1
|
Quintana DS, Glaser BD, Kang H, Kildal ESM, Audunsdottir K, Sartorius AM, Barth C. The interplay of oxytocin and sex hormones. Neurosci Biobehav Rev 2024; 163:105765. [PMID: 38885888 DOI: 10.1016/j.neubiorev.2024.105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
The neuropeptide oxytocin has historically been associated with reproduction and maternal behavior. However, more recent research has uncovered that oxytocin has a much wider range of roles in physiology and behavior. Despite the excitement surrounding potential therapeutical applications of intranasally administered oxytocin, the results of these intervention studies have been inconsistent. Various reasons for these mixed results have been proposed, which tend to focus on methodological issues, such as study design. While methodological issues are certainly important, emerging evidence suggests that the interaction between oxytocin and sex hormones may also account for these varied findings. To better understand the purpose and function of the interaction of oxytocin with sex hormones, with a focus on estrogens, progesterone, and testosterone, we conducted a comprehensive thematic review via four perspectives: evolutionary, developmental, mechanistic, and survival. Altogether, this synergistic approach highlights the critical function of sex hormone activity for accomplishing the diverse roles of oxytocin via the modulation of oxytocin release and oxytocin receptor activity, which is also likely to contribute to the heterogeneity of outcomes after oxytocin administration.
Collapse
Affiliation(s)
- Daniel S Quintana
- Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway.
| | - Bernt D Glaser
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Heemin Kang
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Emilie S M Kildal
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, Lovisenberg Diakonale Sykehus, Oslo, Norway
| | - Kristin Audunsdottir
- Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | | | - Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
2
|
Marazziti D, Diep PT, Carter S, Carbone MG. Oxytocin: An Old Hormone, A Novel Psychotropic Drug And Possible Use In Treating Psychiatric Disorders. Curr Med Chem 2022; 29:5615-5687. [PMID: 35894453 DOI: 10.2174/0929867329666220727120646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oxytocin is a nonapeptide synthesized in the paraventricular and supraoptic nuclei of the hypothalamus. Historically, this molecule has been involved as a key factor in the formation of infant attachment, maternal behavior and pair bonding and, more generally, in linking social signals with cognition, behaviors and reward. In the last decades, the whole oxytocin system has gained a growing interest as it was proposed to be implicated in etiopathogenesis of several neurodevelopmental and neuropsychiatric disorders. METHODS With the main goal of an in-depth understanding of the oxytocin role in the regulation of different functions and complex behaviors as well as its intriguing implications in different neuropsychiatric disorders, we performed a critical review of the current state of art. We carried out this work through PubMed database up to June 2021 with the search terms: 1) "oxytocin and neuropsychiatric disorders"; 2) "oxytocin and neurodevelopmental disorders"; 3) "oxytocin and anorexia"; 4) "oxytocin and eating disorders"; 5) "oxytocin and obsessive-compulsive disorder"; 6) "oxytocin and schizophrenia"; 7) "oxytocin and depression"; 8) "oxytocin and bipolar disorder"; 9) "oxytocin and psychosis"; 10) "oxytocin and anxiety"; 11) "oxytocin and personality disorder"; 12) "oxytocin and PTSD". RESULTS Biological, genetic, and epigenetic studies highlighted quality and quantity modifications in the expression of oxytocin peptide or in oxytocin receptor isoforms. These alterations would seem to be correlated with a higher risk of presenting several neuropsychiatric disorders belonging to different psychopathological spectra. Collaterally, the exogenous oxytocin administration has shown to ameliorate many neuropsychiatric clinical conditions. CONCLUSION Finally, we briefly analyzed the potential pharmacological use of oxytocin in patient with severe symptomatic SARS-CoV-2 infection due to its anti-inflammatory, anti-oxidative and immunoregulatory properties.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Phuoc-Tan Diep
- Department of Histopathology, Royal Lancaster Infirmary, University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, United Kingdom
| | - Sue Carter
- Director Kinsey Institute, Indiana University, Bloomington, IN, USA
| | - Manuel G Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
3
|
Abstract
Oxytocin (OT) is a nonapeptide mainly produced in the supraoptic and paraventricular nuclei. OT in the brain and blood has extensive functions in both mental and physical activities. These functions are mediated by OT receptors (OTRs) that are distributed in a broad spectrum of tissues with dramatic sexual dimorphism. In both sexes, OT generally facilitates social cognition and behaviors, facilitates parental behavior and sexual activity and inhibits feeding and pain perception. However, there are significant differences in OT levels and distribution of OTRs in men from women. Thus, many OT functions in men are different from women, particularly in the reproduction. In men, the reproductive functions are relatively simple. In women, the reproductive functions involve menstrual cycle, pregnancy, parturition, lactation, and menopause. These functions make OT regulation of women's health and disease a unique topic of physiological and pathological studies. In menstruation, pre-ovulatory increase in OT secretion in the hypothalamus and the ovary can promote the secretion of gonadotropin-releasing hormone and facilitate ovulation. During pregnancy, increased OT synthesis and preterm release endow OT system the ability to promote maternal behavior and lactation. In parturition, cervix expansion-elicited pulse OT secretion and uterine OT release accelerate the expelling of fetus and reduce postpartum hemorrhage. During lactation, intermittent pulsatile OT secretion is necessary for the milk-ejection reflex and maternal behavior. Disorders in OT secretion can account for maternal depression and hypogalactia. In menopause, the reduction of OT secretion accounts for many menopausal symptoms and diseases. These issues are reviewed in this work.
