacco smoking imposes a staggering burden on public health, underscoring the urgency of developing a deeper understanding of the processes that maintain addiction. Clinical and experience-sampling data highlight the importance of anxious withdrawal symptoms, but the underlying neurobiology has remained elusive. Mechanistic work in animals implicates the central extended amygdala (EAc)-including the central nucleus of the amygdala and the neighboring bed nucleus of the stria terminalis-but the translational relevance of these discoveries remains unexplored. Here we leveraged a randomized trial design, well-established threat-anticipation paradigm, and multidimensional battery of assessments to understand the consequences of 24-hour nicotine abstinence. The threat-anticipation paradigm had the expected consequences, amplifying subjective distress and arousal, and recruiting the canonical threat-anticipation network. Abstinence increased smoking urges and withdrawal symptoms, and potentiated threat-evoked distress, but had negligible consequences for EAc threat reactivity, raising questions about the translational relevance of prominent animal and human models of addiction. These observations provide a framework for conceptualizing nicotine abstinence and withdrawal, with implications for basic, translational, and clinical science.
Collapse
Affiliation(s)
- Hyung Cho Kim
- Department of Psychology, University of Maryland, College Park, Maryland, United States of America
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, United States of America
| | - Claire M. Kaplan
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Samiha Islam
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Allegra S. Anderson
- Department of Psychological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Megan E. Piper
- Center for Tobacco Research and Intervention and Department of Medicine, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, United States of America
| | - Daniel E. Bradford
- School of Psychological Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - John J. Curtin
- Department of Psychology, University of Wisconsin—Madison, Madison, Wisconsin, United States of America
| | - Kathryn A. DeYoung
- Department of Psychology, University of Maryland, College Park, Maryland, United States of America
| | - Jason F. Smith
- Department of Psychology, University of Maryland, College Park, Maryland, United States of America
| | - Andrew S. Fox
- Department of Psychology, University of California, Davis, California, United States of America
- California National Primate Research Center, University of California, Davis, California, United States of America
| | - Alexander J. Shackman
- Department of Psychology, University of Maryland, College Park, Maryland, United States of America
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, United States of America
- Maryland Neuroimaging Center, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
9
|
Ausderau KK, Colman RJ, Kabakov S, Schultz-Darken N, Emborg ME. Evaluating depression- and anxiety-like behaviors in non-human primates. Front Behav Neurosci 2023; 16:1006065. [PMID: 36744101 PMCID: PMC9892652 DOI: 10.3389/fnbeh.2022.1006065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
Depression and anxiety are some of the most prevalent and debilitating mental health conditions in humans. They can present on their own or as co-morbidities with other disorders. Like humans, non-human primates (NHPs) can develop depression- and anxiety-like signs. Here, we first define human depression and anxiety, examine equivalent species-specific behaviors in NHPs, and consider models and current methods to identify and evaluate these behaviors. We also discuss knowledge gaps, as well as the importance of evaluating the co-occurrence of depression- and anxiety-like behaviors in animal models of human disease. Lastly, we consider ethical challenges in depression and anxiety research on NHPs in order to ultimately advance the understanding and the personalized treatment of these disorders.
