1
|
Muroi Y, Ishii T. Neuronal stress-coping mechanisms in postpartum females. Neurosci Res 2025:S0168-0102(25)00032-X. [PMID: 39978735 DOI: 10.1016/j.neures.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Animals exhibit a wide range of stress responses aimed at restoring homeostasis and promoting adaptation. In response to stress, they employ coping mechanisms to maintain physiological balance. Dysregulated stress-coping strategies have been associated with mental disorders, including depression, anxiety, and post-traumatic stress disorder. Understanding the neuronal mechanisms that regulate stress-coping is critical for elucidating normal physiological responses and addressing the pathological processes underlying these disorders. Stress responses are influenced by sex and life stage, with notable variability in the prevalence and severity of mental disorders based on these factors. Stress-coping mechanisms are pivotal in determining the vulnerability or resilience of an individual to stress. Thus, identifying differences in stress-coping strategies between sexes and across life stages is essential for advancing prevention and treatment strategies for stress-related mental disorders. This review explores the neuronal mechanisms underlying stress responses, emphasizing the distinct stress-coping strategies utilized by postpartum females. Highlighting these differences underscores the need for targeted prevention and treatment approaches that consider sex- and life stage-specific variations in stress-coping mechanisms.
Collapse
Affiliation(s)
- Yoshikage Muroi
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, National University Cooperation Hokkaido Higher Education and Research, Hokkaido 080-8555, Japan.
| | - Toshiaki Ishii
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, National University Cooperation Hokkaido Higher Education and Research, Hokkaido 080-8555, Japan
| |
Collapse
|
2
|
Shinohara R, Furuyashiki T. Prefrontal contributions to mental resilience: Lessons from rodent studies of stress and antidepressant actions. Neurosci Res 2025; 211:16-23. [PMID: 36549388 DOI: 10.1016/j.neures.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Individual variability of stress susceptibility led to the concept of stress resilience to adapt well upon stressors. However, the neural mechanisms of stress resilience and its relevance to antidepressant actions remain elusive. In rodents, chronic stress induces dendritic atrophy and decreases dendritic spine density in the medial prefrontal cortex (mPFC), recapitulating prefrontal alterations in depressive patients, and the mPFC promotes stress resilience. Whereas dopamine neurons projecting to the nucleus accumbens potentiated by chronic stress promote stress susceptibility, dopamine neurons projecting to the mPFC activated upon acute stress contribute to dendritic growth of mPFC neurons via dopamine D1 receptors, leading to stress resilience. Rodent studies have also identified the roles of prefrontal D1 receptors as well as D1 receptor-expressing mPFC neurons projecting to multiple subcortical areas and dendritic spine formation in the mPFC for the sustained antidepressant-like effects of low-dose ketamine. Thus, understanding the cellular and neural-circuit mechanism of prefrontal D1 receptor actions paves the way for bridging the gap between stress resilience and the sustained antidepressant-like effects. The mechanistic understanding of stress resilience might be exploitable for developing antidepressants based on a naturally occurring mechanism, thus safer than low-dose ketamine.
Collapse
Affiliation(s)
- Ryota Shinohara
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.
| |
Collapse
|
3
|
Gongwer MW, Qi A, Enos AS, Rueda SA, Klune CB, Shari M, Kashay AQ, Williams OH, Hacking A, Riley JP, Wilke GA, Yang Y, Lu H, Leuchter AF, DeNardo LA, Wilke SA. A cell type-specific mechanism driving the rapid antidepressant effects of transcranial magnetic stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635537. [PMID: 39975365 PMCID: PMC11838264 DOI: 10.1101/2025.01.29.635537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an emerging treatment for brain disorders, but its therapeutic mechanism is unknown. We developed a novel mouse model of rTMS with superior clinical face validity and investigated the neural mechanism by which accelerated intermittent theta burst stimulation (aiTBS) - the first rapid-acting rTMS antidepressant protocol - reversed chronic stress-induced behavioral deficits. Using fiber photometry, we showed that aiTBS drives distinct patterns of neural activity in intratelencephalic (IT) and pyramidal tract (PT) projecting neurons in dorsomedial prefrontal cortex (dmPFC). However, only IT neurons exhibited persistently increased activity during both aiTBS and subsequent depression-related behaviors. Similarly, aiTBS reversed stress-related loss of dendritic spines on IT, but not PT neurons, further demonstrating cell type-specific effects of stimulation. Finally, chemogenetic inhibition of dmPFC IT neurons during rTMS blocked the antidepressant-like behavioral effects of aiTBS. Thus, we demonstrate a prefrontal mechanism linking rapid aiTBS-driven therapeutic effects to cell type-specific circuit plasticity.
