1
|
Alvino FG, Gini S, Minetti A, Pagani M, Sastre-Yagüe D, Barsotti N, De Guzman E, Schleifer C, Stuefer A, Kushan L, Montani C, Galbusera A, Papaleo F, Kates WR, Murphy D, Lombardo MV, Pasqualetti M, Bearden CE, Gozzi A. Synaptic-dependent developmental dysconnectivity in 22q11.2 deletion syndrome. SCIENCE ADVANCES 2025; 11:eadq2807. [PMID: 40073125 PMCID: PMC11900866 DOI: 10.1126/sciadv.adq2807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025]
Abstract
Chromosome 22q11.2 deletion increases the risk of neuropsychiatric disorders like autism and schizophrenia. Disruption of large-scale functional connectivity in 22q11 deletion syndrome (22q11DS) has been widely reported, but the biological factors driving these changes remain unclear. We used a cross-species design to uncover the developmental trajectory and neural underpinnings of brain dysconnectivity in 22q11DS. In LgDel mice, a model for 22q11DS, we found age-specific patterns of brain dysconnectivity, with widespread fMRI hyperconnectivity in juvenile mice reconfiguring to hippocampal hypoconnectivity over puberty. These changes correlated with developmental alterations in dendritic spine density, and both were transiently normalized by GSK3β inhibition, suggesting a synaptic origin for this phenomenon. Notably, analogous pubertal hyperconnectivity-to-hypoconnectivity reconfiguration occurs in human 22q11DS, affecting cortical regions enriched for GSK3β-associated synaptic genes and autism-relevant transcripts. This dysconnectivity also predicts age-dependent social alterations in 22q11DS individuals. These results suggest that synaptic mechanisms underlie developmental brain dysconnectivity in 22q11DS.
Collapse
Affiliation(s)
- Filomena Grazia Alvino
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - Silvia Gini
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Antea Minetti
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- IMT School for Advanced Studies, Lucca, Italy
| | - David Sastre-Yagüe
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Noemi Barsotti
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
- Centro per l’Integrazione della Strumentazione Scientifica dell’Università di Pisa (CISUP), Pisa, Italy
| | - Elizabeth De Guzman
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - Charles Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, USA
| | - Alexia Stuefer
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, USA
| | - Caterina Montani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Wendy R. Kates
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Institute of Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Michael Vincent Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Massimo Pasqualetti
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
- Centro per l’Integrazione della Strumentazione Scientifica dell’Università di Pisa (CISUP), Pisa, Italy
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA,USA
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| |
Collapse
|
2
|
Halkiopoulos C, Gkintoni E, Aroutzidis A, Antonopoulou H. Advances in Neuroimaging and Deep Learning for Emotion Detection: A Systematic Review of Cognitive Neuroscience and Algorithmic Innovations. Diagnostics (Basel) 2025; 15:456. [PMID: 40002607 PMCID: PMC11854508 DOI: 10.3390/diagnostics15040456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The following systematic review integrates neuroimaging techniques with deep learning approaches concerning emotion detection. It, therefore, aims to merge cognitive neuroscience insights with advanced algorithmic methods in pursuit of an enhanced understanding and applications of emotion recognition. Methods: The study was conducted following PRISMA guidelines, involving a rigorous selection process that resulted in the inclusion of 64 empirical studies that explore neuroimaging modalities such as fMRI, EEG, and MEG, discussing their capabilities and limitations in emotion recognition. It further evaluates deep learning architectures, including neural networks, CNNs, and GANs, in terms of their roles in classifying emotions from various domains: human-computer interaction, mental health, marketing, and more. Ethical and practical challenges in implementing these systems are also analyzed. Results: The review identifies fMRI as a powerful but resource-intensive modality, while EEG and MEG are more accessible with high temporal resolution but limited by spatial accuracy. Deep learning models, especially CNNs and GANs, have performed well in classifying emotions, though they do not always require large and diverse datasets. Combining neuroimaging data with behavioral and cognitive features improves classification performance. However, ethical challenges, such as data privacy and bias, remain significant concerns. Conclusions: The study has emphasized the efficiencies of neuroimaging and deep learning in emotion detection, while various ethical and technical challenges were also highlighted. Future research should integrate behavioral and cognitive neuroscience advances, establish ethical guidelines, and explore innovative methods to enhance system reliability and applicability.
Collapse
Affiliation(s)
- Constantinos Halkiopoulos
- Department of Management Science and Technology, University of Patras, 26334 Patras, Greece; (C.H.); (A.A.); (H.A.)
| | - Evgenia Gkintoni
- Department of Educational Sciences and Social Work, University of Patras, 26504 Patras, Greece
| | - Anthimos Aroutzidis
- Department of Management Science and Technology, University of Patras, 26334 Patras, Greece; (C.H.); (A.A.); (H.A.)
| | - Hera Antonopoulou
- Department of Management Science and Technology, University of Patras, 26334 Patras, Greece; (C.H.); (A.A.); (H.A.)