Collapse
Affiliation(s)
- Karla K. Ausderau
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, WI, United States
- Waisman Center, University of Wisconsin—Madison, Madison, WI, United States
- Department of Kinesiology, University of Wisconsin—Madison, Madison, WI, United States
| | - Ricki J. Colman
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin—Madison, Madison, WI, United States
| | - Sabrina Kabakov
- Department of Kinesiology, University of Wisconsin—Madison, Madison, WI, United States
| | - Nancy Schultz-Darken
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, WI, United States
| | - Marina E. Emborg
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin—Madison, Madison, WI, United States
| |
Collapse
|
10
|
Pauli-Pott U, Cosan AS, Schloß S, Skoluda N, Nater UM, Tumala S, Kruse J, Peters EMJ. Hair brain-derived neurotrophic factor (BDNF) as predictor of developing psychopathological symptoms in childhood. J Affect Disord 2023; 320:428-435. [PMID: 36208686 DOI: 10.1016/j.jad.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Dysregulation in the expression of neurotrophins is implicated in the pathophysiology of several mental disorders. Peripheral brain-derived neurotrophic factor (BDNF) can be measured in hair and might represent a marker of adequate neuroplasticity regulation. In early developmental periods, neuroplasticity regulation might be particularly important, but BDNF markers have not yet been analyzed in this regard. We used the hair-BDNF concentration (HBC) to investigate the prediction of emerging symptoms of anxiety/depressive and attention-deficit hyperactivity disorder (ADHD) in the developmentally crucial period from preschool to school age. METHODS 117 children (58 girls, 59 boys) participated in a longitudinal study at the ages of 4-5 (T1) and 8 (T2) years. At T1, HBC was measured in a 3 cm hair segment. At T1 and T2, symptom domains were assessed using a multi-method (clinical interview, questionnaire) and multi-informant approach. RESULTS T1 HBC was significantly negatively associated with T1 anxiety/depressive symptoms (r = -0.27) and predicted T2 anxiety disorder symptoms (r = -0.34) after controlling for the T1 symptoms. T1 HBC also predicted T2 depressive disorder symptoms (r = -0.18) but was not associated with ADHD symptom development. LIMITATIONS BDNF hair analysis is a new method with a not yet large number of studies on methodological issues. Our study adds evidence to the validity of the method. CONCLUSIONS Prediction of anxiety/depressive symptom development by HBC was shown. As this study was the first to use HBC in this context, cross-validation is necessary and worthwhile. HBC might prove to constitute a useful, non-invasive early marker of risk for anxiety/depressive disorders in childhood.
Collapse
Affiliation(s)
- Ursula Pauli-Pott
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps-University of Marburg, Marburg, Germany.
| | - Alisa Susann Cosan
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps-University of Marburg, Marburg, Germany
| | - Susan Schloß
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps-University of Marburg, Marburg, Germany
| | - Nadine Skoluda
- Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria
| | - Urs M Nater
- Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria
| | - Susanne Tumala
- Psychoneuroimmunology Laboratory, Justus-Liebig-University of Gießen, Gießen, Germany
| | - Johannes Kruse
- Department of Psychosomatics and Psychotherapy, Justus-Liebig-University of Gießen, Gießen, Germany
| | - Eva M J Peters
- Psychoneuroimmunology Laboratory, Justus-Liebig-University of Gießen, Gießen, Germany; Charité Center 12 for Internal Medicine and Dermatology, Department of Psychosomatics and Psychotherapy, Universitätsmedizin-Charité, Berlin, Germany
| |
Collapse
|
11
|
Kenwood MM, Oler JA, Tromp DPM, Fox AS, Riedel MK, Roseboom PH, Brunner KG, Aggarwal N, Murray EA, Kalin NH. Prefrontal influences on the function of the neural circuitry underlying anxious temperament in primates. OXFORD OPEN NEUROSCIENCE 2022; 2:kvac016. [PMID: 37583705 PMCID: PMC10426770 DOI: 10.1093/oons/kvac016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 08/17/2023]
Abstract
Anxious temperament, characterized by heightened behavioral and physiological reactivity to potential threat, is an early childhood risk factor for the later development of stress-related psychopathology. Using a well-validated nonhuman primate model, we tested the hypothesis that the prefrontal cortex (PFC) is critical in regulating the expression of primate anxiety-like behavior, as well as the function of subcortical components of the anxiety-related neural circuit. We performed aspiration lesions of a narrow 'strip' of the posterior orbitofrontal cortex (OFC) intended to disrupt both cortex and axons entering, exiting and coursing through the pOFC, particularly those of the uncinate fasciculus (UF), a white matter tract that courses adjacent to and through this region. The OFC is of particular interest as a potential regulatory region because of its extensive reciprocal connections with amygdala, other subcortical structures and other frontal lobe regions. We validated this lesion method by demonstrating marked lesion-induced decreases in the microstructural integrity of the UF, which contains most of the fibers that connect the ventral PFC with temporal lobe structures as well as with other frontal regions. While the lesions resulted in modest decreases in threat-related behavior, they substantially decreased metabolism in components of the circuit underlying threat processing. These findings provide evidence for the importance of structural connectivity between the PFC and key subcortical structures in regulating the functions of brain regions known to be involved in the adaptive and maladaptive expression of anxiety.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kevin G Brunner
