1
|
Ahern KB, Garzon JF, Yuruk D, Saliba M, Ozger C, Vande Voort JL, Croarkin PE. Long-Interval Intracortical Inhibition and the Cortical Silent Period in Youth. Biomedicines 2023; 11:biomedicines11020409. [PMID: 36830945 PMCID: PMC9953741 DOI: 10.3390/biomedicines11020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The cortical silent period (CSP) and long-interval intracortical inhibition (LICI) are putative markers of γ-aminobutyric acid receptor type B (GABAB)-mediated inhibitory neurotransmission. We aimed to assess the association between LICI and CSP in youths. METHODS We analyzed data from three previous studies of youth who underwent CSP and LICI measurements with transcranial magnetic stimulation and electromyography. We assessed CSP and LICI association using Spearman rank correlation tests and multiple linear regression analyses adjusted for demographic and clinical covariates. RESULTS The sample included 16 healthy participants and 45 participants with depression. The general mean (SD) age was 15.5 (1.7), 14.3 (1.7) for healthy participants, and 15.9 (1.6) years for participants with depression. Measures were nonnormally distributed (Shapiro-Wilk, p < 0.001). CSP and LICI were not correlated at 100-millisecond (ρ = -0.2421, p = 0.06), 150-millisecond (ρ = -0.1612, p = 0.21), or 200-millisecond (ρ = -0.0507, p = 0.70) interstimulus intervals using Spearman rank correlation test. No correlations were found in the multiple regression analysis (p = 0.35). CONCLUSIONS Although previous studies suggest that cortical silent period and long-interval intracortical inhibition measure GABAB receptor-mediated activity, these biomarkers were not associated in our sample of youths. Future studies should focus on the specific physiologic and pharmacodynamic properties assessed by CSP and LICI in younger populations.
Collapse
Affiliation(s)
- Kelly B. Ahern
- Mayo Clinic Alix School of Medicine, 200 First St. SW, Rochester, MN 55905, USA
| | - Juan F. Garzon
- Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
- Mayo Clinic Department of Psychiatry and Psychology, 200 First St. SW, Rochester, MN 55905, USA
| | - Deniz Yuruk
- Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
- Mayo Clinic Department of Psychiatry and Psychology, 200 First St. SW, Rochester, MN 55905, USA
| | - Maria Saliba
- Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
- Mayo Clinic Department of Psychiatry and Psychology, 200 First St. SW, Rochester, MN 55905, USA
| | - Can Ozger
- Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
- Mayo Clinic Department of Psychiatry and Psychology, 200 First St. SW, Rochester, MN 55905, USA
| | - Jennifer L. Vande Voort
- Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
- Mayo Clinic Department of Psychiatry and Psychology, 200 First St. SW, Rochester, MN 55905, USA
| | - Paul E. Croarkin
- Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
- Mayo Clinic Department of Psychiatry and Psychology, 200 First St. SW, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-507-293-2557
| |
Collapse
|
2
|
Hanson MR, Swanson CW, Whittier TT, Fling BW. Inhibitory signaling as a predictor of leg force control in young and older adults. Exp Brain Res 2022; 240:1005-1016. [PMID: 35171308 DOI: 10.1007/s00221-022-06321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
Abstract
As the populations of the United States and developed nations age, motor control performance is adversely impacted, resulting in functional impairments that can diminish quality of life. Generally, force control in the lower limb worsens with age, with older adults (OA) displaying more variable and less accurate submaximal forces. Corticospinal inhibitory signaling may influence force control, with those OA who maintain corticospinal inhibitory signaling capacity achieving steadier forces. This study aimed to assess the relationships between lower limb force control and transcranial magnetic stimulation (TMS) measures of corticospinal inhibition (i.e., cortical silent period (cSP) duration and depth). 15 OA and 14 young adults (YA) were recruited for this study. All subjects underwent a TMS protocol to elicit the cSP while maintaining 15% of their maximal force in their knee extensor muscles. OA and YA did not display differences in force control metrics or corticospinal inhibitory measures. However, in OA, maximal cSP depth (%dSP max) was associated with lower force variability. No other significant relationships existed in the YA or OA groups. Future studies will benefit from evaluating a range of target forces and target muscles to assess potential relationships between sensorimotor inhibitory capacity and control of muscle force output.
