1
|
Meyer GM, Sahin IA, Hollunder B, Butenko K, Rajamani N, Neudorfer C, Hart LA, Petry‐Schmelzer JN, Dafsari HS, Barbe MT, Visser‐Vandewalle V, Mosley PE, Horn A. Subthalamic Deep Brain Stimulation: Mapping Non-Motor Outcomes to Structural Connections. Hum Brain Mapp 2025; 46:e70207. [PMID: 40193128 PMCID: PMC11974458 DOI: 10.1002/hbm.70207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/02/2025] [Accepted: 03/23/2025] [Indexed: 04/10/2025] Open
Abstract
In Parkinson's Disease (PD), deep brain stimulation of the subthalamic nucleus (STN-DBS) reliably improves motor symptoms, and the circuits mediating these effects have largely been identified. However, non-motor outcomes are more variable, and it remains unclear which specific brain circuits need to be modulated or avoided to improve them. Since numerous non-motor symptoms potentially respond to DBS, it is challenging to independently identify the circuits mediating each one of them. Data compression algorithms such as principal component analysis (PCA) may provide a powerful alternative. This study aimed at providing a proof of concept for this approach by mapping changes along extensive score batteries to a few anatomical fiber bundles and, in turn, estimating changes in individual scores based on stimulation of these tracts. Retrospective data from 56 patients with PD and bilateral STN-DBS was included. The patients had undergone comprehensive clinical assessments covering changes in appetitive behaviors, mood, anxiety, impulsivity, cognition, and empathy. PCA was implemented to identify the main dimensions of neuropsychiatric and neuropsychological outcomes. Using DBS fiber filtering, we identified the structural connections whose stimulation was associated with change along these dimensions. Then, estimates of individual symptom outcomes were derived based on the stimulation of these connections by inverting the PCA. Finally, changes along a specific non-motor score were estimated in an independent validation dataset (N = 68) using the tract model. Four principal components were retained, which could be interpreted to reflect (i) general non-motor improvement; (ii) improvement of mood and cognition and worsening of trait impulsivity; (iii) improvement of cognition; and (iv) improvement of empathy and worsening of impulsive-compulsive behaviors. Each component was associated with the stimulation of spatially segregated fiber bundles connecting regions of the frontal cortex with the subthalamic nucleus. The extent of stimulation of these tracts was able to explain significant amounts of variance in outcomes for individual symptoms in the original cohort (circular analysis), as well as in the rank of depression outcomes in the independent validation cohort. Our approach represents an innovative concept for mapping changes along extensive score batteries to a few anatomical fiber bundles and could pave the way toward personalized deep brain stimulation.
Collapse
Affiliation(s)
- Garance M. Meyer
- Center for Brain Circuit Therapeutics, Department of NeurologyBrigham & Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Ilkem Aysu Sahin
- Movement Disorders and Neuromodulation Unit, Department of NeurologyCharité – Universitätsmedizin BerlinBerlinGermany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin School of Mind and Brain, Humboldt‐Universität Zu BerlinBerlinGermany
| | - Barbara Hollunder
- Movement Disorders and Neuromodulation Unit, Department of NeurologyCharité – Universitätsmedizin BerlinBerlinGermany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin School of Mind and Brain, Humboldt‐Universität Zu BerlinBerlinGermany
| | - Konstantin Butenko
- Center for Brain Circuit Therapeutics, Department of NeurologyBrigham & Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Nanditha Rajamani
- Center for Brain Circuit Therapeutics, Department of NeurologyBrigham & Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Movement Disorders and Neuromodulation Unit, Department of NeurologyCharité – Universitätsmedizin BerlinBerlinGermany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin School of Mind and Brain, Humboldt‐Universität Zu BerlinBerlinGermany
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Department of NeurologyBrigham & Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurosurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lauren A. Hart
- Center for Brain Circuit Therapeutics, Department of NeurologyBrigham & Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Haidar S. Dafsari
- Department of Neurology, Faculty of Medicine and University HospitalUniversity of CologneCologneGermany
| | - Michael T. Barbe
- Department of Neurology, Faculty of Medicine and University HospitalUniversity of CologneCologneGermany
| | - Veerle Visser‐Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University HospitalUniversity of CologneCologneGermany
| | - Philip E. Mosley
- Clinical Brain Networks Group, QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
