1
|
Kronemer SI, Bandettini PA, Gonzalez-Castillo J. Sleuthing subjectivity: a review of covert measures of consciousness. Nat Rev Neurosci 2025:10.1038/s41583-025-00934-1. [PMID: 40410390 DOI: 10.1038/s41583-025-00934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2025] [Indexed: 05/25/2025]
Abstract
Consciousness is private. Although conscious beings directly access their own conscious experiences, the consciousness of others must be inferred through overt report: observable behaviours - such as overt facial expressions, vocalizations and body gestures - that suggest the level, state and content of consciousness. However, overt report is limited because it can be erroneous (for example, resulting from wilful deception or being subject to recall error), absent (for example, during sleep and paralysis) or conflict with research goals (for example, in no-report paradigms and resting-state studies). These limitations encourage the search for covert measures of consciousness: physiological signals that disclose consciousness without relying on overt behaviour. This Review highlights emerging covert measures of consciousness in humans, including eye, skin, respiratory and heart signals. We also address the challenge of distinguishing physiological signals linked to conscious versus unconscious neural processing. Finally, we consider the ethical implications of infringing on the innate privacy of consciousness.
Collapse
Affiliation(s)
- Sharif I Kronemer
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Functional Magnetic Resonance Imaging Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Javier Gonzalez-Castillo
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Mo F, Zhao H, Li Y, Cai H, Song Y, Wang R, Yu Y, Zhu J. Network Localization of State and Trait of Auditory Verbal Hallucinations in Schizophrenia. Schizophr Bull 2024; 50:1326-1336. [PMID: 38401526 PMCID: PMC11548935 DOI: 10.1093/schbul/sbae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
BACKGROUND AND HYPOTHESIS Neuroimaging studies investigating the neural substrates of auditory verbal hallucinations (AVH) in schizophrenia have yielded mixed results, which may be reconciled by network localization. We sought to examine whether AVH-state and AVH-trait brain alterations in schizophrenia localize to common or distinct networks. STUDY DESIGN We initially identified AVH-state and AVH-trait brain alterations in schizophrenia reported in 48 previous studies. By integrating these affected brain locations with large-scale discovery and validation resting-state functional magnetic resonance imaging datasets, we then leveraged novel functional connectivity network mapping to construct AVH-state and AVH-trait dysfunctional networks. STUDY RESULTS The neuroanatomically heterogeneous AVH-state and AVH-trait brain alterations in schizophrenia localized to distinct and specific networks. The AVH-state dysfunctional network comprised a broadly distributed set of brain regions mainly involving the auditory, salience, basal ganglia, language, and sensorimotor networks. Contrastingly, the AVH-trait dysfunctional network manifested as a pattern of circumscribed brain regions principally implicating the caudate and inferior frontal gyrus. Additionally, the AVH-state dysfunctional network aligned with the neuromodulation targets for effective treatment of AVH, indicating possible clinical relevance. CONCLUSIONS Apart from unifying the seemingly irreproducible neuroimaging results across prior AVH studies, our findings suggest different neural mechanisms underlying AVH state and trait in schizophrenia from a network perspective and more broadly may inform future neuromodulation treatment for AVH.
Collapse
Affiliation(s)
- Fan Mo
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Han Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yifan Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yang Song
- Department of Pain, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rui Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| |
Collapse
|
3
|
Nerland S, Slapø NB, Barth C, Mørch-Johnsen L, Jørgensen KN, Beck D, Wortinger LA, Westlye LT, Jönsson EG, Andreassen OA, Maximov II, Geier OM, Agartz I. Current Auditory Hallucinations Are Not Associated With Specific White Matter Diffusion Alterations in Schizophrenia. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae008. [PMID: 39144116 PMCID: PMC11207682 DOI: 10.1093/schizbullopen/sgae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background and Hypothesis Studies have linked auditory hallucinations (AH) in schizophrenia spectrum disorders (SCZ) to altered cerebral white matter microstructure within the language and auditory processing circuitry (LAPC). However, the specificity to the LAPC remains unclear. Here, we investigated the relationship between AH and DTI among patients with SCZ using diffusion tensor imaging (DTI). Study Design We included patients with SCZ with (AH+; n = 59) and without (AH-; n = 81) current AH, and 140 age- and sex-matched controls. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were extracted from 39 fiber tracts. We used principal component analysis (PCA) to identify general factors of variation across fiber tracts and DTI metrics. Regression models adjusted for sex, age, and age2 were used to compare tract-wise DTI metrics and PCA factors between AH+, AH-, and healthy controls and to assess associations with clinical characteristics. Study Results Widespread differences relative to controls were observed for MD and RD in patients without current AH. Only limited differences in 2 fiber tracts were observed between AH+ and controls. Unimodal PCA factors based on MD, RD, and AD, as well as multimodal PCA factors, differed significantly relative to controls for AH-, but not AH+. We did not find any significant associations between PCA factors and clinical characteristics. Conclusions Contrary to previous studies, DTI metrics differed mainly in patients without current AH compared to controls, indicating a widespread neuroanatomical distribution. This challenges the notion that altered DTI metrics within the LAPC is a specific feature underlying AH.
