1
|
Dienel SJ, Wade KL, Fish KN, Lewis DA. Alterations in Prefrontal Cortical Somatostatin Neurons in Schizophrenia: Evidence for Weaker Inhibition of Pyramidal Neuron Dendrites. Biol Psychiatry 2025:S0006-3223(25)00052-6. [PMID: 39848397 DOI: 10.1016/j.biopsych.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Certain cognitive processes require inhibition provided by the somatostatin (SST) class of GABA (gamma-aminobutyric acid) neurons in the dorsolateral prefrontal cortex (DLPFC). This inhibition onto pyramidal neuron dendrites depends on both SST and GABA signaling. Although SST messenger RNA (mRNA) levels are lower in the DLPFC in schizophrenia, it is not known whether SST neurons exhibit alterations in the capacity to synthesize GABA, principally via the 67-kilodalton isoform of glutamic acid decarboxylase (GAD67). METHODS GAD67 and SST mRNA levels were quantified in individual SST neurons using fluorescence in situ hybridization in DLPFC layers 2/superficial 3, where SST neurons are enriched, in individuals with schizophrenia (n = 46) and unaffected comparison (n = 46) individuals. Findings were compared with GAD67 and SST mRNA levels quantified by polymerase chain reaction and to final educational attainment, a proxy measure for cognitive functioning. RESULTS GAD67 (F1,84 = 13.1, p = .0005, Cohen's d = -0.78) and SST (F1,84 = 10.1, p = .002, Cohen's d = -0.64) mRNA levels in SST neurons were lower in schizophrenia, with no group differences in the relative density of SST neurons (F1,84 = 0.21, p = .65). A presynaptic index of dendritic inhibition, derived by summing the alterations in GAD67 and SST mRNAs, was lower in 80.4% of individuals with schizophrenia and was associated with final educational attainment (adjusted odds ratio = 1.44, p = .022). CONCLUSIONS Deficits in both GAD67 and SST mRNAs within SST neurons indicate that these neurons have a markedly reduced ability to inhibit postsynaptic pyramidal neuron dendrites in schizophrenia. These alterations likely contribute to cognitive dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Samuel J Dienel
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Kirsten L Wade
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kenneth N Fish
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
2
|
Hagihara H, Miyakawa T. Postmortem evidence of decreased brain pH in major depressive disorder: a systematic review and meta-analysis. Transl Psychiatry 2024; 14:460. [PMID: 39496593 PMCID: PMC11535390 DOI: 10.1038/s41398-024-03173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024] Open
Abstract
INTRODUCTION Major depressive disorder (MDD) is a prevalent and debilitating mental disorder that shares symptoms, genetics, and molecular changes in the brain with other psychiatric disorders, such as schizophrenia and bipolar disorder. Decreased brain pH, associated with increased lactate levels due to altered energy metabolism and neuronal hyperexcitation, has been consistently observed in schizophrenia and bipolar disorder. We recently demonstrated similar brain alterations in various animal models of neuropsychiatric disorders, including MDD. However, our understanding of brain pH alterations in human patients with MDD remains limited. METHODS We conducted meta-analyses to assess postmortem brain pH in patients with MDD compared to control subjects, examining its relationships with recurrence of depressive episodes and illness duration, utilizing publicly available demographic data. Studies reporting individual raw pH data were identified through searches in the Stanley Medical Research Institute database, NCBI GEO database, PubMed, and Google Scholar. The data were analyzed using the random effects model, ANOVA, and ANCOVA. RESULTS The random effects model, using 39 curated datasets (790 patients and 957 controls), indicated a significant decrease in brain pH in patients with MDD (Hedges' g = -0.23, p = 0.0056). A two-way ANCOVA revealed that the effect of diagnosis on pH remained significant when considering covariates, including postmortem interval, age at death, and sex. Patients with recurrent episodes, but not a single episode, showed significantly lower pH than controls in both females and males (256 patients and 279 controls from seven datasets). Furthermore, a significant negative correlation was observed between brain pH and illness duration (115 patients from five datasets). Female preponderance of decreased pH was also found, possibly due to a longer illness duration and a higher tendency of recurrent episodes in females. CONCLUSION This study suggests a decrease in brain pH in patients with MDD, potentially associated with recurrent episodes and longer illness duration. As suggested from previous animal model studies, altered brain energy metabolism, leading to decreased pH, may serve as a potential transdiagnostic endophenotype for MDD and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Japan.