- Wisconsin National Primate Research Center, Univ. of Wisconsin, Madison, WI
| | | | - Elisabeth A Murray
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, NIMH, Bethesda, MD
| | - Ned H Kalin
- Psychiatry, Univ. of Wisconsin, Madison, WI
- Wisconsin National Primate Research Center, Univ. of Wisconsin, Madison, WI
| |
Collapse
|
12
|
Kotov R, Cicero DC, Conway CC, DeYoung CG, Dombrovski A, Eaton NR, First MB, Forbes MK, Hyman SE, Jonas KG, Krueger RF, Latzman RD, Li JJ, Nelson BD, Regier DA, Rodriguez-Seijas C, Ruggero CJ, Simms LJ, Skodol AE, Waldman ID, Waszczuk MA, Watson D, Widiger TA, Wilson S, Wright AGC. The Hierarchical Taxonomy of Psychopathology (HiTOP) in psychiatric practice and research. Psychol Med 2022; 52:1666-1678. [PMID: 35650658 DOI: 10.1017/s0033291722001301] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Hierarchical Taxonomy of Psychopathology (HiTOP) has emerged out of the quantitative approach to psychiatric nosology. This approach identifies psychopathology constructs based on patterns of co-variation among signs and symptoms. The initial HiTOP model, which was published in 2017, is based on a large literature that spans decades of research. HiTOP is a living model that undergoes revision as new data become available. Here we discuss advantages and practical considerations of using this system in psychiatric practice and research. We especially highlight limitations of HiTOP and ongoing efforts to address them. We describe differences and similarities between HiTOP and existing diagnostic systems. Next, we review the types of evidence that informed development of HiTOP, including populations in which it has been studied and data on its validity. The paper also describes how HiTOP can facilitate research on genetic and environmental causes of psychopathology as well as the search for neurobiologic mechanisms and novel treatments. Furthermore, we consider implications for public health programs and prevention of mental disorders. We also review data on clinical utility and illustrate clinical application of HiTOP. Importantly, the model is based on measures and practices that are already used widely in clinical settings. HiTOP offers a way to organize and formalize these techniques. This model already can contribute to progress in psychiatry and complement traditional nosologies. Moreover, HiTOP seeks to facilitate research on linkages between phenotypes and biological processes, which may enable construction of a system that encompasses both biomarkers and precise clinical description.
Collapse
Affiliation(s)
- Roman Kotov
- Stony Brook University, Stony Brook, New York, USA
| | | | | | | | | | | | - Michael B First
- Columbia University College of Physicians and Surgeons, New York, New York, USA
- New York State Psychiatric Institute, New York, New York, USA
| | | | - Steven E Hyman
- Stanley Center for Psychiatric Research at the Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | | | | | | | - James J Li
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Darrel A Regier
- Uniformed Services University, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | | | | | | | - Andrew E Skodol
- University of Arizona College of Medicine, Tucson, Arizona, USA
| | | | - Monika A Waszczuk
- Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | | | | | - Sylia Wilson
- University of Minnesota, Minneapolis, Minnesota, USA
| | | |
Collapse
|
13
|
Hur J, Kuhn M, Grogans SE, Anderson AS, Islam S, Kim HC, Tillman RM, Fox AS, Smith JF, DeYoung KA, Shackman AJ. Anxiety-Related Frontocortical Activity Is Associated With Dampened Stressor Reactivity in the Real World. Psychol Sci 2022; 33:906-924. [PMID: 35657777 PMCID: PMC9343891 DOI: 10.1177/09567976211056635] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/28/2021] [Indexed: 01/18/2023] Open
Abstract
Negative affect is a fundamental dimension of human emotion. When extreme, it contributes to a variety of adverse outcomes, from physical and mental illness to divorce and premature death. Mechanistic work in animals and neuroimaging research in humans and monkeys have begun to reveal the broad contours of the neural circuits governing negative affect, but the relevance of these discoveries to everyday distress remains incompletely understood. Here, we used a combination of approaches-including neuroimaging assays of threat anticipation and emotional-face perception and more than 10,000 momentary assessments of emotional experience-to demonstrate that individuals who showed greater activation in a cingulo-opercular circuit during an anxiety-eliciting laboratory paradigm experienced lower levels of stressor-dependent distress in their daily lives (ns = 202-208 university students). Extended amygdala activation was not significantly related to momentary negative affect. These observations provide a framework for understanding the neurobiology of negative affect in the laboratory and in the real world.
