1
|
Marshall AC, Ren Q, Enk L, Liu J, Schütz-Bosbach S. The effect of cardiac phase on distractor suppression and motor inhibition in a stop-signal task. Sci Rep 2024; 14:29847. [PMID: 39617765 PMCID: PMC11609284 DOI: 10.1038/s41598-024-80742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Past work has shown that stimuli timed to the cardiac systole, the time at which heartbeat feedback is transmitted to the brain, can be more effectively selected from conflicting information. Here, we investigated how the temporal alignment of distracting information to different phases of the cardiac cycle impacts inhibitory performance on a stop-signal task. While participants received the go-cue and anticipated a potential stop-signal, we presented several moving dots on the screen. The dots' change of movement direction was timed to occur 290 ms posterior to the R-peak (for cardiac systole) or right at the R-peak (for cardiac diastole) of in-time ECG recordings. In a third control condition, no distracting dots were shown. Behavioural results found participants were significantly better at inhibiting their motor response in systole relative to diastole distractor trials. Electrophysiological evidence found reduced P2 amplitudes for viewing the distractors and enhanced N2 amplitudes to the subsequent stop-signal in systole relative to diastole distractor trials. This indicated that systole bound distractors were suppressed more effectively than diastole bound ones which led to enhanced motor inhibition. Our results indicate that the brain shows greater visual selection efficiency for distracting information co-occurring with cardiac systole which has implications for enhanced motor processing at later stages of the trial sequence.
Collapse
Affiliation(s)
- Amanda C Marshall
- Department of Psychology, General and Experimental Psychology Unit, LMU Munich, Leopoldstr. 13, D-80802, Munich, Germany.
| | - Qiaoyue Ren
- Department of Psychology, General and Experimental Psychology Unit, LMU Munich, Leopoldstr. 13, D-80802, Munich, Germany
| | - Lioba Enk
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103, Leipzig, Germany
- Max Planck School of Cognition, Stephanstr. 1a, 04103, Leipzig, Germany
| | - Junhui Liu
- Department of Psychology, General and Experimental Psychology Unit, LMU Munich, Leopoldstr. 13, D-80802, Munich, Germany
| | - Simone Schütz-Bosbach
- Department of Psychology, General and Experimental Psychology Unit, LMU Munich, Leopoldstr. 13, D-80802, Munich, Germany
| |
Collapse
|
2
|
Ren Q, Marshall AC, Liu J, Schütz-Bosbach S. Listen to your heart: Trade-off between cardiac interoceptive processing and visual exteroceptive processing. Neuroimage 2024; 299:120808. [PMID: 39182709 DOI: 10.1016/j.neuroimage.2024.120808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024] Open
Abstract
Internal bodily signals, such as heartbeats, can influence conscious perception of external sensory information. Spontaneous shifts of attention between interoception and exteroception have been proposed as the underlying mechanism, but direct evidence is lacking. Here, we used steady-state visual evoked potential (SSVEP) frequency tagging to independently measure the neural processing of visual stimuli that were concurrently presented but varied in heartbeat coupling in healthy participants. Although heartbeat coupling was irrelevant to participants' task of detecting brief color changes, we found decreased SSVEPs for systole-coupled stimuli and increased SSVEPs for diastole-coupled stimuli, compared to non-coupled stimuli. These results suggest that attentional and representational resources allocated to visual stimuli vary according to fluctuations in cardiac-related signals across the cardiac cycle, reflecting spontaneous and immediate competition between cardiac-related signals and visual events. Furthermore, frequent coupling of visual stimuli with stronger cardiac-related signals not only led to a larger heartbeat evoked potential (HEP) but also resulted in a smaller color change evoked N2 component, with the increase in HEP amplitude associated with a decrease in N2 amplitude. These findings indicate an overall or longer-term increase in brain resources allocated to the internal domain at the expense of reduced resources available for the external domain. Our study highlights the dynamic reallocation of limited processing resources across the internal-external axis and supports the trade-off between interoception and exteroception.