- Neurosciences Queensland, St Andrew's War Memorial HospitalBrisbaneQueenslandAustralia
- Queensland Brain Institute, University of QueenslandBrisbaneQueenslandAustralia
- Australian eHealth Research Centre, CSIRO Health and BiosecurityBrisbaneQueenslandAustralia
| | - Andreas Horn
- Center for Brain Circuit Therapeutics, Department of NeurologyBrigham & Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Movement Disorders and Neuromodulation Unit, Department of NeurologyCharité – Universitätsmedizin BerlinBerlinGermany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin BerlinBerlinGermany
- Department of NeurosurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
2
|
Lee AM, Kist A, Alvarez J, Sellers KK, Khambhati AN, Sugrue LP, Reid LB, Kadlec K, Fan JM, Allawala AB, Racine CA, Norbu T, Astudillo D, Tremblay-McGaw AG, Becker N, Alhourani A, Starr PA, Chang EF, Krystal AD. Invasive Brain Mapping Identifies Personalized Therapeutic Neuromodulation Targets for Obsessive-Compulsive Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.14.25323348. [PMID: 40166548 PMCID: PMC11957075 DOI: 10.1101/2025.03.14.25323348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Deep brain stimulation has been used to treat severe, refractory obsessive-compulsive disorder (OCD) with variable outcomes across multiple anatomical targets. To overcome these limitations, we developed an invasive brain mapping paradigm in which electrodes were implanted across the OCD cortico-striato-thalamo-cortical circuit in a single individual. We then performed extensive stimulation mapping during a multi-day inpatient stay to identify personalized therapeutic targets and characterize their downstream circuit effects. We found two targets within the right ventral capsule (VC) that acutely reduced OCD symptoms. Prolonged VC stimulation suppressed high frequency activity within the structurally and functionally connected orbitofrontal cortex, which encoded the severity of OCD symptoms. These VC sites were implanted for DBS and combined stimulation of these targets led to a rapid therapeutic response. This case provides the first proof-of-concept that invasive brain mapping can be used to guide a novel personalized, multi-site neuromodulation approach to treat refractory OCD.
Collapse
Affiliation(s)
- A Moses Lee
- Weill Institute for Neurosciences, University of California, San Francisco
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
| | - Audrey Kist
- Weill Institute for Neurosciences, University of California, San Francisco
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
| | - John Alvarez
- Weill Institute for Neurosciences, University of California, San Francisco
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
| | - Kristin K Sellers
- Weill Institute for Neurosciences, University of California, San Francisco
- Department of Neurological Surgery, University of California, San Francisco
| | - Ankit N Khambhati
- Weill Institute for Neurosciences, University of California, San Francisco
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
- Department of Neurological Surgery, University of California, San Francisco
| | - Leo P Sugrue
- Weill Institute for Neurosciences, University of California, San Francisco
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Lee B Reid
- Weill Institute for Neurosciences, University of California, San Francisco
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Kelly Kadlec
- Weill Institute for Neurosciences, University of California, San Francisco
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
| | - Joline M Fan
- Weill Institute for Neurosciences, University of California, San Francisco
- Department of Neurology, University of California, San Francisco
| | - Anusha B Allawala
- Weill Institute for Neurosciences, University of California, San Francisco
- Department of Neurological Surgery, University of California, San Francisco
| | - Caroline A Racine
- Weill Institute for Neurosciences, University of California, San Francisco
- Department of Neurological Surgery, University of California, San Francisco
| | - Tenzin Norbu
- Weill Institute for Neurosciences, University of California, San Francisco
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
| | - Dani Astudillo
- Weill Institute for Neurosciences, University of California, San Francisco
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
| | - Alexandra G Tremblay-McGaw
- Weill Institute for Neurosciences, University of California, San Francisco
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
| | - Natalie Becker
- Weill Institute for Neurosciences, University of California, San Francisco
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
| | - Ahmad Alhourani
- Department of Neurological Surgery, University of California, San Francisco
| | - Philip A Starr
- Weill Institute for Neurosciences, University of California, San Francisco
- Department of Neurological Surgery, University of California, San Francisco
| | - Edward F Chang
- Weill Institute for Neurosciences, University of California, San Francisco
