1
|
Qi Y, Wang J, Cao H, Wang C, Sun H. Tourmaline-enhanced bioremediation of Cd/BDE-153 co-contaminated soil: Migration, soil microorganism structure and enzyme activities. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133994. [PMID: 38503210 DOI: 10.1016/j.jhazmat.2024.133994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
The efficient remediation of the soil co-contaminated with heavy metals and polybrominated diphenyl ethers (PBDEs) from electronic disassembly zones is a new challenge. Here, we screened a fungus of F. solani (F.s) can immobilize Cd and remove PBDEs. wIt combined with tourmaline enhances the remediation of co- pollutants in the soil. Furthermore, the environment risks of the enhanced technology were assessed through the amount of Cd/BDE-153 in Amaranthus tricolor L. (amaranth) migrated from soil, as well as the changes of soil microorganism communities and enzyme activities. The results showed the combined treatment of tourmaline and F.s made the removal percentage of BDE-153 in rhizosphere soil co-contaminated with BDE-153 and Cd reached 46.5%. And the weak acid extractable Cd in rhizosphere soil decreased by 33.7% compared to control group. In addition, the combined remediation technology resulted in a 32.5% (22.8%), 45.5% (37.2%), and 50.7% (38.1%) decrease in BDE-153 (Cd) content in the roots, stems, and leaves of amaranth, respectively. Tourmaline combined with F.s can significantly increase soil microorganism diversity, soil dehydrogenase and urease activities, further improving the remediation rate of Cd and BDE-153co-pollutants in soil and the biomass of amaranth. This study provides the remediation technology of soil co-contaminated with heavy metal and PBDEs and ensure the maintenance of food security.
Collapse
Affiliation(s)
- Yuwen Qi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jicheng Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Huimin Cao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, China.
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, China
| |
Collapse
|
2
|
Zang S, Zhao Q, Gomez MA, Luo X, Li B, Wang X. Removal Mechanisms of Phenanthrene and Benzo(a)pyrene from Wastewater by Combining Bacillus subtilis with Ferrate. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024421150267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Zhang X, Li R, Song J, Ren Y, Luo X, Li Y, Li X, Li T, Wang X, Zhou Q. Combined phyto-microbial-electrochemical system enhanced the removal of petroleum hydrocarbons from soil: A profundity remediation strategy. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126592. [PMID: 34265647 DOI: 10.1016/j.jhazmat.2021.126592] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The soil contaminated by petroleum hydrocarbons has been a global environmental problem and its remediation is urgent. A combined phyto-microbial-electrochemical system (PMES) was constructed to repair the oil-contaminated soil in this study. During the 42-day operation time, a total petroleum hydrocarbons (TPHs) of 18.0 ± 3.0% were removed from PMES, which increased by 414% compared with the control group (CK1). The supervision of physicochemical properties of pore water in soil exhibited an enhanced microbial consumption of the total organic carbon (TOC) and N source under the applied potential with the generation of bio-current. The microbial succession indicated that the Dietzia, Georgenia and Malbranchea possibly participated in the degradation and current output in PMES. And a collaborative network of potential degrading microorganisms including unclassified norank_f__JG30-KF-CM45 (in Chloroflexi), Dietzia and Malbranchea was discovered in PMES. While the functional communities of microorganism were re-enriched with the reconstructed interactions in the system which was started with the sterilized soil (S+MEC). The superiority of TPHs degradation in S+MEC compared to P + CK2 (removing the electrochemical effect relative to CK1) revealed the key role of external potential in regulating the degradation microflora. The study provided a strategy of the potential regulated phyto-microbial interaction for the removal of TPHs.