Collapse
Affiliation(s)
- Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nora Berz Slapø
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lynn Mørch-Johnsen
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Østfold Hospital, Grålum, Norway
- Department of Clinical Research, Østfold Hospital, Grålum, Norway
| | - Kjetil Nordbø Jørgensen
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dani Beck
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Laura A Wortinger
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Erik G Jönsson
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ole A Andreassen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ivan I Maximov
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Oliver M Geier
- Department of Computational Radiology and Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
4
|
Fisher VL, Hosein GX, Epié B, Powers AR. Biomarkers of Auditory-Verbal Hallucinations. ADVANCES IN NEUROBIOLOGY 2024; 40:665-681. [PMID: 39562460 DOI: 10.1007/978-3-031-69491-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Auditory-verbal hallucinations (AVH) are debilitating symptoms experienced by those diagnosed with psychosis as well as many other neurological and psychiatric disorders. Critical to supporting individuals with AVH is identifying biomarkers that serve to track changes in brain states that put individuals at risk for developing or worsening of symptoms. There has been substantial literature identifying neural areas to track over time that may prove to be effective clinical tools. The efficacy of these tools has been bolstered when considering them under mechanistic accounts of AVH. In this chapter, we explore the literature that connects mechanistic theories and structurally based models of AVH and the potential biomarkers derived from this research.
Collapse
Affiliation(s)
- Victoria L Fisher
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
- Columbia University Department of Neuroscience, New York, NY, USA
| | - Gabriel X Hosein
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Boris Epié
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Albert R Powers
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA.
| |
Collapse
|
5
|
Lulu C, Xie H, Wang P, Zhang T. Impacts of visual impairment on pragmatic impairment: A systematic review and meta-analysis. PLoS One 2023; 18:e0294326. [PMID: 38064440 PMCID: PMC10707542 DOI: 10.1371/journal.pone.0294326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Consideration for patients with visual impairment, from low vision to blindness, is an important part of building a barrier-free society. Some authors have elaborated that visual impairment can indeed lead to delayed development in theory of mind, thereby causing pragmatic knowledge deficiency. Verifying whether those with eye conditions have pragmatic impairment is an essential way for their clinical evaluation, intervention and rehabilitation. OBJECTIVE We primarily carry out a meta-analysis of visual impairment from low vision to blindness and pragmatic impairment in people with low vision or blindness to verify visual impairment may cause pragmatic impairment. DATA SOURCES Electronic databases Pubmed, Medline, MesH, Psychinfo, Ovid, EBSCO and CNKI and the reference sections of previous reviews. STUDY ELIGIBILITY CRITERIA Studies were included when they built on primary data from clinical questionnaire surveys or field trials anywhere in the world, and when they reported impacts of visual impairment on social cognition, communication, skills, behavior and intelligence. In total, 25 original studies were included, in which 25735 people were evaluated. RESULTS Statistically, visual impairments and pragmatic impairment exist correlation due to the significant p value(p = 0.0005 < 0.05) in group and the subgroup sorted in the light of 18 years old (p < 0.0001 and p = 0.003 < 0.05). Psychologically, because people with visual impairment can not normally get non-verbal information, they can not get a complete pragmatic knowledge system. Pragmatic knowledge deficiency leads to abnormal in executive functions and development delay from the perspective of theory of mind, inducing pragmatic impairment. Therefore, visual impairment has an impact on pragmatic impairment. CONCLUSION The meta-analysis reveals robust evidence on the relationship of vision impairment and pragmatic impairment in children or adults. Such evidence may help to gradually improve the clinical evaluation, intervention and rehabilitation of these people.