Collapse
Affiliation(s)
- Michael W. Gongwer
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Neuroscience Interdepartmental Program, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Alex Qi
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, Neuromodulation Division, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Alexander S. Enos
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Sophia A. Rueda
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Cassandra B. Klune
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Meelan Shari
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Adrienne Q. Kashay
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, Neuromodulation Division, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Owen H. Williams
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Aliza Hacking
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Jack P. Riley
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | | | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Andrew F. Leuchter
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, Neuromodulation Division, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Laura A. DeNardo
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Scott A. Wilke
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, Neuromodulation Division, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Adams RA, Zor C, Mihalik A, Tsirlis K, Brudfors M, Chapman J, Ashburner J, Paulus MP, Mourão-Miranda J. Voxelwise Multivariate Analysis of Brain-Psychosocial Associations in Adolescents Reveals 6 Latent Dimensions of Cognition and Psychopathology. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:915-927. [PMID: 38588854 DOI: 10.1016/j.bpsc.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Adolescence heralds the onset of considerable psychopathology, which may be conceptualized as an emergence of altered covariation between symptoms and brain measures. Multivariate methods can detect such modes of covariation or latent dimensions, but none specifically relating to psychopathology have yet been found using population-level structural brain data. Using voxelwise (instead of parcellated) brain data may strengthen latent dimensions' brain-psychosocial relationships, but this creates computational challenges. METHODS We obtained voxelwise gray matter density and psychosocial variables from the baseline (ages 9-10 years) Adolescent Brain Cognitive Development (ABCD) Study cohort (N = 11,288) and employed a state-of-the-art segmentation method, sparse partial least squares, and a rigorous machine learning framework to prevent overfitting. RESULTS We found 6 latent dimensions, 4 of which pertain specifically to mental health. The mental health dimensions were related to overeating, anorexia/internalizing, oppositional symptoms (all ps < .002) and attention-deficit/hyperactivity disorder symptoms (p = .03). Attention-deficit/hyperactivity disorder was related to increased and internalizing symptoms related to decreased gray matter density in dopaminergic and serotonergic midbrain areas, whereas oppositional symptoms were related to increased gray matter in a noradrenergic nucleus. Internalizing symptoms were related to increased and oppositional symptoms to reduced gray matter density in the insular, cingulate, and auditory cortices. Striatal regions featured strongly, with reduced caudate nucleus gray matter in attention-deficit/hyperactivity disorder and reduced putamen gray matter in oppositional/conduct problems. Voxelwise gray matter density generated stronger brain-psychosocial correlations than brain parcellations. CONCLUSIONS Voxelwise brain data strengthen latent dimensions of brain-psychosocial covariation, and sparse multivariate methods increase their psychopathological specificity. Internalizing and externalizing symptoms are associated with opposite gray matter changes in similar cortical and subcortical areas.
Collapse
Affiliation(s)
- Rick A Adams
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom.
| | - Cemre Zor
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Agoston Mihalik
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Konstantinos Tsirlis
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - Mikael Brudfors
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - James Chapman
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - John Ashburner
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | | | - Janaina Mourão-Miranda
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| |
Collapse
|
5
|
Kurogi K, Taniguchi F, Matsuo R, Shinozuka M, Suzaki R, Yasuo S. Increased depression-like behaviors with altered brain dopamine metabolisms in male mice housed in large cages are alleviated by bupropion. Eur J Pharmacol 2023; 960:176126. [PMID: 37858834 DOI: 10.1016/j.ejphar.2023.176126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Psycho-environmental stress-based animal models of anxiety and depression are useful for investigating pathological mechanisms and drug development. Although several rodent-based studies have reported the beneficial effects of environmental enrichment (EE) on brain plasticity and anxiety- and depression-like behaviors, other studies have reported inverse effects. Here, we found that housing male mice in EE involving large cages and other EE materials increased anxiety- and depression-like behaviors in open field and tail suspension tests (TST). We further confirmed that housing in large cages was sufficient to induce increased depression-like behaviors in the TST and reduce the saccharine preference percentage, a sign of anhedonia, in male mice. In these experiments, the number of animals per cage was equivalent to that in standard cage housing, suggesting that low density in large cages may be a determining factor for behavioral alteration. In mice housed in large cages, sex-specific dysregulation of brain monoamine systems was observed; dopamine turnover to homovanillic acid or norepinephrine in the prefrontal cortex was elevated in males, while serotonin turnover to 5-hydroxyindoleacetic acid in the amygdala was increased in females. Finally, we demonstrated that daily intraperitoneal injections of bupropion, a dopamine and norepinephrine reuptake inhibitor, counteracted large-cage housing-induced changes in depression- and anhedonia-like behaviors in male mice. Our results suggest that housing in large cages with a low density of mice is a novel paradigm to clarify the mechanisms of environmental stress-induced emotional dysregulation and to identify drugs or food factors to alleviate the dysregulation.