Collapse
Affiliation(s)
- Xiaolin Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Ruixiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Jintong Song
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yuanyuan Ren
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xi Luo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
4
|
Ren X, Tang J, Wang L, Sun H. Combined Effects of Microplastics and Biochar on the Removal of Polycyclic Aromatic Hydrocarbons and Phthalate Esters and Its Potential Microbial Ecological Mechanism. Front Microbiol 2021; 12:647766. [PMID: 33995304 PMCID: PMC8120302 DOI: 10.3389/fmicb.2021.647766] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/19/2021] [Indexed: 11/30/2022] Open
Abstract
Microplastics (MPs) have been attracting wide attention. Biochar (BC) application could improve the soil quality in the contaminated soil. Currently, most studies focused on the effect of MPs or BC on the soil properties and microbial community, while they neglected the combined effects. This study investigated the combined effects of BC or ball-milled BC (BM) and polyethylene plastic fragments (PEPFs) and degradable plastic fragments (DPFs) on the removal of polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs) from the PAH-contaminated soil and the potential microbial ecological mechanisms. The results showed that BC or BM combined with PEPF could accelerate the removal of PAHs and PAEs. PEPF combined with BM had the most significant effect on the removal of PAHs. Our results indicating two potential possible reasons contribute to increasing the removal of organic pollutants: (1) the high sorption rate on the PEPF and BC and (2) the increased PAH-degrader or PAE-degrader abundance for the removal of organic pollutants.
Collapse
Affiliation(s)
- Xinwei Ren
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, China.,School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China.,Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
5
|
Cao H, Wang C, Liu H, Jia W, Sun H. Enzyme activities during Benzo[a]pyrene degradation by the fungus Lasiodiplodia theobromae isolated from a polluted soil. Sci Rep 2020; 10:865. [PMID: 31964981 PMCID: PMC6972742 DOI: 10.1038/s41598-020-57692-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/31/2019] [Indexed: 11/25/2022] Open
Abstract
The enzyme activities of the fungus Lasiodiplodia theobromae (L. theobromae) were studied during degradation of benzo[a]pyrene (BaP). The L. theobromae was isolated from a polycyclic aromatic hydrocarbons (PAHs) contaminated soil collected from the Beijing Coking Plant in China and can potentially use BaP as its sole carbon source with a degradation ratio of up to 53% over 10 days. The activities of lignin peroxidase (LiP) and laccase (LAC) could be detected during BaP biodegradation; while manganese peroxidase (MnP) was not detected. Both glucose and salicylic acid enhanced BaP biodegradation slightly. In contrast, the coexistence of phenanthrene (PHE) inhibited BaP degradation. These metabolic substrates all enhanced the secretion of LiP and LAC. The addition of Tween 80 (TW-80) enhanced BaP biodegradation as well as the LiP and LAC activities. At the same time, TW-80 was degraded by the L. theobromae. In addition, the L. theobromae was compared to Phanerochaete chrysosporium (P. chrysosporium), which is a widely studied fungus for degrading PAH. P. chrysosporium was unable to use BaP as its sole carbon source. The activities of LiP and LAC produced by the P. chrysosporium were less than those of the L. theobromae. Additionally, the four intermediates formed in the BaP biodegradation process were monitored using GC-MS analysis. Four metabolite concentrations first increased and then decreased or obtained the platform with prolonged BaP biodegradation time. Therefore, this study shows that the L. theobromae may be explored as a new strain for removing PAHs from the environment.
Collapse
Affiliation(s)
- Huimin Cao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, People's Republic of China
| | - Cuiping Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Haibin Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, People's Republic of China
| | - Weili Jia
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, People's Republic of China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
6
|
A review of green techniques for the synthesis of size-controlled starch-based nanoparticles and their applications as nanodelivery systems. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Koolivand A, Naddafi K, Nabizadeh R, Saeedi R. Optimization of combined in-vessel composting process and chemical oxidation for remediation of bottom sludge of crude oil storage tanks. ENVIRONMENTAL TECHNOLOGY 2018; 39:2597-2603. [PMID: 28758570 DOI: 10.1080/09593330.2017.1362037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this research, removal of petroleum hydrocarbons from oily sludge of crude oil storage tanks was investigated under the optimized conditions of in-vessel composting process and chemical oxidation with H2O2 and Fenton. After determining the optimum conditions, the sludge was pre-treated with the optimum state of the oxidation process. Then, the determined optimum ratios of the sludge to immature compost were composted at a C:N:P ratio of 100:5:1 and moisture content of 55% for a period of 10 weeks. Finally, both pre-treated and composted mixtures were again oxidized with the optimum conditions of the oxidants. Results showed that total petroleum hydrocarbons (TPH) removal of the 1:8 and 1:10 composting reactors which were pre-treated with H2O2 were 88.34% and 90.4%, respectively. In addition, reduction of TPH in 1:8 and 1:10 composting reactors which were pre-treated with Fenton were 83.90% and 84.40%, respectively. Without applying the pre-treatment step, the composting reactors had a removal rate of about 80%. Therefore, pre-treatment of the reactors increased the TPH removal. However, post-oxidation of both pre-treated and composted mixtures reduced only 13-16% of TPH. Based on the results, remarkable overall removal of TPH (about 99%) was achieved by using chemical oxidation and subsequent composting process. The study showed that chemical oxidation with H2O2 followed by in-vessel composting is a viable choice for the remediation of the sludge.