Collapse
Affiliation(s)
- Moriah R Hanson
- Department of Occupational Therapy, Colorado State University, Fort Collins, CO, USA
| | - Clayton W Swanson
- Department of Health & Exercise Science, Colorado State University, 1582 Campus Delivery, Moby B-201A, Fort Collins, CO, 80523, USA
| | - Tyler T Whittier
- Department of Health & Exercise Science, Colorado State University, 1582 Campus Delivery, Moby B-201A, Fort Collins, CO, 80523, USA
| | - Brett W Fling
- Department of Health & Exercise Science, Colorado State University, 1582 Campus Delivery, Moby B-201A, Fort Collins, CO, 80523, USA. .,Molecular, Cellular, and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
3
|
Corp DT, Bereznicki HGK, Clark GM, Youssef GJ, Fried PJ, Jannati A, Davies CB, Gomes-Osman J, Kirkovski M, Albein-Urios N, Fitzgerald PB, Koch G, Di Lazzaro V, Pascual-Leone A, Enticott PG. Large-scale analysis of interindividual variability in single and paired-pulse TMS data. Clin Neurophysiol 2021; 132:2639-2653. [PMID: 34344609 DOI: 10.1016/j.clinph.2021.06.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE This study brought together over 60 transcranial magnetic stimulation (TMS) researchers to create the largest known sample of individual participant single and paired-pulse TMS data to date, enabling a more comprehensive evaluation of factors driving response variability. METHODS Authors of previously published studies were contacted and asked to share deidentified individual TMS data. Mixed-effects regression investigated a range of individual and study level variables for their contribution to variability in response to single and paired-pulse TMS data. RESULTS 687 healthy participant's data were pooled across 35 studies. Target muscle, pulse waveform, neuronavigation use, and TMS machine significantly predicted an individual's single-pulse TMS amplitude. Baseline motor evoked potential amplitude, motor cortex hemisphere, and motor threshold (MT) significantly predicted short-interval intracortical inhibition response. Baseline motor evoked potential amplitude, test stimulus intensity, interstimulus interval, and MT significantly predicted intracortical facilitation response. Age, hemisphere, and TMS machine significantly predicted MT. CONCLUSIONS This large-scale analysis has identified a number of factors influencing participants' responses to single and paired-pulse TMS. We provide specific recommendations to minimise interindividual variability in single and paired-pulse TMS data. SIGNIFICANCE This study has used large-scale analyses to give clarity to factors driving variance in TMS data. We hope that this ongoing collaborative approach will increase standardisation of methods and thus the utility of single and paired-pulse TMS.
Collapse
Affiliation(s)
- Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Hannah G K Bereznicki
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Gillian M Clark
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - George J Youssef
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, Australia
| | - Peter J Fried
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ali Jannati
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charlotte B Davies
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Joyce Gomes-Osman
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Physical Therapy, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Natalia Albein-Urios
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Central Clinical School, The Alfred and Monash University, Melbourne, Australia; Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Central Clinical School, Melbourne, Australia
| | - Giacomo Koch
- Non-invasive Brain Stimulation Unit, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology and Neurobiology, Università Campus Bio-Medico, Rome, Italy
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Institut Guttmann de Neurorehabilitació, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | | |
Collapse
|
4
|
Hupfeld KE, Swanson CW, Fling BW, Seidler RD. TMS-induced silent periods: A review of methods and call for consistency. J Neurosci Methods 2020; 346:108950. [PMID: 32971133 PMCID: PMC8276277 DOI: 10.1016/j.jneumeth.2020.108950] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/24/2020] [Accepted: 09/15/2020] [Indexed: 12/31/2022]
Abstract
Transcranial magnetic stimulation (TMS)-induced silent periods provide an in vivo measure of human motor cortical inhibitory function. Cortical silent periods (cSP, also sometimes referred to as contralateral silent periods) and ipsilateral silent periods (iSP) may change with advancing age and disease and can provide insight into cortical control of the motor system. The majority of past silent period work has implemented largely varying methodology, sometimes including subjective analyses and incomplete methods descriptions. This limits reproducibility of silent period work and hampers comparisons of silent period measures across studies. Here, we discuss methodological differences in past silent period work, highlighting how these choices affect silent period outcome measures. We also outline challenges and possible solutions for measuring silent periods in the unique case of the lower limbs. Finally, we provide comprehensive recommendations for collection, analysis, and reporting of future silent period studies.