Collapse
Affiliation(s)
- Cheng Lulu
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
- Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Hong Xie
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
| | - Peng Wang
- School of International Education, Guizhou Normal University, Guiyang, China
| | - Ting Zhang
- College of Engineering, Beijing University, Beijing, China
| |
Collapse
|
6
|
Donantueno C, Yger P, Cabestaing F, Jardri R. fMRI-based neurofeedback strategies and the way forward to treating phasic psychiatric symptoms. Front Neurosci 2023; 17:1275229. [PMID: 38125404 PMCID: PMC10731299 DOI: 10.3389/fnins.2023.1275229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Auditory verbal hallucinations (AVH) are the perfect illustration of phasic symptoms in psychiatric disorders. For some patients and in some situations, AVH cannot be relieved by standard therapeutic approaches. More advanced treatments are needed, among which neurofeedback, and more specifically fMRI-based neurofeedback, has been considered. This paper discusses the different possibilities to approach neurofeedback in the specific context of phasic symptoms, by highlighting the strengths and weaknesses of the available neurofeedback options. It concludes with the added value of the recently introduced information-based neurofeedback. Although requiring an online fMRI signal classifier, which can be quite complex to implement, this neurofeedback strategy opens a door toward an alternative treatment option for complex phasic symptomatology.
Collapse
Affiliation(s)
- Candela Donantueno
- University of Lille, INSERM U-1172, CHU Lille, Lille Neuroscience & Cognition Center, Plasticity & SubjectivitY Team, Fontan Hospital, Lille, France
| | - Pierre Yger
- University of Lille, INSERM U-1172, CHU Lille, Lille Neuroscience & Cognition Center, Plasticity & SubjectivitY Team, Fontan Hospital, Lille, France
| | | | - Renaud Jardri
- University of Lille, INSERM U-1172, CHU Lille, Lille Neuroscience & Cognition Center, Plasticity & SubjectivitY Team, Fontan Hospital, Lille, France
| |
Collapse
|
7
|
Hugdahl K, Craven AR, Johnsen E, Ersland L, Stoyanov D, Kandilarova S, Brunvoll Sandøy L, Kroken RA, Løberg EM, Sommer IEC. Neural Activation in the Ventromedial Prefrontal Cortex Precedes Conscious Experience of Being in or out of a Transient Hallucinatory State. Schizophr Bull 2023; 49:S58-S67. [PMID: 35596662 PMCID: PMC9960028 DOI: 10.1093/schbul/sbac028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND AND HYPOTHESES Auditory verbal hallucinations (AVHs) is not only a common symptom in schizophrenia but also observed in individuals in the general population. Despite extensive research, AVHs are poorly understood, especially their underlying neuronal architecture. Neuroimaging methods have been used to identify brain areas and networks that are activated during hallucinations. A characteristic feature of AVHs is, however, that they fluctuate over time, with varying frequencies of starts and stops. An unanswered question is, therefore, what neuronal events co-occur with the initiation and inhibition of an AVH episode. STUDY DESIGN We investigated brain activation with fMRI in 66 individuals who experienced multiple AVH-episodes while in the scanner. We extracted time-series fMRI-data and monitored changes second-by-second from 10 s before to 15 s after participants indicated the start and stop of an episode, respectively, by pressing a hand-held response-button. STUDY RESULTS We found a region in the ventromedial prefrontal cortex (VMPFC) which showed a significant increase in activation initiated a few seconds before participants indicated the start of an episode, and a corresponding decrease in activation initiated a few seconds before the end of an episode. CONCLUSIONS The consistent increase and decrease in activation in this area in advance of the consciously experienced presence or absence of the "voice" imply that this region may act as a switch in turning episodes on and off. The activation is unlikely to be confounded by motor responses. The findings could have clinical implications for brain stimulation treatments, like transcranial magnetic stimulation.