- Department of Neurological Surgery, University of California, San Francisco
| | - Andrew D Krystal
- Weill Institute for Neurosciences, University of California, San Francisco
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
| |
Collapse
|
3
|
Sharif F, Harmer CJ, Klein-Flügge MC, Tan H. Novel NIBS in psychiatry: Unveiling TUS and TI for research and treatment. Brain Neurosci Adv 2025; 9:23982128251322241. [PMID: 40092509 PMCID: PMC11909681 DOI: 10.1177/23982128251322241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Mental disorders pose a significant global burden and constitute a major cause of disability worldwide. Despite strides in treatment, a substantial number of patients do not respond adequately, underscoring the urgency for innovative approaches. Traditional non-invasive brain stimulation techniques show promise, yet grapple with challenges regarding efficacy and specificity. Variations in mechanistic understanding and reliability among non-invasive brain stimulation methods are common, with limited spatial precision and physical constraints hindering the ability to target subcortical areas often implicated in the disease aetiology. Novel techniques such as transcranial ultrasonic stimulation and temporal interference stimulation have gained notable momentum in recent years, possibly addressing these shortcomings. Transcranial ultrasonic stimulation (TUS) offers exceptional spatial precision and deeper penetration compared with conventional electrical and magnetic stimulation techniques. Studies targeting a diverse array of brain regions have shown its potential to affect neuronal excitability, functional connectivity and symptoms of psychiatric disorders such as major depressive disorder. Nevertheless, challenges such as target planning and addressing acoustic interactions with the skull must be tackled for its widespread adoption in research and potentially clinical settings. Similar to transcranial ultrasonic stimulation, temporal interference (TI) stimulation offers the potential to target deeper subcortical areas compared with traditional non-invasive brain stimulation, albeit requiring a comparatively higher current for equivalent neural effects. Promising yet still sparse research highlights TI's potential to selectively modulate neuronal activity, showing potential for its utility in psychiatry. Overall, recent strides in non-invasive brain stimulation methods like transcranial ultrasonic stimulation and temporal interference stimulation not only open new research avenues but also hold potential as effective treatments in psychiatry. However, realising their full potential necessitates addressing practical challenges and optimising their application effectively.
Collapse
Affiliation(s)
- Faissal Sharif
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Catherine J Harmer
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Miriam C. Klein-Flügge
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Huiling Tan
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Allam AK, Giridharan N, Hasen M, Banks GP, Reyes G, Dang H, Kabotyanski KE, Hertz AG, Heilbronner SR, Provenza N, Storch EA, Goodman WK, Sheth SA. Effective deep brain stimulation for obsessive-compulsive disorder after failed anterior capsulotomy: illustrative cases. JOURNAL OF NEUROSURGERY. CASE LESSONS 2024; 8:CASE24289. [PMID: 39467322 PMCID: PMC11525764 DOI: 10.3171/case24289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/12/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a psychiatric condition characterized by recurrent, unwanted thoughts (obsessions) and repetitive behaviors (compulsions) performed to relieve distress related to the obsessions. For patients with severe illness refractory to first-line pharmacotherapy and psychotherapy, neurosurgical treatments such as deep brain stimulation (DBS) and stereotactic lesioning are an option. The choice between DBS and lesioning is often driven by patient preference, but these options are not mutually exclusive. Here, the authors highlight the success of one surgical therapy (DBS) after the failure of another (lesioning). OBSERVATIONS Two patients with severe, treatment-refractory OCD underwent DBS lead implantation targeting the ventral capsule/ventral striatum after they did not attain any worthwhile benefit from a previous anterior capsulotomy. Both patients showed significant improvement (≥ 35% reduction in Yale-Brown Obsessive-Compulsive Scale [YBOCS] score) of their OCD symptoms at the long-term follow-up after DBS. One patient experienced a 37% reduction in symptom severity as measured by the YBOCS, and the other patient experienced a 47% reduction. LESSONS DBS and lesioning procedures are both effective surgical options for patients with intractable OCD. In these cases, the authors demonstrate that DBS can be utilized even after a lesioning procedure in nominally the same target (ventral portion of the anterior limb of the internal capsule). https://thejns.org/doi/10.3171/CASE24289.