Collapse
Affiliation(s)
- K E Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - C W Swanson
- Department of Health & Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - B W Fling
- Department of Health & Exercise Science, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular, and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, USA
| | - R D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Corp DT, Bereznicki HGK, Clark GM, Youssef GJ, Fried PJ, Jannati A, Davies CB, Gomes-Osman J, Stamm J, Chung SW, Bowe SJ, Rogasch NC, Fitzgerald PB, Koch G, Di Lazzaro V, Pascual-Leone A, Enticott PG. Large-scale analysis of interindividual variability in theta-burst stimulation data: Results from the 'Big TMS Data Collaboration'. Brain Stimul 2020; 13:1476-1488. [PMID: 32758665 PMCID: PMC7494610 DOI: 10.1016/j.brs.2020.07.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Many studies have attempted to identify the sources of interindividual variability in response to theta-burst stimulation (TBS). However, these studies have been limited by small sample sizes, leading to conflicting results. OBJECTIVE/HYPOTHESIS This study brought together over 60 TMS researchers to form the 'Big TMS Data Collaboration', and create the largest known sample of individual participant TBS data to date. The goal was to enable a more comprehensive evaluation of factors driving TBS response variability. METHODS 118 corresponding authors of TMS studies were emailed and asked to provide deidentified individual TMS data. Mixed-effects regression investigated a range of individual and study level variables for their contribution to iTBS and cTBS response variability. RESULTS 430 healthy participants' TBS data was pooled across 22 studies (mean age = 41.9; range = 17-82; females = 217). Baseline MEP amplitude, age, target muscle, and time of day significantly predicted iTBS-induced plasticity. Baseline MEP amplitude and timepoint after TBS significantly predicted cTBS-induced plasticity. CONCLUSIONS This is the largest known study of interindividual variability in TBS. Our findings indicate that a significant portion of variability can be attributed to the methods used to measure the modulatory effects of TBS. We provide specific methodological recommendations in order to control and mitigate these sources of variability.
Collapse
Affiliation(s)
- Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Hannah G K Bereznicki
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Gillian M Clark
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - George J Youssef
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, Australia
| | - Peter J Fried
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ali Jannati
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charlotte B Davies
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Joyce Gomes-Osman
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Physical Therapy, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Julie Stamm
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sung Wook Chung
- Monash Alfred Psychiatry Research Centre, Central Clinical School, The Alfred and Monash University, Melbourne, Australia
| | - Steven J Bowe
- Deakin Biostatistics Unit Faculty of Health Deakin University, Geelong, Australia
| | - Nigel C Rogasch
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, Australia; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia; The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Central Clinical School, The Alfred and Monash University, Melbourne, Australia; Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Central Clinical School, Melbourne, Australia
| | - Giacomo Koch
- Non-invasive Brain Stimulation Unit, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology and Neurobiology, Università Campus Bio-Medico, Rome, Italy
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research. Hebrew SeniorLife, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Institut Guttmann de Neurorehabilitació, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| |
Collapse
|
6
|
Online repetitive transcranial magnetic stimulation during working memory in younger and older adults: A randomized within-subject comparison. PLoS One 2019; 14:e0213707. [PMID: 30901345 PMCID: PMC6430375 DOI: 10.1371/journal.pone.0213707] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/26/2019] [Indexed: 01/06/2023] Open
Abstract
Working memory is the ability to perform mental operations on information that is stored in a flexible, limited capacity buffer. The ability to manipulate information in working memory is central to many aspects of human cognition, but also declines with healthy aging. Given the profound importance of such working memory manipulation abilities, there is a concerted effort towards developing approaches to improve them. The current study tested the capacity to enhance working memory manipulation with online repetitive transcranial magnetic stimulation in healthy young and older adults. Online high frequency (5Hz) repetitive transcranial magnetic stimulation was applied over the left dorsolateral prefrontal cortex to test the hypothesis that active repetitive transcranial magnetic stimulation would lead to significant improvements in memory recall accuracy compared to sham stimulation, and that these effects would be most pronounced in working memory manipulation conditions with the highest cognitive demand in both young and older adults. Repetitive transcranial magnetic stimulation was applied while participants were performing a delayed response alphabetization task with three individually-titrated levels of difficulty. The left dorsolateral prefrontal cortex was identified by combining electric field modeling to individualized functional magnetic resonance imaging activation maps and was targeted during the experiment using stereotactic neuronavigation with real-time robotic guidance, allowing optimal coil placement during the stimulation. As no accuracy differences were found between young and older adults, the results from both groups were collapsed. Subsequent analyses revealed that active stimulation significantly increased accuracy relative to sham stimulation, but only for the hardest condition. These results point towards further investigation of repetitive transcranial magnetic stimulation for memory enhancement focusing on high difficulty conditions as those most likely to exhibit benefits.