Collapse
Affiliation(s)
- Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haipeng Yang
- Neonatal Division of the Department of Pediatrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liqun Han
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingxing Ma
- Department of Colorectal Cancer Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Mingxing Ma,
| |
Collapse
|
4
|
Wang P, Wang SC, Liu X, Jia S, Wang X, Li T, Yu J, Parpura V, Wang YF. Neural Functions of Hypothalamic Oxytocin and its Regulation. ASN Neuro 2022; 14:17590914221100706. [PMID: 35593066 PMCID: PMC9125079 DOI: 10.1177/17590914221100706] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 12/26/2022] Open
Abstract
Oxytocin (OT), a nonapeptide, has a variety of functions. Despite extensive studies on OT over past decades, our understanding of its neural functions and their regulation remains incomplete. OT is mainly produced in OT neurons in the supraoptic nucleus (SON), paraventricular nucleus (PVN) and accessory nuclei between the SON and PVN. OT exerts neuromodulatory effects in the brain and spinal cord. While magnocellular OT neurons in the SON and PVN mainly innervate the pituitary and forebrain regions, and parvocellular OT neurons in the PVN innervate brainstem and spinal cord, the two sets of OT neurons have close interactions histologically and functionally. OT expression occurs at early life to promote mental and physical development, while its subsequent decrease in expression in later life stage accompanies aging and diseases. Adaptive changes in this OT system, however, take place under different conditions and upon the maturation of OT release machinery. OT can modulate social recognition and behaviors, learning and memory, emotion, reward, and other higher brain functions. OT also regulates eating and drinking, sleep and wakefulness, nociception and analgesia, sexual behavior, parturition, lactation and other instinctive behaviors. OT regulates the autonomic nervous system, and somatic and specialized senses. Notably, OT can have different modulatory effects on the same function under different conditions. Such divergence may derive from different neural connections, OT receptor gene dimorphism and methylation, and complex interactions with other hormones. In this review, brain functions of OT and their underlying neural mechanisms as well as the perspectives of their clinical usage are presented.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Stephani C. Wang
- Division of Cardiology, Department of Medicine, University of California-Irvine, Irvine, California, USA
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- Neuroscience Laboratory for Translational Medicine, School of Mental Health, Qiqihar Medical University, Qiqihar, China
| | - Jiawei Yu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- Kerqin District Maternity & Child Healthcare Hospital, Tongliao, Inner Mongolia, China
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Islas-Preciado D, Flores-Celis K, González-Olvera J, Estrada-Camarena E. Effect of physical and sexual violence during childhood and/or adolescence on the development of menstrual related mood disorders: A systematic review and meta-analysis. SALUD MENTAL 2021. [DOI: 10.17711/sm.0185-3325.2021.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. Abuse in early life stages has been proposed as an etiological risk factor for developing menstrually-related mood disorders (MRMDs). Objetive. To evaluate whether there is a relation between the occurrence of physical and/or sexual violence in childhood and/or adolescence and the development of MRMDs in adulthood. Method. A systematic search was conducted in PubMed, Web of Science, and ScienceDirect, with the route (“Premenstrual Syndrome”[Mesh]) OR (“Premenstrual Dysphoric Disorder”[MeSH]) AND (“Violence”[Mesh]) / (“menstrually-related mood disorders” AND “abuse”). Fifty-four articles were initially reviewed and 32 were excluded based on the criteria. Twenty-two articles were thoroughly reviewed. Finally, five articles (publication years 2014, 2013, 2012, 2007, and 2003) were included in the systematic review and submitted to a meta-analysis. Results. Results indicate that having been exposed to physical and/or sexual violence in childhood and/or adolescence increases 1.99 times the risk of experiencing MRMDs in adulthood in comparison with women who did not experience that type of violence (odds ratio [OR] = 1.99; 95% confidence interval [1.58, 2.51]). Discussion and conclusion. The present work provides evidence that a woman who experienced violence through physical and/or sexual abuse during childhood and/or adolescence has a greater risk of developing MRMDs in adulthood.