Collapse
Affiliation(s)
- Ali Koolivand
- a Department of Environmental Health Engineering, Faculty of Health , Arak University of Medical Sciences , Arak , Iran
| | - Kazem Naddafi
- b Department of Environmental Health Engineering, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Ramin Nabizadeh
- b Department of Environmental Health Engineering, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Reza Saeedi
- c Department of Health Sciences, Faculty of Health, Safety and Environment , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
8
|
Delsarte I, Delattre F, Rafin C, Veignie E. Investigations of benzo[a]pyrene encapsulation and Fenton degradation by starch nanoparticles. Carbohydr Polym 2018; 186:344-349. [DOI: 10.1016/j.carbpol.2018.01.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/22/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
|
9
|
Qin W, Fan F, Zhu Y, Huang X, Ding A, Liu X, Dou J. Anaerobic biodegradation of benzo(a)pyrene by a novel Cellulosimicrobium cellulans CWS2 isolated from polycyclic aromatic hydrocarbon-contaminated soil. Braz J Microbiol 2017; 49:258-268. [PMID: 29102294 PMCID: PMC5913828 DOI: 10.1016/j.bjm.2017.04.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/23/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
Cellulosimicrobium cellulans CWS2, a novel strain capable of utilizing benzo(a)pyrene (BaP) as the sole carbon and energy source under nitrate-reducing conditions, was isolated from PAH-contaminated soil. Temperature and pH significantly affected BaP biodegradation, and the strain exhibited enhanced biodegradation ability at temperatures above 30 °C and between pH 7 and 10. The highest BaP removal rate (78.8%) was observed in 13 days when the initial BaP concentration was 10 mg/L, and the strain degraded BaP at constant rate even at a higher concentration (50 mg/L). Metal exposure experimental results illustrated that Cd(II) was the only metal ion that significantly inhibited biodegradation of BaP. The addition of 0.5 and 1.0 g/L glucose enhanced BaP biodegradation, while the addition of low-molecular-weight organic acids with stronger acidity reduced BaP removal rates during co-metabolic biodegradation. The addition of phenanthrene and pyrene, which were degraded to some extent by the strain, showed no distinct effect on BaP biodegradation. Gas chromatography–mass spectrometry (GC-MS) analysis revealed that the five rings of BaP opened, producing compounds with one to four rings which were more bioavailable. Thus, the strain exhibited strong BaP degradation capability and has great potential in the remediation of BaP-/PAH-contaminated environments.
Collapse
Affiliation(s)
- Wei Qin
- Beijing Normal University, College of Water Sciences, Beijing, China
| | - Fuqiang Fan
- Memorial University of Newfoundland, Faculty of Engineering and Applied Science, Northern Region Persistent Organic Pollution Control Laboratory, St. John's, Canada
| | - Yi Zhu
- Beijing Normal University, College of Water Sciences, Beijing, China
| | - Xiaolong Huang
- Beijing Normal University, College of Water Sciences, Beijing, China
| | - Aizhong Ding
- Beijing Normal University, College of Water Sciences, Beijing, China
| | - Xiang Liu
- Tsinghua University, School of Environment, Beijing, China
| | - Junfeng Dou
- Beijing Normal University, College of Water Sciences, Beijing, China.
| |
Collapse
|
10
|
Huang D, Hu C, Zeng G, Cheng M, Xu P, Gong X, Wang R, Xue W. Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:1599-1610. [PMID: 27608610 DOI: 10.1016/j.scitotenv.2016.08.199] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/29/2016] [Accepted: 08/29/2016] [Indexed: 05/15/2023]
Abstract
There is a continuously increasing worldwide concern for the development of wastewater and contaminated soil treatment technologies. Fenton processes and biological treatments have long been used as common technologies for treating wastewater and polluted soil but they still need to be modified because of some defects (high costs of Fenton process and long remediation time of biotreatments). This work first briefly introduced the Fenton technology and biotreatment, and then discussed the main considerations in the construction of a combined system. This review shows a critical overview of recent researches combining Fenton processes (as pre-treatment or post-treatment) with bioremediation for treatment of wastewater or polluted soil. We concluded that the combined treatment can be regarded as a novel and competitive technology. Furthermore, the outlook for potential applications of this combination in different polluted soil and wastewater, as well as the mechanism of combination was also discussed.