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Japan.
| |
Collapse
|
3
|
Okuda T, Kimoto S, Kawabata R, Bian Y, Tsubomoto M, Okamura K, Enwright JF, Kikuchi M, Lewis DA, Hashimoto T. Alterations in inhibitory neuron subtype-selective transcripts in the prefrontal cortex: comparisons across schizophrenia and mood disorders. Psychol Med 2024; 54:1-10. [PMID: 39478366 PMCID: PMC11578916 DOI: 10.1017/s0033291724002344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/19/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND In schizophrenia (SZ), impairments in cognitive functions, such as working memory, have been associated with alterations in certain types of inhibitory neurons that utilize the neurotransmitter γ-aminobutyric acid (GABA) in the dorsolateral prefrontal cortex (DLPFC). For example, GABA neurons that express parvalbumin (PV) or somatostatin (SST) have more prominent gene expression alterations than those that express vasoactive intestinal peptide (VIP). In bipolar disorder (BD) and major depression (MD), which exhibit similar, but less severe, cognitive impairments than SZ, alterations of transcript levels in GABA neurons have also been reported. However, the extent to which GABA neuron subtype-selective transcripts in the DLPFC are affected, and the relative magnitudes of the diagnosis-associated effects, have not been directly compared across SZ, BD, and MD in the same study. METHODS We used quantitative polymerase chain reaction to examine levels of GABA neuron subtype-selective transcripts (PV, potassium voltage-gated channel modifier subfamily-S member-3, SST, VIP, and calretinin mRNAs), as well as the pan-GABA neuron marker 67 kDa glutamate decarboxylase mRNA, in DLPFC total gray matter of 160 individuals, including those with SZ, BD, or MD and unaffected comparison (UC) individuals. RESULTS Relative to UC individuals, individuals with SZ exhibited large deficits in levels of all transcripts except for calretinin mRNA, whereas individuals with BD or MD showed a marked deficit only for PV or SST mRNAs, respectively. CONCLUSIONS These findings suggest that broader and more severe alterations in DLPFC GABA neurons might contribute to the greater cognitive impairments in SZ relative to BD and MD.
Collapse
Affiliation(s)
- Takeshi Okuda
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Sohei Kimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, 634-8521, Japan
- Department of Neuropsychiatry, Wakayama Medical University School of Medicine, Wakayama, 641-8509, Japan
| | - Rika Kawabata
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yufan Bian
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Makoto Tsubomoto
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Kazuya Okamura
- Department of Neuropsychiatry, Wakayama Medical University School of Medicine, Wakayama, 641-8509, Japan
| | - John F. Enwright
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Mitsuru Kikuchi
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
- Research Center for Child Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Takanori Hashimoto
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Psychiatry, National Hospital Organization Hokuriku Hospital, Nanto, 939-1893, Japan
| |
Collapse
|
4
|
Hughes H, Brady LJ, Schoonover KE. GABAergic dysfunction in postmortem dorsolateral prefrontal cortex: implications for cognitive deficits in schizophrenia and affective disorders. Front Cell Neurosci 2024; 18:1440834. [PMID: 39381500 PMCID: PMC11458443 DOI: 10.3389/fncel.2024.1440834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