Collapse
Affiliation(s)
- Anthony K Allam
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Nisha Giridharan
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Mohammed Hasen
- Department of Neurosurgery, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Garrett P Banks
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Gabriel Reyes
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Huy Dang
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | | | - Alyssa G Hertz
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | | | - Nicole Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Eric A Storch
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | - Wayne K Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
5
|
Meyer GM, Hollunder B, Li N, Butenko K, Dembek TA, Hart L, Nombela C, Mosley P, Akram H, Acevedo N, Borron BM, Chou T, Castaño Montoya JP, Strange B, Barcia JA, Tyagi H, Castle DJ, Smith AH, Choi KS, Kopell BH, Mayberg HS, Sheth SA, Goodman WK, Leentjens AFG, Richardson RM, Rossell SL, Bosanac P, Cosgrove GR, Kuhn J, Visser-Vandewalle V, Figee M, Dougherty DD, Siddiqi SH, Zrinzo L, Joyce E, Baldermann JC, Fox MD, Neudorfer C, Horn A. Deep Brain Stimulation for Obsessive-Compulsive Disorder: Optimal Stimulation Sites. Biol Psychiatry 2024; 96:101-113. [PMID: 38141909 PMCID: PMC11190041 DOI: 10.1016/j.biopsych.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) is a promising treatment option for treatment-refractory obsessive-compulsive disorder (OCD). Several stimulation targets have been used, mostly in and around the anterior limb of the internal capsule and ventral striatum. However, the precise target within this region remains a matter of debate. METHODS Here, we retrospectively studied a multicenter cohort of 82 patients with OCD who underwent DBS of the ventral capsule/ventral striatum and mapped optimal stimulation sites in this region. RESULTS DBS sweet-spot mapping performed on a discovery set of 58 patients revealed 2 optimal stimulation sites associated with improvements on the Yale-Brown Obsessive Compulsive Scale, one in the anterior limb of the internal capsule that overlapped with a previously identified OCD-DBS response tract and one in the region of the inferior thalamic peduncle and bed nucleus of the stria terminalis. Critically, the nucleus accumbens proper and anterior commissure were associated with beneficial but suboptimal clinical improvements. Moreover, overlap with the resulting sweet- and sour-spots significantly estimated variance in outcomes in an independent cohort of 22 patients from 2 additional DBS centers. Finally, beyond obsessive-compulsive symptoms, stimulation of the anterior site was associated with optimal outcomes for both depression and anxiety, while the posterior site was only associated with improvements in depression. CONCLUSIONS Our results suggest how to refine targeting of DBS in OCD and may be helpful in guiding DBS programming in existing patients.