Collapse
|
6
|
Ellis BJ, Horn AJ, Carter CS, van IJzendoorn MH, Bakermans-Kranenburg MJ. Developmental programming of oxytocin through variation in early-life stress: Four meta-analyses and a theoretical reinterpretation. Clin Psychol Rev 2021; 86:101985. [DOI: 10.1016/j.cpr.2021.101985] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/23/2021] [Accepted: 02/08/2021] [Indexed: 01/02/2023]
|
7
|
Alley J, Diamond LM, Lipschitz DL, Grewen K. Women's Cortisol Stress Responsivity, Sexual Arousability, and Sexual History. ARCHIVES OF SEXUAL BEHAVIOR 2020; 49:1489-1503. [PMID: 32006207 DOI: 10.1007/s10508-019-01585-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Life history theory and the adaptive calibration model state that characteristics of one's early environment influence individual differences in both neuroendocrine reactivity to stress and sexual risk-taking behavior. However, few studies have directly examined the relationship between neuroendocrine reactivity to stress and risky sexual behavior. This study used multilevel modeling to test whether cortisol reactivity and recovery in response to laboratory stress were associated with women's history of sexual behavior and their sexual arousability in response to laboratory sexual stimuli. Participants were 65 women (35% heterosexual, 44% bisexual, and 21% lesbian) who completed two laboratory sessions, two weeks apart. Women's self-reported sexual arousability to sexual stimuli interacted with their sexual abuse history to predict their trajectories of cortisol stress reactivity and recovery. Cortisol reactivity and recovery were not associated with women's sexual risk taking, such as the age of sexual debut, sociosexuality, or lifetime number of sexual partners.
Collapse
Affiliation(s)
- Jenna Alley
- Department of Psychology, University of Utah, 380 South 1530 East, Room 502, Salt Lake City, UT, 84112-0251, USA.
| | - Lisa M Diamond
- Department of Psychology, University of Utah, 380 South 1530 East, Room 502, Salt Lake City, UT, 84112-0251, USA
| | - David L Lipschitz
- Department of Psychology, University of Utah, 380 South 1530 East, Room 502, Salt Lake City, UT, 84112-0251, USA
| | - Karen Grewen
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Engel S, Klusmann H, Laufer S, Pfeifer AC, Ditzen B, van Zuiden M, Knaevelsrud C, Schumacher S. Trauma exposure, posttraumatic stress disorder and oxytocin: A meta-analytic investigation of endogenous concentrations and receptor genotype. Neurosci Biobehav Rev 2019; 107:560-601. [DOI: 10.1016/j.neubiorev.2019.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/02/2019] [Accepted: 08/07/2019] [Indexed: 01/06/2023]
|
9
|
Fleming AS, Kraemer GW. Molecular and Genetic Bases of Mammalian Maternal Behavior. GENDER AND THE GENOME 2019. [DOI: 10.1177/2470289719827306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Alison S. Fleming
- Department of Psychology, University of Toronto, Mississauga, Ontario, Canada
| | - Gary W. Kraemer
- Department of Psychology, University of Toronto, Mississauga, Ontario, Canada
| |
Collapse
|
10
|
Walsh EC, Eisenlohr-Moul TA, Pedersen CA, Rubinow DR, Girdler SS, Dichter GS. Early Life Abuse Moderates the Effects of Intranasal Oxytocin on Symptoms of Premenstrual Dysphoric Disorder: Preliminary Evidence From a Placebo-Controlled Trial. Front Psychiatry 2018; 9:547. [PMID: 30555357 PMCID: PMC6282546 DOI: 10.3389/fpsyt.2018.00547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Although intranasal oxytocin (OXT) has been proposed to be a promising treatment for some psychiatric disorders, little research has addressed individual difference factors that may predict response to OXT. One such factor is early life abuse (ELA), which has widespread influences on social-emotional processing and behavior. This single-blind, placebo-controlled crossover trial examined the role of ELA in shaping the effects of intranasal OXT (vs. placebo) on daily behavioral symptoms in women with three or more prospectively-diagnosed cycling symptoms of premenstrual dysphoric disorder (PMDD). Methods: Participants were ten women with PMDD (n = 8) or subthreshold PMDD (n = 2), who had experienced ELA prior to age 13 (n = 5) or no ELA (n = 5). They completed two study visits during the late luteal (premenstrual) phase: once following administration of intranasal OXT and once following intranasal placebo (counterbalanced). Participants then self-administered OXT or placebo at home three times per day for 5 days or until menstrual onset, and prospectively rated daily emotional symptoms of PMDD. Power was adequate to detect medium main and interactive effects. Results: Among women with ELA, intranasal OXT (vs. placebo) increased the premenstrual emotional symptoms of PMDD, whereas among women without ELA, OXT decreased symptoms. Conclusion: This study adds to a growing literature highlighting the importance of considering historical social contexts and traits (such as ELA) as moderators of therapeutic response to OXT.
Collapse
Affiliation(s)
- Erin C Walsh
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Tory A Eisenlohr-Moul
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States.,Department of Psychiatry, Neuropsychiatry Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Cort A Pedersen
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Susan S Girdler
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Gabriel S Dichter
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States.,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|