Collapse
Affiliation(s)
- Juyoen Hur
- Department of Psychology, Yonsei
University
| | - Manuel Kuhn
- Center for Depression, Anxiety
and Stress Research, McLean Hospital, Harvard Medical School, Harvard
University
| | | | | | - Samiha Islam
- Department of Psychology,
University of Pennsylvania
| | - Hyung Cho Kim
- Department of Psychology,
University of Maryland
- Neuroscience and Cognitive
Science Program, University of Maryland
| | | | - Andrew S. Fox
- Department of Psychology,
University of California, Davis
- California National Primate
Research Center, University of California, Davis
| | | | | | - Alexander J. Shackman
- Department of Psychology,
University of Maryland
- Neuroscience and Cognitive
Science Program, University of Maryland
- Maryland Neuroimaging Center,
University of Maryland, College Park
| |
Collapse
|
14
|
Ball TM, Gunaydin LA. Measuring maladaptive avoidance: from animal models to clinical anxiety. Neuropsychopharmacology 2022; 47:978-986. [PMID: 35034097 PMCID: PMC8938494 DOI: 10.1038/s41386-021-01263-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/04/2021] [Accepted: 12/22/2021] [Indexed: 12/28/2022]
Abstract
Avoiding stimuli that predict danger is required for survival. However, avoidance can become maladaptive in individuals who overestimate threat and thus avoid safe situations as well as dangerous ones. Excessive avoidance is a core feature of anxiety disorders, post-traumatic stress disorder (PTSD), and obsessive-compulsive disorder (OCD). This avoidance prevents patients from confronting maladaptive threat beliefs, thereby maintaining disordered anxiety. Avoidance is associated with high levels of psychosocial impairment yet is poorly understood at a mechanistic level. Many objective laboratory assessments of avoidance measure adaptive avoidance, in which an individual learns to successfully avoid a truly noxious stimulus. However, anxiety disorders are characterized by maladaptive avoidance, for which there are fewer objective laboratory measures. We posit that maladaptive avoidance behavior depends on a combination of three altered neurobehavioral processes: (1) threat appraisal, (2) habitual avoidance, and (3) trait avoidance tendency. This heterogeneity in underlying processes presents challenges to the objective measurement of maladaptive avoidance behavior. Here we first review existing paradigms for measuring avoidance behavior and its underlying neural mechanisms in both human and animal models, and identify how existing paradigms relate to these neurobehavioral processes. We then propose a new framework to improve the translational understanding of maladaptive avoidance behavior by adapting paradigms to better differentiate underlying processes and mechanisms and applying these paradigms in clinical populations across diagnoses with the goal of developing novel interventions to engage specific identified neurobehavioral targets.
Collapse
Affiliation(s)
- Tali M. Ball
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Lisa A. Gunaydin
- grid.266102.10000 0001 2297 6811Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA 94143 USA
| |
Collapse
|
15
|
Genomic resources for rhesus macaques (Macaca mulatta). Mamm Genome 2022; 33:91-99. [PMID: 34999909 PMCID: PMC8742695 DOI: 10.1007/s00335-021-09922-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 11/10/2022]
Abstract
Rhesus macaques (Macaca mulatta) are among the most extensively studied of nonhuman primates. This species has been the subject of many investigations concerning basic primate biology and behavior, including studies of social organization, developmental psychology, physiology, endocrinology, and neurodevelopment. Rhesus macaques are also critically important as a nonhuman primate model of human health and disease, including use in studies of infectious diseases, metabolic diseases, aging, and drug or alcohol abuse. Current research addressing fundamental biological and/or applied biomedical questions benefits from various genetic and genomic analyses. As a result, the genome of rhesus macaques has been the subject of more study than most nonhuman primates. This paper briefly discusses a number of information resources that can provide interested researchers with access to genetic and genomic data describing the content of the rhesus macaque genome, available information regarding genetic variation within the species, results from studies of gene expression, and other aspects of genomic analysis. Specific online databases are discussed, including the US National Center for Biotechnology Information, the University of California Santa Cruz genome browser, Ensembl genome browser, the Macaque Genotype and Phenotype database (mGAP), Rhesusbase, and others.