Collapse
Affiliation(s)
- Garance M Meyer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Barbara Hollunder
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ningfei Li
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Konstantin Butenko
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Till A Dembek
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Lauren Hart
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cristina Nombela
- Biological and Health Psychology, School of Psychology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Philip Mosley
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia; Neurosciences Queensland, St. Andrew's War Memorial Hospital, Spring Hill, Queensland, Australia; Queensland Brain Institute, University of Queensland, St. Lucia, Brisbane, Queensland, Australia; Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity, Herston, Queensland, Australia
| | - Harith Akram
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Nicola Acevedo
- Centre for Mental Health, Swinburne University, Melbourne, Victoria, Australia; St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Benjamin M Borron
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tina Chou
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Juan Pablo Castaño Montoya
- Department of Neurosurgery, Hospital Clínico San Carlos, Instituto de Investigacion Sanitaria San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Bryan Strange
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Juan A Barcia
- Department of Neurosurgery, Hospital Clínico San Carlos, Instituto de Investigacion Sanitaria San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Himanshu Tyagi
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - David J Castle
- University of Tasmania and Centre for Mental Health Service Innovation, Tasmania, Australia; State-wide Mental Health Service, Tasmania, Australia
| | - Andrew H Smith
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brian H Kopell
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sameer A Sheth
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas; Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, Texas
| | - Wayne K Goodman
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas; Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, Texas
| | - Albert F G Leentjens
- Department of Psychiatry, Maastricht University Medical Center, Maastricht, the Netherlands
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Susan L Rossell
- Centre for Mental Health, Swinburne University, Melbourne, Victoria, Australia; St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Peter Bosanac
- St. Vincent's Hospital, Melbourne, Victoria, Australia; Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - G Rees Cosgrove
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Johanniter Hospital Oberhausen, EVKLN, Oberhausen, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shan H Siddiqi
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Eileen Joyce
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Juan Carlos Baldermann
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany; Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andreas Horn
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Meyer GM, Mosley PE. Tractography-Based Deep Brain Stimulation for Obsessive-Compulsive Disorder. Biol Psychiatry 2024; 96:80-81. [PMID: 38925716 DOI: 10.1016/j.biopsych.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Garance M Meyer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Philip E Mosley
- Clinical Brain Networks Group, Queensland Institute of Medical Research Berghofer Medical Research Institute, Herston, Queensland, Australia; Neurosciences Queensland, St. Andrew's War Memorial Hospital, Spring Hill, Queensland, Australia; Queensland Brain Institute, University of Queensland, St. Lucia, Queensland, Australia; Australian eHealth Research Centre, Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity, Herston, Queensland, Australia
| |
Collapse
|
7
|
Patrick EE, Fleeting CR, Patel DR, Casauay JT, Patel A, Shepherd H, Wong JK. Modeling the volume of tissue activated in deep brain stimulation and its clinical influence: a review. Front Hum Neurosci 2024; 18:1333183. [PMID: 38660012 PMCID: PMC11039793 DOI: 10.3389/fnhum.2024.1333183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Deep brain stimulation (DBS) is a neuromodulatory therapy that has been FDA approved for the treatment of various disorders, including but not limited to, movement disorders (e.g., Parkinson's disease and essential tremor), epilepsy, and obsessive-compulsive disorder. Computational methods for estimating the volume of tissue activated (VTA), coupled with brain imaging techniques, form the basis of models that are being generated from retrospective clinical studies for predicting DBS patient outcomes. For instance, VTA models are used to generate target-and network-based probabilistic stimulation maps that play a crucial role in predicting DBS treatment outcomes. This review defines the methods for calculation of tissue activation (or modulation) including ones that use heuristic and clinically derived estimates and more computationally involved ones that rely on finite-element methods and biophysical axon models. We define model parameters and provide a comparison of commercial, open-source, and academic simulation platforms available for integrated neuroimaging and neural activation prediction. In addition, we review clinical studies that use these modeling methods as a function of disease. By describing the tissue-activation modeling methods and highlighting their application in clinical studies, we provide the neural engineering and clinical neuromodulation communities with perspectives that may influence the adoption of modeling methods for future DBS studies.