Collapse
Affiliation(s)
- Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Alexander R Craven
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- NORMENT Center for the Study of Mental Disorders, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Lars Ersland
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, and Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, and Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Lydia Brunvoll Sandøy
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Rune A Kroken
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- NORMENT Center for the Study of Mental Disorders, Haukeland University Hospital, Bergen, Norway
| | - Else-Marie Løberg
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- NORMENT Center for the Study of Mental Disorders, Haukeland University Hospital, Bergen, Norway
- Department of Addiction Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Iris E C Sommer
- Rijks Universiteit Groningen (RUG), Department of Biomedical Sciences of Cells and Systems and Department of Psychiatry, University Medical CenterGroningen (UMCG), Netherlands
| |
Collapse
|
8
|
Marschall TM, Koops S, Brederoo SG, Cabral J, Ćurčić-Blake B, Sommer IEC. Time varying dynamics of hallucinations in clinical and non-clinical voice-hearers. Neuroimage Clin 2023; 37:103351. [PMID: 36805417 PMCID: PMC9969260 DOI: 10.1016/j.nicl.2023.103351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/24/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
Auditory verbal hallucinations (AVH) are frequently associated with psychotic disorders, yet also occur in non-clinical voice-hearers. AVH in this group are similar to those within clinical voice-hearers in terms of several phenomenological aspects, but non-clinical voice-hearers report to have more control over their AVH and attribute less emotional valence to them. These dissimilarities may stem from differences on the neurobiological level, as it is still under debate whether the mechanisms involved in AVH are the same in clinical and non-clinical voice-hearers. In this study, 21 clinical and 21 non-clinical voice-hearers indicated the onset and offsets of AVH during an fMRI scan. Using a method called leading eigenvector dynamics analysis (LEiDA), we examined time-varying dynamics of functional connectivity involved in AVH with a sub-second temporal resolution. We assessed differences between groups, and between hallucination and rest periods in dwell time, switching frequency, probability of occurrence, and transition probabilities of nine recurrent states of functional connectivity with a permutation ANOVA. Deviations in dwell times, switching frequencies, and switch probabilities in the hallucination period indicated more erratic dynamics during this condition regardless of their clinical status. Post-hoc analyses of the dwell times exhibited the most distinct differences between the rest and hallucination condition for the non-clinical sample, suggesting stronger differences between the two conditions in this group. Overall, these findings suggest that the neurobiological mechanisms involved in AVH are similar in clinical and non-clinical individuals.
Collapse
Affiliation(s)
- Theresa M Marschall
- University of Groningen, Department of Psychiatry, University Medical Center Groningen, Groningen, The Netherlands.
| | - Sanne Koops
- University of Groningen, Department of Psychiatry, University Medical Center Groningen, Groningen, The Netherlands
| | - Sanne G Brederoo
- University of Groningen, Department of Psychiatry, University Medical Center Groningen, Groningen, The Netherlands
| | - Joana Cabral
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
| | - Branislava Ćurčić-Blake
- University of Groningen, Department of Psychiatry, University Medical Center Groningen, Groningen, The Netherlands
| | - Iris E C Sommer
- University of Groningen, Department of Psychiatry, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Romeo Z, Spironelli C. Hearing voices in the head: Two meta-analyses on structural correlates of auditory hallucinations in schizophrenia. Neuroimage Clin 2022; 36:103241. [PMID: 36279752 PMCID: PMC9668662 DOI: 10.1016/j.nicl.2022.103241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
Past voxel-based morphometry (VBM) studies demonstrate reduced grey matter volume (GMV) in schizophrenia (SZ) patients' brains in various cortical and subcortical regions. Probably due to SZ symptoms' heterogeneity, these results are often inconsistent and difficult to integrate. We hypothesized that focusing on auditory verbal hallucinations (AVH) - one of the most common SZ symptoms - would allow reducing heterogeneity and discovering further compelling evidence of SZ neural correlates. We carried out two voxel-based meta-analyses of past studies that investigated the structural correlates of AVH in SZ. The review of whole-brain VBM studies published until June 2022 in PubMed and PsychInfo databases yielded (a) 13 studies on correlations between GMV and AVH severity in SZ patients (n = 472; 86 foci), and (b) 11 studies involving comparisons between hallucinating SZ patients (n = 504) and healthy controls (n = 524; 74 foci). Data were analyzed using the Activation Likelihood Estimation method. AVH severity was associated with decreased GMV in patients' left superior temporal gyrus (STG) and left posterior insula. Compared with healthy controls, hallucinating SZ patients showed reduced GMV on the left anterior insula and left inferior frontal gyrus (IFG). Our findings revealed important structural dysfunctions in a left lateralized cluster of brain regions, including the insula and temporo-frontal regions, that significantly contribute to the severity and persistence of AVH. Structural atrophy found in circuits involved in generating and perceiving speech, as well as in auditory signal processing, might reasonably be considered a biological marker of AVH in SZ.