The microcircuitry within superficial layers of the dorsolateral prefrontal cortex (DLPFC), composed of excitatory pyramidal neurons and inhibitory GABAergic interneurons, has been suggested as the neural substrate of working memory performance. In schizophrenia, working memory impairments are thought to result from alterations of microcircuitry within the DLPFC. GABAergic interneurons, in particular, are crucially involved in synchronizing neural activity at gamma frequency, the power of which increases with working memory load. Alterations of GABAergic interneurons, particularly parvalbumin (PV) and somatostatin (SST) subtypes, are frequently observed in schizophrenia. Abnormalities of GABAergic neurotransmission, such as deficiencies in the 67 kDA isoform of GABA synthesis enzyme (GAD67), vesicular GABA transporter (vGAT), and GABA reuptake transporter 1 (GAT1) in presynaptic boutons, as well as postsynaptic alterations in GABA A receptor subunits further contribute to impaired inhibition. This review explores GABAergic abnormalities of the postmortem DLPFC in schizophrenia, with a focus on the roles of interneuron subtypes involved in cognition, and GABAergic neurotransmission within presynaptic boutons and postsynaptic alterations. Where available, comparisons between schizophrenia and affective disorders that share cognitive pathology such as bipolar disorder and major depressive disorder will be made. Challenges in directly measuring GABA levels are addressed, emphasizing the need for innovative techniques. Understanding GABAergic abnormalities and their implications for neural circuit dysfunction in schizophrenia is crucial for developing targeted therapies.
Collapse
Affiliation(s)
- Hannah Hughes
- Graduate Biomedical Sciences Program, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Lillian J. Brady
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Kirsten E. Schoonover
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
- Department of Psychology and Sociology, College of Arts and Sciences, Tuskegee University, Tuskegee, AL, United States
| |
Collapse
|
5
|
Strzelecki D, Talarowska M, Kaźmierski J, Waszkiewicz N, Curtis D. Editorial: Glutamatergic system in affective and psychotic disorders: pre-clinical and clinical advances. Front Neurosci 2024; 17:1358271. [PMID: 38264496 PMCID: PMC10803660 DOI: 10.3389/fnins.2023.1358271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/25/2024] Open
Affiliation(s)
- Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Central Teaching Hospital, Medical University of Lodz, Łódź, Poland
| | | | - Jakub Kaźmierski
- Department of Old Age Psychiatry and Psychotic Disorders, Central Teaching Hospital, Medical University of Lodz, Łódź, Poland
| | | | - David Curtis
- UCL Genetics Institute, University College London, London, United Kingdom
| |
Collapse
|
6
|
Luscher B, Maguire JL, Rudolph U, Sibille E. GABA A receptors as targets for treating affective and cognitive symptoms of depression. Trends Pharmacol Sci 2023; 44:586-600. [PMID: 37543478 PMCID: PMC10511219 DOI: 10.1016/j.tips.2023.06.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 08/07/2023]
Abstract
In the past 20 years, our understanding of the pathophysiology of depression has evolved from a focus on an imbalance of monoaminergic neurotransmitters to a multifactorial picture including an improved understanding of the role of glutamatergic excitatory and GABAergic inhibitory neurotransmission. FDA-approved treatments targeting the glutamatergic [esketamine for major depressive disorder (MDD)] and GABAergic (brexanolone for peripartum depression) systems have become available. This review focuses on the GABAA receptor (GABAAR) system as a target for novel antidepressants and discusses the mechanisms by which modulation of δ-containing GABAARs with neuroactive steroids (NASs) or of α5-containing GABAARs results in antidepressant or antidepressant-like actions and discusses clinical data on NASs. Moreover, a potential mechanism by which α5-GABAAR-positive allosteric modulators (PAMs) may improve cognitive deficits in depression is presented.
Collapse
Affiliation(s)
- Bernhard Luscher
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Psychiatry, Pennsylvania State University, University Park, PA 16802, USA; Penn State Neuroscience Institute, Pennsylvania State University, University Park, PA 16802, USA
| | - Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA.
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute of the Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|