Collapse
Affiliation(s)
- Erin E. Patrick
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States
| | - Chance R. Fleeting
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Drashti R. Patel
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Jed T. Casauay
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Aashay Patel
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Hunter Shepherd
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Joshua K. Wong
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Basich-Pease G, Slepneva N, Frank AC, Norbu T, Morrison MA, Sugrue LP, Larson PS, Starr PA, Lee AM. Tractography-based DBS lead repositioning improves outcome in refractory OCD and depression. Front Hum Neurosci 2024; 17:1339340. [PMID: 38384668 PMCID: PMC10879278 DOI: 10.3389/fnhum.2023.1339340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/29/2023] [Indexed: 02/23/2024] Open
Abstract
Deep brain stimulation (DBS) of the anterior limb of the internal capsule (ALIC) has been used to treat refractory obsessive-compulsive disorder (OCD) and depression, but outcomes are variable, with some patients not responding to this form of invasive neuromodulation. A lack of benefit in some patients may be due to suboptimal positioning of DBS leads. Recently, studies have suggested that specific white matter tracts within the ALIC are associated with improved outcomes. Here, we present the case of a patient who initially had a modest improvement in OCD and depressive symptoms after receiving DBS within the ALIC. Subsequently, he underwent unilateral DBS lead repositioning informed by tractography targeting the ventrolateral and medial prefrontal cortex's connection with the mediodorsal thalamus. In this patient, we also conducted post-implant and post-repositioning diffusion imaging and found that we could successfully perform tractography even with DBS leads in place. Following lead repositioning into tracts predictive of benefit, the patient reached responder criteria for his OCD, and his depression was remitted. This case illustrates that tractography can potentially be used in the evaluation and planning of lead repositioning to achieve therapeutic outcomes.
Collapse
Affiliation(s)
- Genevieve Basich-Pease
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Natalya Slepneva
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Adam C. Frank
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Tenzin Norbu
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Melanie A. Morrison
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Leo P. Sugrue
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Paul S. Larson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of Arizona, Tucson, AZ, United States
| | - Philip A. Starr
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - A. Moses Lee
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
9
|
Krauss P, Duarte-Batista P, Hart M, Avecillas-Chasin J, Bercu M, Hvingelby V, Massey F, Ackermans L, Kubben P, van der Gaag N, Krüger M. Directional electrodes in deep brain stimulation: Results of a survey by the European Association of Neurosurgical Societies (EANS). BRAIN & SPINE 2024; 4:102756. [PMID: 38510592 PMCID: PMC10951785 DOI: 10.1016/j.bas.2024.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/05/2024] [Accepted: 01/21/2024] [Indexed: 03/22/2024]
Abstract
Introduction Directional Leads (dLeads) represent a new technical tool in Deep Brain Stimulation (DBS), and a rapidly growing population of patients receive dLeads. Research question The European Association of Neurosurgical Societies(EANS) functional neurosurgery Task Force on dLeads conducted a survey of DBS specialists in Europe to evaluate their use, applications, advantages, and disadvantages. Material and methods EANS functional neurosurgery and European Society for Stereotactic and Functional Neurosurgery (ESSFN) members were asked to complete an online survey with 50 multiple-choice and open questions on their use of dLeads in clinical practice. Results Forty-nine respondents from 16 countries participated in the survey (n = 38 neurosurgeons, n = 8 neurologists, n = 3 DBS nurses). Five had not used dLeads. All users reported that dLeads provided an advantage (n = 23 minor, n = 21 major). Most surgeons (n = 35) stated that trajectory planning does not differ when implanting dLeads or conventional leads. Most respondents selected dLeads for the ability to optimize stimulation parameters (n = 41). However, the majority (n = 24), regarded time-consuming programming as the main disadvantage of this technology. Innovations that were highly valued by most participants included full 3T MRI compatibility, remote programming, and closed loop technology. Discussion and conclusion Directional leads are widely used by European DBS specialists. Despite challenges with programming time, users report that dLeads have had a positive impact and maintain an optimistic view of future technological advances.