Collapse
|
7
|
Correlation between Motor Cortex Excitability Changes and Cognitive Impairment in Vascular Depression: Pathophysiological Insights from a Longitudinal TMS Study. Neural Plast 2016. [PMID: 27525127 DOI: 10.1155/2016/8154969.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background. Transcranial magnetic stimulation (TMS) highlighted functional changes in dementia, whereas there are few data in patients with vascular cognitive impairment-no dementia (VCI-ND). Similarly, little is known about the neurophysiological impact of vascular depression (VD) on deterioration of cognitive functions. We test whether depression might affect not only cognition but also specific cortical circuits in subcortical vascular disease. Methods. Sixteen VCI-ND and 11 VD patients, age-matched with 15 controls, underwent a clinical-cognitive, neuroimaging, and TMS assessment. After approximately two years, all participants were prospectively reevaluated. Results. At baseline, a significant more pronounced intracortical facilitation (ICF) was found in VCI-ND patients. Reevaluation revealed an increase of the global excitability in both VCI-ND and VD subjects. At follow-up, the ICF of VCI-ND becomes similar to the other groups. Only VD patients showed cognitive deterioration. Conclusions. Unlike VD, the hyperfacilitation found at baseline in VCI-ND patients suggests enhanced glutamatergic neurotransmission that might contribute to the preservation of cognitive functioning. The hyperexcitability observed at follow-up in both groups of patients also indicates functional changes in glutamatergic neurotransmission. The mechanisms enhancing the risk of dementia in VD might be related either to subcortical vascular lesions or to the lack of compensatory functional cortical changes.
Collapse
|
8
|
Pennisi M, Lanza G, Cantone M, Ricceri R, Spampinato C, Pennisi G, Di Lazzaro V, Bella R. Correlation between Motor Cortex Excitability Changes and Cognitive Impairment in Vascular Depression: Pathophysiological Insights from a Longitudinal TMS Study. Neural Plast 2016; 2016:8154969. [PMID: 27525127 PMCID: PMC4971324 DOI: 10.1155/2016/8154969] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/14/2016] [Accepted: 05/30/2016] [Indexed: 02/07/2023] Open
Abstract
Background. Transcranial magnetic stimulation (TMS) highlighted functional changes in dementia, whereas there are few data in patients with vascular cognitive impairment-no dementia (VCI-ND). Similarly, little is known about the neurophysiological impact of vascular depression (VD) on deterioration of cognitive functions. We test whether depression might affect not only cognition but also specific cortical circuits in subcortical vascular disease. Methods. Sixteen VCI-ND and 11 VD patients, age-matched with 15 controls, underwent a clinical-cognitive, neuroimaging, and TMS assessment. After approximately two years, all participants were prospectively reevaluated. Results. At baseline, a significant more pronounced intracortical facilitation (ICF) was found in VCI-ND patients. Reevaluation revealed an increase of the global excitability in both VCI-ND and VD subjects. At follow-up, the ICF of VCI-ND becomes similar to the other groups. Only VD patients showed cognitive deterioration. Conclusions. Unlike VD, the hyperfacilitation found at baseline in VCI-ND patients suggests enhanced glutamatergic neurotransmission that might contribute to the preservation of cognitive functioning. The hyperexcitability observed at follow-up in both groups of patients also indicates functional changes in glutamatergic neurotransmission. The mechanisms enhancing the risk of dementia in VD might be related either to subcortical vascular lesions or to the lack of compensatory functional cortical changes.
Collapse
Affiliation(s)
- Manuela Pennisi
- Spinal Unit, Emergency Hospital “Cannizzaro”, 95126 Catania, Italy
| | - Giuseppe Lanza
- Department of Neurology I.C., “Oasi” Institute for Research on Mental Retardation and Brain Aging (I.R.C.C.S.), 94018 Troina, Italy
| | - Mariagiovanna Cantone
- Department of Neurology I.C., “Oasi” Institute for Research on Mental Retardation and Brain Aging (I.R.C.C.S.), 94018 Troina, Italy
| | - Riccardo Ricceri
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, 95125 Catania, Italy
| | - Concetto Spampinato
- Department of Electrical, Electronics and Informatics Engineering, University of Catania, 95125 Catania, Italy
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95125 Catania, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine, Unit of Neurology, Neurophysiology, Neurobiology, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
9
|
Harquel S, Bacle T, Beynel L, Marendaz C, Chauvin A, David O. Mapping dynamical properties of cortical microcircuits using robotized TMS and EEG: Towards functional cytoarchitectonics. Neuroimage 2016; 135:115-24. [PMID: 27153976 DOI: 10.1016/j.neuroimage.2016.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/11/2016] [Accepted: 05/01/2016] [Indexed: 10/21/2022] Open
Abstract
Brain dynamics at rest depend on the large-scale interactions between oscillating cortical microcircuits arranged into macrocolumns. Cytoarchitectonic studies have shown that the structure of those microcircuits differs between cortical regions, but very little is known about interregional differences of their intrinsic dynamics at a macro-scale in human. We developed here a new method aiming at mapping the dynamical properties of cortical microcircuits non-invasively using the coupling between robotized transcranial magnetic stimulation and electroencephalography. We recorded the responses evoked by the stimulation of 18 cortical targets largely covering the accessible neocortex in 22 healthy volunteers. Specific data processing methods were developed to map the local source activity of each cortical target, which showed inter-regional differences with very good interhemispheric reproducibility. Functional signatures of cortical microcircuits were further studied using spatio-temporal decomposition of local source activities in order to highlight principal brain modes. The identified brain modes revealed that cortical areas with similar intrinsic dynamical properties could be distributed either locally or not, with a spatial signature that was somewhat reminiscent of resting state networks. Our results provide the proof of concept of "functional cytoarchitectonics", that would guide the parcellation of the human cortex using not only its cytoarchitecture but also its intrinsic responses to local perturbations. This opens new avenues for brain modelling and physiopathology readouts.