| |
Collapse
|
3
|
Alvino FG, Gini S, Minetti A, Pagani M, Sastre-Yagüe D, Barsotti N, De Guzman E, Schleifer C, Stuefer A, Kushan L, Montani C, Galbusera A, Papaleo F, Lombardo MV, Pasqualetti M, Bearden CE, Gozzi A. Synaptic-dependent developmental dysconnectivity in 22q11.2 deletion syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587339. [PMID: 38585897 PMCID: PMC10996624 DOI: 10.1101/2024.03.29.587339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Chromosome 22q11.2 deletion is among the strongest known genetic risk factors for neuropsychiatric disorders, including autism and schizophrenia. Brain imaging studies have reported disrupted large-scale functional connectivity in people with 22q11 deletion syndrome (22q11DS). However, the significance and biological determinants of these functional alterations remain unclear. Here, we use a cross-species design to investigate the developmental trajectory and neural underpinnings of brain dysconnectivity in 22q11DS. We find that LgDel mice, an established mouse model of 22q11DS, exhibit age-specific patterns of functional MRI (fMRI) dysconnectivity, with widespread fMRI hyper-connectivity in juvenile mice reverting to focal hippocampal hypoconnectivity over puberty. These fMRI connectivity alterations are mirrored by co-occurring developmental alterations in dendritic spine density, and are both transiently normalized by developmental GSK3β inhibition, suggesting a synaptic origin for this phenomenon. Notably, analogous hyper- to hypoconnectivity reconfiguration occurs also in human 22q11DS, where it affects hippocampal and cortical regions spatially enriched for synaptic genes that interact with GSK3β, and autism-relevant transcripts. Functional dysconnectivity in somatomotor components of this network is predictive of age-dependent social alterations in 22q11.2 deletion carriers. Taken together, these findings suggest that synaptic-related mechanisms underlie developmentally mediated functional dysconnectivity in 22q11DS.
Collapse
Affiliation(s)
- F G Alvino
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - S Gini
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - A Minetti
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - M Pagani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- IMT School for Advanced Studies, Lucca, Italy
| | - D Sastre-Yagüe
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - N Barsotti
- Centro per l'Integrazione della Strumentazione Scientifica dell'Universita di Pisa (CISUP), Pisa, Italy
| | - E De Guzman
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - C Schleifer
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, California
| | - A Stuefer
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - L Kushan
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, California
| | - C Montani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - A Galbusera
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - F Papaleo
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - M V Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - M Pasqualetti
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Centro per l'Integrazione della Strumentazione Scientifica dell'Universita di Pisa (CISUP), Pisa, Italy
| | - C E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, California
| | - A Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| |
Collapse
|
4
|
Chen H, Lei Y, Li R, Xia X, Cui N, Chen X, Liu J, Tang H, Zhou J, Huang Y, Tian Y, Wang X, Zhou J. Resting-state EEG dynamic functional connectivity distinguishes non-psychotic major depression, psychotic major depression and schizophrenia. Mol Psychiatry 2024; 29:1088-1098. [PMID: 38267620 DOI: 10.1038/s41380-023-02395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
This study aims to identify dynamic patterns within the spatiotemporal feature space that are specific to nonpsychotic major depression (NPMD), psychotic major depression (PMD), and schizophrenia (SCZ). The study also evaluates the effectiveness of machine learning algorithms based on these network manifestations in differentiating individuals with NPMD, PMD, and SCZ. A total of 579 participants were recruited, including 152 patients with NPMD, 45 patients with PMD, 185 patients with SCZ, and 197 healthy controls (HCs). A dynamic functional connectivity (DFC) approach was employed to estimate the principal FC states within each diagnostic group. Incremental proportions of data (ranging from 10% to 100%) within each diagnostic group were used for variability testing. DFC metrics, such as proportion, mean duration, and transition number, were examined among the four diagnostic groups to identify disease-related neural activity patterns. These patterns were then used to train a two-layer classifier for the four groups (HC, NPMD, PMD, and SCZ). The four principal brain states (i.e., states 1,2,3, and 4) identified by the DFC approach were highly representative within and across diagnostic groups. Between-group comparisons revealed significant differences in network metrics of state 2 and state 3, within delta, theta, and gamma frequency bands, between healthy individuals and patients in each diagnostic group (p < 0.01, FDR corrected). Moreover, the identified key dynamic network metrics achieved an accuracy of 73.1 ± 2.8% in the four-way classification of HC, NPMD, PMD, and SCZ, outperforming the static functional connectivity (SFC) approach (p < 0.001). These findings suggest that the proposed DFC approach can identify dynamic network biomarkers at the single-subject level. These biomarkers have the potential to accurately differentiate individual subjects among various diagnostic groups of psychiatric disorders or healthy controls. This work may contribute to the development of a valuable EEG-based diagnostic tool with enhanced accuracy and assistive capabilities.
Collapse
Affiliation(s)
- Hui Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yanqin Lei
- TeleBrain Medical Technology Co., Beijing, 100000, China
| | - Rihui Li
- Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau S.A.R., 999078, China
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau S.A.R., 999078, China
| | - Xinxin Xia
- TeleBrain Medical Technology Co., Beijing, 100000, China
| | - Nanyi Cui
- TeleBrain Medical Technology Co., Beijing, 100000, China
| | - Xianliang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jiali Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huajia Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jiawei Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ying Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yusheng Tian
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Jiansong Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|