Collapse
Affiliation(s)
- Zaira Romeo
- Department of General Psychology, University of Padova, Italy
| | - Chiara Spironelli
- Department of General Psychology, University of Padova, Italy; Padova Neuroscience Center, University of Padova, Italy.
| |
Collapse
|
10
|
Nour MM, Liu Y, Dolan RJ. Functional neuroimaging in psychiatry and the case for failing better. Neuron 2022; 110:2524-2544. [PMID: 35981525 DOI: 10.1016/j.neuron.2022.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/06/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022]
Abstract
Psychiatric disorders encompass complex aberrations of cognition and affect and are among the most debilitating and poorly understood of any medical condition. Current treatments rely primarily on interventions that target brain function (drugs) or learning processes (psychotherapy). A mechanistic understanding of how these interventions mediate their therapeutic effects remains elusive. From the early 1990s, non-invasive functional neuroimaging, coupled with parallel developments in the cognitive neurosciences, seemed to signal a new era of neurobiologically grounded diagnosis and treatment in psychiatry. Yet, despite three decades of intense neuroimaging research, we still lack a neurobiological account for any psychiatric condition. Likewise, functional neuroimaging plays no role in clinical decision making. Here, we offer a critical commentary on this impasse and suggest how the field might fare better and deliver impactful neurobiological insights.
Collapse
Affiliation(s)
- Matthew M Nour
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK; Wellcome Trust Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK; Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK.
| | - Yunzhe Liu
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Raymond J Dolan
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK; Wellcome Trust Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
11
|
From Symptom-Capture Neuroimaging to Imaging Biomarker Development: The Challenge of Auditory Hallucinations in Schizophrenia. Biol Psychiatry 2022; 91:164-166. [PMID: 34916027 DOI: 10.1016/j.biopsych.2021.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022]
|
12
|
Gill K, Percival C, Roes M, Arreaza L, Chinchani A, Sanford N, Sena W, Mohammadsadeghi H, Menon M, Hughes M, Carruthers S, Sumner P, Woods W, Jardri R, Sommer IE, Rossell SL, Woodward TS. Real-Time Symptom Capture of Hallucinations in Schizophrenia with fMRI: Absence of Duration-Dependent Activity. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac050. [PMID: 39144798 PMCID: PMC11206057 DOI: 10.1093/schizbullopen/sgac050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background While advances in the field of functional magnetic resonance imaging (fMRI) provide new opportunities to study brain networks underlying the experience of hallucinations in psychosis, there are methodological challenges unique to symptom-capture studies. Study Design We extracted brain networks activated during hallucination-capture for schizophrenia patients when fMRI data collected from two sites was merged (combined N = 27). A multidimensional analysis technique was applied, which would allow separation of brain networks involved in the hallucinatory experience itself from those involved in the motor response of indicating the beginning and end of the perceived hallucinatory experience. To avoid reverse inference when attributing a function (e.g., a hallucination) to anatomical regions, it was required that longer hallucinatory experiences produce extended brain responses relative to shorter. Study Results For radio-speech sound files, an auditory perception brain network emerged, and displayed speech-duration-dependent hemodynamic responses (HDRs). However, in the hallucination-capture blocks, no network showed hallucination-duration-dependent HDRs, but a retrieved network that was anatomically classified as motor response emerged. Conclusions During symptom capture of hallucinations during fMRI, no HDR showed duration dependence, but a brain network anatomically matching the motor response network was retrieved. Previous reports on brain networks detected by fMRI during hallucination capture are reviewed in this context; namely, that the brain networks interpreted as involved in hallucinations may in fact be involved only in the motor response indicating the onset of the hallucination.
Collapse
Affiliation(s)
- Karanvir Gill
- BC Mental Health and Addictions Research Institute, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Chantal Percival
- BC Mental Health and Addictions Research Institute, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Meighen Roes
- BC Mental Health and Addictions Research Institute, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Leo Arreaza
- BC Mental Health and Addictions Research Institute, Vancouver, BC, Canada
| | - Abhijit Chinchani
- BC Mental Health and Addictions Research Institute, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Nicole Sanford
- BC Mental Health and Addictions Research Institute, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Walter Sena
- Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Av. Venceslau Braz, 71, Rio de Janeiro, RJ, Brazil
| | | | - Mahesh Menon
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Matthew Hughes
- Centre for Mental Health, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Sean Carruthers
- Centre for Mental Health, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Philip Sumner
- Centre for Mental Health, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Will Woods
- Centre for Mental Health, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Renaud Jardri
- Univ Lille, INSERM U-1172, CHU Lille, Lille Neuroscience and Cognition Centre, Plasticity & SubjectivitY Team, Lille, France
| | - Iris E Sommer
- Department of Neuroscience, University Medical Center Groningen, Groningen, The Netherlands
| | - Susan L Rossell
- Centre for Mental Health, School of Health Sciences, Swinburne University, Melbourne, Australia
- St Vincent’s Mental Health, St Vincent’s Hospital, Melbourne, Australia
| | - Todd S Woodward
- BC Mental Health and Addictions Research Institute, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|