Collapse
|
16
|
Murray EA, Fellows LK. Prefrontal cortex interactions with the amygdala in primates. Neuropsychopharmacology 2022; 47:163-179. [PMID: 34446829 PMCID: PMC8616954 DOI: 10.1038/s41386-021-01128-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
This review addresses functional interactions between the primate prefrontal cortex (PFC) and the amygdala, with emphasis on their contributions to behavior and cognition. The interplay between these two telencephalic structures contributes to adaptive behavior and to the evolutionary success of all primate species. In our species, dysfunction in this circuitry creates vulnerabilities to psychopathologies. Here, we describe amygdala-PFC contributions to behaviors that have direct relevance to Darwinian fitness: learned approach and avoidance, foraging, predator defense, and social signaling, which have in common the need for flexibility and sensitivity to specific and rapidly changing contexts. Examples include the prediction of positive outcomes, such as food availability, food desirability, and various social rewards, or of negative outcomes, such as threats of harm from predators or conspecifics. To promote fitness optimally, these stimulus-outcome associations need to be rapidly updated when an associative contingency changes or when the value of a predicted outcome changes. We review evidence from nonhuman primates implicating the PFC, the amygdala, and their functional interactions in these processes, with links to experimental work and clinical findings in humans where possible.
Collapse
Affiliation(s)
| | - Lesley K Fellows
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Kenwood MM, Kalin NH, Barbas H. The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology 2022; 47:260-275. [PMID: 34400783 PMCID: PMC8617307 DOI: 10.1038/s41386-021-01109-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Anxiety is experienced in response to threats that are distal or uncertain, involving changes in one's subjective state, autonomic responses, and behavior. Defensive and physiologic responses to threats that involve the amygdala and brainstem are conserved across species. While anxiety responses typically serve an adaptive purpose, when excessive, unregulated, and generalized, they can become maladaptive, leading to distress and avoidance of potentially threatening situations. In primates, anxiety can be regulated by the prefrontal cortex (PFC), which has expanded in evolution. This prefrontal expansion is thought to underlie primates' increased capacity to engage high-level regulatory strategies aimed at coping with and modifying the experience of anxiety. The specialized primate lateral, medial, and orbital PFC sectors are connected with association and limbic cortices, the latter of which are connected with the amygdala and brainstem autonomic structures that underlie emotional and physiological arousal. PFC pathways that interface with distinct inhibitory systems within the cortex, the amygdala, or the thalamus can regulate responses by modulating neuronal output. Within the PFC, pathways connecting cortical regions are poised to reduce noise and enhance signals for cognitive operations that regulate anxiety processing and autonomic drive. Specialized PFC pathways to the inhibitory thalamic reticular nucleus suggest a mechanism to allow passage of relevant signals from thalamus to cortex, and in the amygdala to modulate the output to autonomic structures. Disruption of specific nodes within the PFC that interface with inhibitory systems can affect the negative bias, failure to regulate autonomic arousal, and avoidance that characterize anxiety disorders.
Collapse
Affiliation(s)
- Margaux M Kenwood
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Neuroscience Training Program at University of Wisconsin-Madison, Madison, USA
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Neuroscience Training Program at University of Wisconsin-Madison, Madison, USA
- Wisconsin National Primate Center, Madison, WI, USA
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA.