Collapse
Affiliation(s)
- Qiaoyue Ren
- Department of Psychology, General and Experimental Psychology Unit, LMU Munich, Leopoldstr. 13, Munich 80802, Germany
| | - Amanda C Marshall
- Department of Psychology, General and Experimental Psychology Unit, LMU Munich, Leopoldstr. 13, Munich 80802, Germany
| | - Junhui Liu
- Department of Psychology, General and Experimental Psychology Unit, LMU Munich, Leopoldstr. 13, Munich 80802, Germany
| | - Simone Schütz-Bosbach
- Department of Psychology, General and Experimental Psychology Unit, LMU Munich, Leopoldstr. 13, Munich 80802, Germany.
| |
Collapse
|
3
|
Fouragnan EF, Hosking B, Cheung Y, Prakash B, Rushworth M, Sel A. Timing along the cardiac cycle modulates neural signals of reward-based learning. Nat Commun 2024; 15:2976. [PMID: 38582905 PMCID: PMC10998831 DOI: 10.1038/s41467-024-46921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/14/2024] [Indexed: 04/08/2024] Open
Abstract
Natural fluctuations in cardiac activity modulate brain activity associated with sensory stimuli, as well as perceptual decisions about low magnitude, near-threshold stimuli. However, little is known about the relationship between fluctuations in heart activity and other internal representations. Here we investigate whether the cardiac cycle relates to learning-related internal representations - absolute and signed prediction errors. We combined machine learning techniques with electroencephalography with both simple, direct indices of task performance and computational model-derived indices of learning. Our results demonstrate that just as people are more sensitive to low magnitude, near-threshold sensory stimuli in certain cardiac phases, so are they more sensitive to low magnitude absolute prediction errors in the same cycles. However, this occurs even when the low magnitude prediction errors are associated with clearly suprathreshold sensory events. In addition, participants exhibiting stronger differences in their prediction error representations between cardiac cycles exhibited higher learning rates and greater task accuracy.
Collapse
Affiliation(s)
- Elsa F Fouragnan
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK.
- Brain Research Imaging Centre (BRIC), Faculty of Health, University of Plymouth, Plymouth, PL6 8BU, UK.
- School of Psychology, Faculty of Health, University of Plymouth, Plymouth, PL4 8AA, UK.
| | - Billy Hosking
- Brain Research Imaging Centre (BRIC), Faculty of Health, University of Plymouth, Plymouth, PL6 8BU, UK
- School of Psychology, Faculty of Health, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Yin Cheung
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Brooke Prakash
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Matthew Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Alejandra Sel
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
- Centre for Brain Science, Department of Psychology, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Essex ESNEFT Psychological Research Unit for Behaviour, Health and Wellbeing, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
4
|
Candia‐Rivera D, Vidailhet M, Chavez M, De Vico Fallani F. A framework for quantifying the coupling between brain connectivity and heartbeat dynamics: Insights into the disrupted network physiology in Parkinson's disease. Hum Brain Mapp 2024; 45:e26668. [PMID: 38520378 PMCID: PMC10960553 DOI: 10.1002/hbm.26668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Parkinson's disease (PD) often shows disrupted brain connectivity and autonomic dysfunctions, progressing alongside with motor and cognitive decline. Recently, PD has been linked to a reduced sensitivity to cardiac inputs, that is, cardiac interoception. Altogether, those signs suggest that PD causes an altered brain-heart connection whose mechanisms remain unclear. Our study aimed to explore the large-scale network disruptions and the neurophysiology of disrupted interoceptive mechanisms in PD. We focused on examining the alterations in brain-heart coupling in PD and their potential connection to motor symptoms. We developed a proof-of-concept method to quantify relationships between the co-fluctuations of brain connectivity and cardiac sympathetic and parasympathetic activities. We quantified the brain-heart couplings from electroencephalogram and electrocardiogram recordings from PD patients on and off dopaminergic medication, as well as in healthy individuals at rest. Our results show that the couplings of fluctuating alpha and gamma connectivity with cardiac sympathetic dynamics are reduced in PD patients, as compared to healthy individuals. Furthermore, we show that PD patients under dopamine medication recover part of the brain-heart coupling, in proportion with the reduced motor symptoms. Our proposal offers a promising approach to unveil the physiopathology of PD and promoting the development of new evaluation methods for the early stages of the disease.