Collapse
Affiliation(s)
- Kaito Kurogi
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Fuka Taniguchi
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ryohei Matsuo
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Marina Shinozuka
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Raiki Suzaki
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shinobu Yasuo
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
6
|
Rossi GN, Guerra LTL, Baker GB, Dursun SM, Saiz JCB, Hallak JEC, dos Santos RG. Molecular Pathways of the Therapeutic Effects of Ayahuasca, a Botanical Psychedelic and Potential Rapid-Acting Antidepressant. Biomolecules 2022; 12:1618. [PMID: 36358968 PMCID: PMC9687782 DOI: 10.3390/biom12111618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 03/30/2025] Open
Abstract
Ayahuasca is a psychoactive brew traditionally used in indigenous and religious rituals and ceremonies in South America for its therapeutic, psychedelic, and entheogenic effects. It is usually prepared by lengthy boiling of the leaves of the bush Psychotria viridis and the mashed stalks of the vine Banisteriopsis caapi in water. The former contains the classical psychedelic N,N-dimethyltryptamine (DMT), which is thought to be the main psychoactive alkaloid present in the brew. The latter serves as a source for β-carbolines, known for their monoamine oxidase-inhibiting (MAOI) properties. Recent preliminary research has provided encouraging results investigating ayahuasca's therapeutic potential, especially regarding its antidepressant effects. On a molecular level, pre-clinical and clinical evidence points to a complex pharmacological profile conveyed by the brew, including modulation of serotoninergic, glutamatergic, dopaminergic, and endocannabinoid systems. Its substances also interact with the vesicular monoamine transporter (VMAT), trace amine-associated receptor 1 (TAAR1), and sigma-1 receptors. Furthermore, ayahuasca's components also seem to modulate levels of inflammatory and neurotrophic factors beneficially. On a biological level, this translates into neuroprotective and neuroplastic effects. Here we review the current knowledge regarding these molecular interactions and how they relate to the possible antidepressant effects ayahuasca seems to produce.
Collapse
Affiliation(s)
- Giordano Novak Rossi
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Lorena T. L. Guerra
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Glen B. Baker
- National Institute of Science and Technology—Translational Medicine, Ribeirão Preto 3900, Brazil
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Serdar M. Dursun
- National Institute of Science and Technology—Translational Medicine, Ribeirão Preto 3900, Brazil
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - José Carlos Bouso Saiz
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
- ICEERS Foundation, International Center for Ethnobotanical Education, Research and Services, 08015 Barcelona, Spain
- Medical Anthropology Research Center (MARC), Universitat Rovira i Virgili, 43001 Tarragona, Spain
| | - Jaime E. C. Hallak
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
- National Institute of Science and Technology—Translational Medicine, Ribeirão Preto 3900, Brazil
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Rafael G. dos Santos
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
- National Institute of Science and Technology—Translational Medicine, Ribeirão Preto 3900, Brazil
- ICEERS Foundation, International Center for Ethnobotanical Education, Research and Services, 08015 Barcelona, Spain
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Hospital das Clínicas, Terceiro Andar, Av. Bandeirantes, Ribeirão Preto 3900, Brazil
| |
Collapse
|
7
|
Abstract
Depression is an episodic form of mental illness characterized by mood state transitions with poorly understood neurobiological mechanisms. Antidepressants reverse the effects of stress and depression on synapse function, enhancing neurotransmission, increasing plasticity, and generating new synapses in stress-sensitive brain regions. These properties are shared to varying degrees by all known antidepressants, suggesting that synaptic remodeling could play a key role in depression pathophysiology and antidepressant function. Still, it is unclear whether and precisely how synaptogenesis contributes to mood state transitions. Here, we review evidence supporting an emerging model in which depression is defined by a distinct brain state distributed across multiple stress-sensitive circuits, with neurons assuming altered functional properties, synapse configurations, and, importantly, a reduced capacity for plasticity and adaptation. Antidepressants act initially by facilitating plasticity and enabling a functional reconfiguration of this brain state. Subsequently, synaptogenesis plays a specific role in sustaining these changes over time.
Collapse
Affiliation(s)
- Puja K Parekh
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA;
| | - Shane B Johnson
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA;
| | - Conor Liston
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA;
| |
Collapse
|
8
|
Moghaddam B, Abbas AI. Depression and Prefrontal Cortex: All Roads Lead to Dopamine. Biol Psychiatry 2022; 91:773-774. [PMID: 35422235 DOI: 10.1016/j.biopsych.2022.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Bita Moghaddam
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon; Department of Psychiatry, Oregon Health and Science University, Portland, Oregon.
| | - Atheir I Abbas
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon; Department of Psychiatry, Oregon Health and Science University, Portland, Oregon; VA Portland Health Care System, Portland, Oregon
| |
Collapse
|