Collapse
Affiliation(s)
- Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China.
| | - Chanjuan Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China.
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Xiaomin Gong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Rongzhong Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Wenjing Xue
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| |
Collapse
|
11
|
Ou-ya Z, Sheng-dong F, Hai-bin J, Xue-na Z, Shi W, Wang W, Zhi-xin Y, Yu-ling L. Biodegradation of High Molecular Weight Polycyclic Aromatic Hydrocarbons Mixture by a Newly Isolated Fusarium sp. and Co-Metabolic Degradation with Starch. Polycycl Aromat Compd 2016. [DOI: 10.1080/10406638.2016.1143847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhao Ou-ya
- Key Laboratory for Farmland Eco-Environment, Hebei Province and College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding, P. R. China
- Institute of Agro-resources and Environment, Hebei Academy of Agricultural and Forestry Sciences, ShijiaZhuang, P. R. China
| | - Feng Sheng-dong
- Key Laboratory for Farmland Eco-Environment, Hebei Province and College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding, P. R. China
| | - Jia Hai-bin
- Key Laboratory for Farmland Eco-Environment, Hebei Province and College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding, P. R. China
| | - Zhang Xue-na
- Key Laboratory for Farmland Eco-Environment, Hebei Province and College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding, P. R. China
| | - Wei Shi
- Key Laboratory for Farmland Eco-Environment, Hebei Province and College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding, P. R. China
| | - Wei Wang
- Key Laboratory for Farmland Eco-Environment, Hebei Province and College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding, P. R. China
| | - Yang Zhi-xin
- Key Laboratory for Farmland Eco-Environment, Hebei Province and College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding, P. R. China
| | - Li Yu-ling
- College of Forestry, Agricultural University of Hebei, Baoding, P. R. China
| |
Collapse
|
12
|
Complete genome sequence of a benzo[a]pyrene-degrading bacterium Altererythrobacter epoxidivorans CGMCC 1.7731 T. Mar Genomics 2016; 25:39-41. [DOI: 10.1016/j.margen.2015.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 11/22/2022]
|
13
|
Wang C, Liu H, Li J, Sun H. Degradation of PAHs in soil by Lasiodiplodia theobromae and enhanced benzo[a]pyrene degradation by the addition of Tween-80. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:10614-10625. [PMID: 24878554 DOI: 10.1007/s11356-014-3050-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 05/15/2014] [Indexed: 06/03/2023]
Abstract
Benzo[a]pyrene (BaP), a five-ring polycyclic aromatic hydrocarbon (PAH), which has carcinogenic potency, is highly recalcitrant and resistant to microbial degradation. A novel fungus, Lasiodiplodia theobromae (L. theobromae), which can degrade BaP as a sole carbon source in liquid, was isolated in our laboratory. To prompt the further application of L. theobromae in remediation of sites polluted by BaP and other PAHs, the present study was targeted toward the removal of BaP and PAHs from soil by L. theobromae. The degradation of BaP by L. theobromae was studied using a soil spiked with 50 mg/kg BaP. L. theobromae could remove 32.1 % of the BaP after 35 days of cultivation. Phenanthrene (PHE) inhibited BaP degradation as a competitive substrate. The tested surfactants enhanced BaP degradation in soil by different extents, and a removal rate of 92.1 % was achieved at a Tween-80 (TW-80) concentration of 5 g/kg. It was revealed that TW-80 could not only enhance BaP bioavailability by increasing its aqueous solubility and decreasing the size of its colloid particles but also increase enzyme secretion from L. theobromae and the population of L. theobromae. Moreover, ergosterol content together with the biomass C indicated the increase in L. theobromae biomass during the BaP biodegradation process in soils. Finally, a soil from a historically PAH-contaminated field at Beijing Coking Plant in China was tested to assess the feasibility of applying L. theobromae in the remediation of polluted sites. The total removal rate of PAHs by L. theobromae was 53.3 %, which is 13.1 % higher than that by Phanerochaete chrysosporium (P. chrysosporium), an effective PAH degrader. The addition of TW-80 to the field soil further enhanced PAH degradation to 73.2 %. Hence, L. theobromae is a promising novel strain to be implemented in the remediation of soil polluted by PAHs.