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
18
|
Cross-species anxiety tests in psychiatry: pitfalls and promises. Mol Psychiatry 2022; 27:154-163. [PMID: 34561614 PMCID: PMC8960405 DOI: 10.1038/s41380-021-01299-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/16/2021] [Accepted: 09/08/2021] [Indexed: 11/08/2022]
Abstract
Behavioural anxiety tests in non-human animals are used for anxiolytic drug discovery, and to investigate the neurobiology of threat avoidance. Over the past decade, several of them were translated to humans with three clinically relevant goals: to assess potential efficacy of candidate treatments in healthy humans; to develop diagnostic tests or biomarkers; and to elucidate the pathophysiology of anxiety disorders. In this review, we scrutinise these promises and compare seven anxiety tests that are validated across species: five approach-avoidance conflict tests, unpredictable shock anticipation, and the social intrusion test in children. Regarding the first goal, three tests appear suitable for anxiolytic drug screening in humans. However, they have not become part of the drug development pipeline and achieving this may require independent confirmation of predictive validity and cost-effectiveness. Secondly, two tests have shown potential to measure clinically relevant individual differences, but their psychometric properties, predictive value, and clinical applicability need to be clarified. Finally, cross-species research has not yet revealed new evidence that the physiology of healthy human behaviour in anxiety tests relates to the physiology of anxiety symptoms in patients. To summarise, cross-species anxiety tests could be rendered useful for drug screening and for development of diagnostic instruments. Using these tests for aetiology research in healthy humans or animals needs to be queried and may turn out to be unrealistic.
Collapse
|
19
|
Stevens HE. Editorial: Macaque At-Birth Adoption: Its Power and Promise. J Am Acad Child Adolesc Psychiatry 2021; 60:1345-1347. [PMID: 34116168 PMCID: PMC8682931 DOI: 10.1016/j.jaac.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
A compelling piece of science in this month's issue is the work of Wood et al., which addresses a long-standing question about adoption in infancy-could the process of adoption affect the later characteristics of adopted children?1 This question arises from studies showing that children adopted at birth have higher rates of behavioral problems on average later in life.2 Potential confounds of such studies are that adopted children may enter the adoption with pre-existing vulnerabilities related to the reason for adoption, which in turn could lead to behavioral differences. Scientists trying to minimize this confound previously have capitalized on the benefits of animal model approaches-randomization, controlled genetic background, controlled environmental factors, faster development, opportunities for close observation3-showing that adoption at birth can affect rodent offspring long term.4 However, a nonhuman primate study comes closer to addressing this question specifically for our human, primate vulnerability.
Collapse
|
20
|
Sylvester CM, Pine DS. Pediatric Anxiety Disorders: Insights From Basic Neuroscience, Development, and Clinical Research. Biol Psychiatry 2021; 89:638-640. [PMID: 33706867 DOI: 10.1016/j.biopsych.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Affiliation(s)
- Chad M Sylvester
- Department of Psychiatry, Washington University in Saint Louis, Saint Louis, Missouri.
| | - Daniel S Pine
- National Institute of Mental Health, Emotion and Development Branch, Bethesda, Maryland.
| |
Collapse
|
21
|
An Adolescent Sensitive Period for Threat Responding: Impacts of Stress and Sex. Biol Psychiatry 2021; 89:651-658. [PMID: 33342545 PMCID: PMC7954972 DOI: 10.1016/j.biopsych.2020.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022]
Abstract
Anxiety and fear-related disorders peak in prevalence during adolescence, a window of rapid behavioral development and neural remodeling. However, understanding of the development of threat responding and the underlying neural circuits remains limited. Preclinical models of threat conditioning and extinction have provided an unparalleled glimpse into the developing brain. In this review we discuss mouse and rat studies on the development of threat response regulation, with a focus on the adolescent period. Evidence of nonlinear patterns of threat responding during adolescence and the continued development of the underlying circuitry is highly indicative of an adolescent sensitive period for threat response regulation. While we highlight literature in support of this unique developmental window, we also emphasize the need for causal studies to clarify the parameters defining such a sensitive period. In doing so, we explore how stress and biological sex affect the development and expression of threat response regulation during adolescence and beyond. Ultimately, a deeper understanding of how these factors interact with and affect developmental trajectories of learning and memory will inform treatment and prevention strategies for pediatric anxiety disorders.
Collapse
|