Collapse
Affiliation(s)
- Diego Candia‐Rivera
- Sorbonne Université, Paris Brain Institute (ICM), Inria Paris, CNRS UMR7225, INSERM U1127, AP‐HP Hôpital Pitié‐SalpêtrièreParisFrance
| | - Marie Vidailhet
- Sorbonne Université, Paris Brain Institute (ICM)—Team “Movement Investigations and Therapeutics” (MOV'IT), CNRS UMR7225, INSERM U1127, AP‐HP Hôpital Pitié‐SalpêtrièreParisFrance
| | - Mario Chavez
- Sorbonne Université, Paris Brain Institute (ICM), Inria Paris, CNRS UMR7225, INSERM U1127, AP‐HP Hôpital Pitié‐SalpêtrièreParisFrance
| | - Fabrizio De Vico Fallani
- Sorbonne Université, Paris Brain Institute (ICM), Inria Paris, CNRS UMR7225, INSERM U1127, AP‐HP Hôpital Pitié‐SalpêtrièreParisFrance
| |
Collapse
|
5
|
Tanaka Y, Ito Y, Terasawa Y, Umeda S. Modulation of heartbeat-evoked potential and cardiac cycle effect by auditory stimuli. Biol Psychol 2023; 182:108637. [PMID: 37490801 DOI: 10.1016/j.biopsycho.2023.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
Interoception has been proposed as a factor that influences various psychological processes (Khalsa et al., 2018). Afferent signals from the cardiovascular system vary across cardiac cycle phases. Heartbeat-evoked potentials (HEP) and event-related potentials (ERP) were measured to examine whether interoceptive signals differed between cardiac cycle phases. Simultaneously, participants performed an auditory oddball task in which the timing of the presenting stimulus was synchronized with the heartbeat. Pure tones were presented at 10 ms (late diastole condition), 200 ms (systole condition), or 500 ms after the R wave (diastole condition). Greater HEP amplitudes were observed when the tone was presented during diastole than during systole or late diastole. ERP showed the same tendency: a greater amplitude was observed during diastole than systole or late diastole. These results suggest that the processing of interoception reflected by HEP and exteroception reflected by ERP share attentional resources when both stimuli coincide. When the tone was presented during systole, attention to the internal state decreased compared with when the tone was presented during diastole, and attention was distributed to both exteroception and interoception. Our study suggests that HEP may be considered an indication of a relative amount of resources to process the interoception.
Collapse
Affiliation(s)
- Yuto Tanaka
- Global Research Institute, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan.
| | - Yuichi Ito
- Department of Psychological Sciences, Kwansei Gakuin University, 1-155 Uegahara Ichibancho, Nishinomiya, Hyogo 662-8501, Japan
| | - Yuri Terasawa
- Department of Psychology, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| | - Satoshi Umeda
- Department of Psychology, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| |
Collapse
|
6
|
Candia-Rivera D. Brain-heart interactions in the neurobiology of consciousness. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100050. [PMID: 36685762 PMCID: PMC9846460 DOI: 10.1016/j.crneur.2022.100050] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
Recent experimental evidence on patients with disorders of consciousness revealed that observing brain-heart interactions helps to detect residual consciousness, even in patients with absence of behavioral signs of consciousness. Those findings support hypotheses suggesting that visceral activity is involved in the neurobiology of consciousness, and sum to the existing evidence in healthy participants in which the neural responses to heartbeats reveal perceptual and self-consciousness. More evidence obtained through mathematical modeling of physiological dynamics revealed that emotion processing is prompted by an initial modulation from ascending vagal inputs to the brain, followed by sustained bidirectional brain-heart interactions. Those findings support long-lasting hypotheses on the causal role of bodily activity in emotions, feelings, and potentially consciousness. In this paper, the theoretical landscape on the potential role of heartbeats in cognition and consciousness is reviewed, as well as the experimental evidence supporting these hypotheses. I advocate for methodological developments on the estimation of brain-heart interactions to uncover the role of cardiac inputs in the origin, levels, and contents of consciousness. The ongoing evidence depicts interactions further than the cortical responses evoked by each heartbeat, suggesting the potential presence of non-linear, complex, and bidirectional communication between brain and heartbeat dynamics. Further developments on methodologies to analyze brain-heart interactions may contribute to a better understanding of the physiological dynamics involved in homeostatic-allostatic control, cognitive functions, and consciousness.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Bioengineering and Robotics Research Center E. Piaggio and the Department of Information Engineering, School of Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|