Collapse
Affiliation(s)
- Cuiping Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, People's Republic of China
| | | | | | | |
Collapse
|
14
|
Liang L, Song X, Kong J, Shen C, Huang T, Hu Z. Anaerobic biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a facultative anaerobe Pseudomonas sp. JP1. Biodegradation 2014; 25:825-33. [PMID: 25091324 DOI: 10.1007/s10532-014-9702-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/22/2014] [Indexed: 11/29/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are harmful persistent organic pollutants, while the high-molecular-weight (HMW) PAHs are even more detrimental to the environment and human health. However, microbial anaerobic degradation of HMW PAHs has rarely been reported. One facultative anaerobe Pseudomonas sp. JP1 was isolated from Shantou Bay, Shantou, China, which could degrade a variety of HMW PAHs. After 40 days cultivation with strain JP1, anaerobic biodegradation rate of benzo[a]pyrene (BaP), fluoranthene, and phenanthrene was 30, 47, and 5 %, respectively. Consumption of nitrate as the electron acceptor was confirmed by N-(1-naphthyl) ethylenediamine spectrophotometry. Supplementation of sodium sulfite, maltose, or glycine, and in a salinity of 0-20 ‰ significantly stimulated anaerobic degradation of BaP. Lastly, the anaerobic degradation metabolites of BaP by strain JP1 were investigated using GC/MS, and the degradation pathway was proposed. This study is helpful for further studies on the mechanism of anaerobic biodegradation of PAHs.
Collapse
Affiliation(s)
- Lei Liang
- College of Science, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | | | | | | | | | | |
Collapse
|
15
|
Rubio-Clemente A, Torres-Palma RA, Peñuela GA. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 478:201-225. [PMID: 24552655 DOI: 10.1016/j.scitotenv.2013.12.126] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/30/2013] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
Due to their carcinogenic, mutagenic and teratogenic potential, the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous environment using physical, biological and chemical processes has been studied by several researchers. This paper reviews the current state of knowledge concerning PAHs including their physico-chemical properties, input sources, occurrence, adverse effects and conventional and alternative chemical processes applied for their removal from water. The mechanisms and reactions involved in each treatment method are reported, and the effects of various variables on the PAH degradation rate as well as the extent of degradation are also discussed. Extensive literature analysis has shown that an effective way to perform the conversion and mineralization of this type of substances is the application of advanced oxidation processes (AOPs). Furthermore, combined processes, particularly AOPs coupled with biological treatments, seem to be one of the best solutions for the treatment of effluents containing PAHs.
Collapse
Affiliation(s)
- Ainhoa Rubio-Clemente
- Grupo de Diagnóstico y Control de la Contaminación - GDCON, Facultad de Ingeniería, Sede de Investigaciones Universitarias (SIU), Universidad de Antioquia UdeA, Calle 70, No. 52-21, Medellín, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70, No. 52-21, Medellín, Colombia.
| | - Gustavo A Peñuela
- Grupo de Diagnóstico y Control de la Contaminación - GDCON, Facultad de Ingeniería, Sede de Investigaciones Universitarias (SIU), Universidad de Antioquia UdeA, Calle 70, No. 52-21, Medellín, Colombia
| |
Collapse
|
16
|
Buragohain S, Deka DC, Devi A. Fenton oxidation and combined Fenton-microbial treatment for remediation of crude oil contaminated soil in Assam - India. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:1913-1920. [PMID: 24056615 DOI: 10.1039/c3em00170a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The study is aimed at the remediation of soil spiked with crude oil (5%) by employing Fenton oxidation, biological treatment and combined Fenton-biological treatment. A spiked concentration of 5% crude oil was selected on the basis of contamination levels of 0-5% as found in the soil of upper Assam oil fields (India). The degradation of the aliphatic fraction (C14-C28) of the crude oil was investigated by gas chromatography. Fenton oxidation was carried out at different pH (3 to 8) in a laboratory batch reactor and maximum oxidative degradation was observed at pH 3-5. At pH 3, single Fenton oxidation resulted in 36 and 57% degradation in 5 and 10 days respectively. Biological treatment (with Fusarium solani) and combined Fenton-biological treatment were carried out with a one month incubation period. Biological treatment alone brought about 61% degradation of the crude oil while the combined process could achieve as much as 75% degradation of the aliphatic fractions of the crude oil.