Collapse
Affiliation(s)
- Sylvain Harquel
- Univ. Grenoble Alpes, F-38000 Grenoble, France; CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNC, F-38000 Grenoble, France; Inserm, U1216, Grenoble Institut des Neurosciences, F-38000 Grenoble, France; CNRS, INSERM, Univ. Grenoble Alpes, CHU Grenoble, IRMaGe, F-38000 Grenoble, France
| | - Thibault Bacle
- Univ. Grenoble Alpes, F-38000 Grenoble, France; CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNC, F-38000 Grenoble, France
| | - Lysianne Beynel
- Univ. Grenoble Alpes, F-38000 Grenoble, France; CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNC, F-38000 Grenoble, France
| | - Christian Marendaz
- Univ. Grenoble Alpes, F-38000 Grenoble, France; CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNC, F-38000 Grenoble, France
| | - Alan Chauvin
- Univ. Grenoble Alpes, F-38000 Grenoble, France; CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNC, F-38000 Grenoble, France
| | - Olivier David
- Univ. Grenoble Alpes, F-38000 Grenoble, France; Inserm, U1216, Grenoble Institut des Neurosciences, F-38000 Grenoble, France.
| |
Collapse
|
10
|
Clark BC, Taylor JL, Hong SL, Law TD, Russ DW. Weaker Seniors Exhibit Motor Cortex Hypoexcitability and Impairments in Voluntary Activation. J Gerontol A Biol Sci Med Sci 2015; 70:1112-9. [PMID: 25834195 DOI: 10.1093/gerona/glv030] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 03/02/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Weakness predisposes seniors to a fourfold increase in functional limitations. The potential for age-related degradation in nervous system function to contribute to weakness and physical disability has garnered much interest of late. In this study, we tested the hypothesis that weaker seniors have impairments in voluntary (neural) activation and increased indices of GABAergic inhibition of the motor cortex, assessed using transcranial magnetic stimulation. METHODS Young adults (N = 46; 21.2±0.5 years) and seniors (N = 42; 70.7±0.9 years) had their wrist flexion strength quantified along with voluntary activation capacity (by comparing voluntary and electrically evoked forces). Single-pulse transcranial magnetic stimulation was used to measure motor-evoked potential amplitude and silent period duration during isometric contractions at 15% and 30% of maximum strength. Paired-pulse transcranial magnetic stimulation was used to measure intracortical facilitation and short-interval and long-interval intracortical inhibition. The primary analysis compared seniors to young adults. The secondary analysis compared stronger seniors (top two tertiles) to weaker seniors (bottom tertile) based on strength relative to body weight. RESULTS The most novel findings were that weaker seniors exhibited: (i) a 20% deficit in voluntary activation; (ii) ~20% smaller motor-evoked potentials during the 30% contraction task; and (iii) nearly twofold higher levels of long-interval intracortical inhibition under resting conditions. CONCLUSIONS These findings indicate that weaker seniors exhibit significant impairments in voluntary activation, and that this impairment may be mechanistically associated with increased GABAergic inhibition of the motor cortex.
Collapse
Affiliation(s)
| | - Janet L Taylor
- Neuroscience Research Australia and the University of New South Wales, Randwick, Australia
| | | | - Timothy D Law
- Ohio Musculoskeletal and Neurological Institute (OMNI) at Ohio University, Athens. Department of Family Medicine at Ohio University, Athens
| | - David W Russ
- Ohio Musculoskeletal and Neurological Institute (OMNI) at Ohio University, Athens. School of Rehabilitation and Communication Sciences at Ohio University, Athens
| |
Collapse
|