Collapse
Affiliation(s)
- P. Krauss
- Department of Neurosurgery, University Hospital Augsburg, Augsburg, Germany
| | - P. Duarte-Batista
- Neurosurgery Department, North Lisbon University Hospital Centre, Lisbon, Portugal
| | - M.G. Hart
- St George's, University of London & St George's University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Neurosciences Research Centre, Cranmer Terrace, London, United Kingdom
| | - J.M. Avecillas-Chasin
- Department of Neurosurgery. University of Nebraska Medical Center. Omaha, Nebraska, USA
| | - M.M. Bercu
- Department of Pediatric Neurosurgery, Helen DeVos Children's Hospital, Corewell, USA
| | - V. Hvingelby
- Department of Clinical Medicine - Nuclear Medicine and PET Center, Aarhus University, Aarhus, Denmark
| | - F. Massey
- Unit of Neurosurgery, National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - L. Ackermans
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - P.L. Kubben
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - N.A. van der Gaag
- Department of Neurosurgery, Haga Teaching Hospital, The Hague, the Netherlands
- Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - M.T. Krüger
- Unit of Neurosurgery, National Hospital of Neurology and Neurosurgery, London, United Kingdom
- Department of Neurosurgery, University Medical Centre Freiburg, Germany
| |
Collapse
|
10
|
Widge AS. Closing the loop in psychiatric deep brain stimulation: physiology, psychometrics, and plasticity. Neuropsychopharmacology 2024; 49:138-149. [PMID: 37415081 PMCID: PMC10700701 DOI: 10.1038/s41386-023-01643-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/28/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
Deep brain stimulation (DBS) is an invasive approach to precise modulation of psychiatrically relevant circuits. Although it has impressive results in open-label psychiatric trials, DBS has also struggled to scale to and pass through multi-center randomized trials. This contrasts with Parkinson disease, where DBS is an established therapy treating thousands of patients annually. The core difference between these clinical applications is the difficulty of proving target engagement, and of leveraging the wide range of possible settings (parameters) that can be programmed in a given patient's DBS. In Parkinson's, patients' symptoms change rapidly and visibly when the stimulator is tuned to the correct parameters. In psychiatry, those same changes take days to weeks, limiting a clinician's ability to explore parameter space and identify patient-specific optimal settings. I review new approaches to psychiatric target engagement, with an emphasis on major depressive disorder (MDD). Specifically, I argue that better engagement may come by focusing on the root causes of psychiatric illness: dysfunction in specific, measurable cognitive functions and in the connectivity and synchrony of distributed brain circuits. I overview recent progress in both those domains, and how it may relate to other technologies discussed in companion articles in this issue.
Collapse
Affiliation(s)
- Alik S Widge
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Fanty L, Yu J, Chen N, Fletcher D, Hey G, Okun M, Wong J. The current state, challenges, and future directions of deep brain stimulation for obsessive compulsive disorder. Expert Rev Med Devices 2023; 20:829-842. [PMID: 37642374 DOI: 10.1080/17434440.2023.2252732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Obsessive-compulsive disorder (OCD) is clinically and pathologically heterogenous, with symptoms often refractory to first-line treatments. Deep brain stimulation (DBS) for the treatment of refractory OCD provides an opportunity to adjust and individualize neuromodulation targeting aberrant circuitry underlying OCD. The tailoring of DBS therapy may allow precision in symptom control based on patient-specific pathology. Progress has been made in understanding the potential targets for DBS intervention; however, a consensus on an optimal target has not been agreed upon. AREAS COVERED A literature review of DBS for OCD was performed by querying the PubMed database. The following topics were covered: the evolution of DBS targeting in OCD, the concept of an underlying unified connectomic network, current DBS targets, challenges facing the field, and future directions which could advance personalized DBS in this challenging population. EXPERT OPINION To continue the increasing efficacy of DBS for OCD, we must further explore the optimal DBS response across clinical profiles and neuropsychiatric domains of OCD as well as how interventions targeting multiple points in an aberrant circuit, multiple aberrant circuits, or a connectivity hub impact clinical response. Additionally, biomarkers would be invaluable in programming adjustments and creating a closed-loop paradigm to address symptom fluctuation in daily life.
Collapse
Affiliation(s)
- Lauren Fanty
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Jun Yu
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Nita Chen
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Drew Fletcher
- College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Grace Hey
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
- College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Michael Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Josh Wong
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| |
Collapse
|