Collapse
Affiliation(s)
- Surabhi Buragohain
- Environmental Chemistry laboratory, Life Sciences Division (LSD), Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Guwahati - 781 035, Assam, India.
| | | | | |
Collapse
|
17
|
Lemaire J, Laurent F, Leyval C, Schwartz C, Buès M, Simonnot MO. PAH oxidation in aged and spiked soils investigated by column experiments. CHEMOSPHERE 2013; 91:406-414. [PMID: 23290942 DOI: 10.1016/j.chemosphere.2012.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/19/2012] [Accepted: 12/01/2012] [Indexed: 06/01/2023]
Abstract
Soils of former steel-making or coking plants have been contaminated for decades by PAHs. These soils could be cleaned up by In situ chemical oxidation (ISCO) but the low PAH availability may be a drawback. The objective of the present contribution was to study the efficiency of PAH oxidation in two aged soils compared to a spiked soil in dynamic conditions. Column experiments were performed with two oxidants: hydrogen peroxide used in modified Fenton's reaction and activated persulfate. The oxidant doses were moderate to ensure the feasibility of process upscaling. Besides, the availability of PAHs in these soils was measured by extraction with a cyclodextrin. Our results showed that oxidation was limited: the higher PAH degradation rate was 30% with the aged soils and 55% with the spiked one. PAH availability was a parameter explaining these results but no direct correlation was found between PAH extractability by the cyclodextrin and oxidation efficiency. Other parameters were also involved, such as the organic carbon content, the calcite content and the pH. This study was a first achievement before studying the influence of a number of parameters on the efficiency of PAH oxidation in aged soils.
Collapse
Affiliation(s)
- Julien Lemaire
- Université de Lorraine, Laboratoire Réactions et Génie des Procédés, CNRS UPR3349, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | | | | | | | | | | |
Collapse
|
18
|
Chen S, Yin H, Ye J, Peng H, Zhang N, He B. Effect of copper(II) on biodegradation of benzo[a]pyrene by Stenotrophomonas maltophilia. CHEMOSPHERE 2013; 90:1811-1820. [PMID: 23141841 DOI: 10.1016/j.chemosphere.2012.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 08/02/2012] [Accepted: 09/08/2012] [Indexed: 06/01/2023]
Abstract
Benzo[a]pyrene (BaP) biodegradation by Stenotrophomonas maltophilia was studied under the influence of co-existed Cu(II) ions. About 45% degradation was achieved within 3d when dealing with 1 mg L(-1) BaP under initial natural pH at 30 °C; degradation reached 48% in 2 d at 35 °C. Efficacy of BaP biodegradation reached the highest point at pH 4. In the presence of 10 mg L(-1) Cu(II) ions, the BaP removal ratio was 45% on 7th day, and maintained stable from 7 to 14 d at 30 °C under natural pH. The favorable temperature and pH for BaP removal was 25 °C and 6.0 respectively, when Cu(II) ions coexisted in the solutions. Experiments on cometabolism indicated that S. maltophilia performed best when sucrose was used as an additional carbon source. GC-MS analysis revealed that the five rings of BaP opened, producing compounds with one or two rings which were more bioavailable.
Collapse
Affiliation(s)
- Shuona Chen
- Department of Environmental Engineering, Jinan University, Guangzhou 510632, PR China
| | | | | | | | | | | |
Collapse
|
19
|
Wu H, Wang S. Impacts of operating parameters on oxidation-reduction potential and pretreatment efficacy in the pretreatment of printing and dyeing wastewater by Fenton process. JOURNAL OF HAZARDOUS MATERIALS 2012; 243:86-94. [PMID: 23141379 DOI: 10.1016/j.jhazmat.2012.10.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/27/2012] [Accepted: 10/01/2012] [Indexed: 06/01/2023]
Abstract
An experiment was conducted in a batch reactor for a real printing and dyeing wastewater pretreatment using Fenton process in this study. The results showed that original pH, hydrogen peroxide concentration and ferrous sulfate concentration affected ORP value and pretreatment efficacy greatly. Under experimental conditions, the optimal original pH was 6.61, and the optimal hydrogen peroxide and ferrous sulfate concentrations were 1.50 and 0.75 gL(-1), respectively. The relationship among ORP, original pH, hydrogen peroxide concentration, ferrous sulfate concentration, and color (COD or BOD(5)/COD) was established, which would be instructive in on-line monitoring and control of Fenton process using ORP. In addition, the effects of wastewater temperature and oxidation time on pretreatment efficacy were also investigated. With an increase of temperature, color and COD removal efficiencies and BOD(5)/COD ratio increased, and they were in proportion to the exponent of temperature reciprocal. Similarly, color and COD removal efficiencies increased with increasing oxidation time, and both color and COD removal obeyed the first-order kinetics. The BOD(5)/COD ratio could be expressed by a second-degree polynomial with respect to oxidation time, and the best biodegradability of wastewater was present at the oxidation time of 6.10h.
Collapse
Affiliation(s)
- Huifang Wu
- College of Environment, Jiangsu Key Laboratory of Industrial Water-Conservation & Emission Reduction, Nanjing University of Technology, Nanjing 210009, China.
| | | |
Collapse
|
20
|
Rosu AM, Rafin C, Surpateanu G, Brabie G, Miron DN, Veignie E. Synthesis of alkylated potato starch derivatives and their potential in the aqueous solubilization of benzo[a]pyrene. Carbohydr Polym 2012; 93:184-90. [PMID: 23465918 DOI: 10.1016/j.carbpol.2012.06.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 05/23/2012] [Accepted: 06/11/2012] [Indexed: 10/28/2022]
Abstract
For the development of renewable bioproducts able to solubilize organic persistent pollutant such as benzo[a]pyrene (BaP), modified potato starch was synthesized by alkylation. The addition of alkyl chains was performed with three different alkylation agents: epoxyalkane, alkenyl succinic anhydride and 1,4-butane sultone. Twelve alkylated starches were obtained with different molar substitutions (MS) and various alkyl chain lengths (to three carbons up to sixteen). The chemical structural characteristics were investigated by methods of (1)H NMR and FTIR. In comparison with the native starch, the ether modified starches showed in general an enhancement of their aqueous solubility whereas the ester modified starches stimulated the BaP aqueous solubilization. Indeed, the compounds P6 and P12, which increased 40-fold the BaP aqueous concentration, present high surfactant properties.
Collapse
|
21
|
Landy D, Mallard I, Ponchel A, Monflier E, Fourmentin S. Cyclodextrins for Remediation Technologies. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-94-007-2442-6_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
22
|
González N, Simarro R, Molina MC, Bautista LF, Delgado L, Villa JA. Effect of surfactants on PAH biodegradation by a bacterial consortium and on the dynamics of the bacterial community during the process. BIORESOURCE TECHNOLOGY 2011; 102:9438-9446. [PMID: 21862321 DOI: 10.1016/j.biortech.2011.07.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 07/17/2011] [Accepted: 07/19/2011] [Indexed: 05/31/2023]
Abstract
The aim of this work was to evaluate the effect of a non-biodegradable (Tergitol NP-10) and a biodegradable (Tween-80) surfactant on growth, degradation rate and microbial dynamics of a polycyclic aromatic hydrocarbon (PAHs) degrading consortium (C2PL05) from a petroleum polluted soil, applying cultivable and non cultivable techniques. Growth and degradation rate were significantly lower with Tergitol NP-10 than that with Tween-80. Toxicity did not show any significant reduction with Tergitol NP-10 whereas with Tween-80 toxicity was almost depleted (30%) after 40 days. Regarding to the cultured bacteria, Pseudomonas and Stenotrophomonas groups were dominant during PAH degradation with Tergitol NP-10, whereas Enterobacter and Stenotrophomonas were dominant with Tween-80. DGGE analyses (PRIMER and MDS) showed that bacteria composition was more similar between treatments when PAHs were consumed than when PAHs concentration was still high. Community changes between treatments were a consequence of Pseudomonas sp., Sphingomonas sp., Sphingobium sp. and Agromonas sp.
Collapse
Affiliation(s)
- N González
- Department of Biology and Geology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Oller I, Malato S, Sánchez-Pérez JA. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination--a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:4141-66. [PMID: 20956012 DOI: 10.1016/j.scitotenv.2010.08.061] [Citation(s) in RCA: 985] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 08/12/2010] [Accepted: 08/30/2010] [Indexed: 05/22/2023]
Abstract
Nowadays there is a continuously increasing worldwide concern for development of alternative water reuse technologies, mainly focused on agriculture and industry. In this context, Advanced Oxidation Processes (AOPs) are considered a highly competitive water treatment technology for the removal of those organic pollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. Although chemical oxidation for complete mineralization is usually expensive, its combination with a biological treatment is widely reported to reduce operating costs. This paper reviews recent research combining AOPs (as a pre-treatment or post-treatment stage) and bioremediation technologies for the decontamination of a wide range of synthetic and real industrial wastewater. Special emphasis is also placed on recent studies and large-scale combination schemes developed in Mediterranean countries for non-biodegradable wastewater treatment and reuse. The main conclusions arrived at from the overall assessment of the literature are that more work needs to be done on degradation kinetics and reactor modeling of the combined process, and also dynamics of the initial attack on primary contaminants and intermediate species generation. Furthermore, better economic models must be developed to estimate how the cost of this combined process varies with specific industrial wastewater characteristics, the overall decontamination efficiency and the relative cost of the AOP versus biological treatment.
Collapse
Affiliation(s)
- I Oller
- Plataforma Solar de Almería (CIEMAT), Carretera Senés, Km 4. 04200 Tabernas, Almería, Spain.
| | | | | |
Collapse
|
24
|
Zhang GY, Ling JY, Sun HB, Luo J, Fan YY, Cui ZJ. Isolation and characterization of a newly isolated polycyclic aromatic hydrocarbons-degrading Janibacter anophelis strain JY11. JOURNAL OF HAZARDOUS MATERIALS 2009; 172:580-586. [PMID: 19660861 DOI: 10.1016/j.jhazmat.2009.07.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 07/10/2009] [Accepted: 07/10/2009] [Indexed: 05/28/2023]
Abstract
The PAHs-degradation bacterium strain JY11 was newly isolated from the polluted soil in Jinan Oil Refinery Factory, Shandong Province of China. The isolate was identified as Janibacter anophelis with respect to its 16S rDNA sequence, DNA-DNA relatedness and fatty acid profiles, as well as various physiological characteristics. The strain was Gram-positive, non-motile, non-spore-forming, short rods in young culture, 0.8-1.0 microm in diameter and 1.3-1.6 microm long, and coccoid cells in the stationary phase of growth that are 1.0-1.2 microm in diameter and 1.3-1.5 microm long, occurred in pairs and sometimes in chains or in group, aerobic, oxidase-week positive, catalase-positive. J. anophelis strain JY11 can utilize naphthalene, phenanthrene, anthracene, pyrene, xylene, methanol, ethanol and salicylic acid as sole carbon source. The strain could remove 98.5% of phenanthrene, 82.1% of anthracene, and 97.7% of pyrene with an initial concentration of 500 ppm in five days without adding co-metabolism substrates and surfactants.
Collapse
Affiliation(s)
- Guo-Ying Zhang
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | | | | | | | | | | |
Collapse
|
25
|
Veignie E, Rafin C, Landy D, Fourmentin S, Surpateanu G. Fenton degradation assisted by cyclodextrins of a high molecular weight polycyclic aromatic hydrocarbon benzo[a]pyrene. JOURNAL OF HAZARDOUS MATERIALS 2009; 168:1296-1301. [PMID: 19359092 DOI: 10.1016/j.jhazmat.2009.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 03/03/2009] [Accepted: 03/03/2009] [Indexed: 05/27/2023]
Abstract
This paper investigates the effect of native beta-cyclodextrin (beta-CD) and its CD derivatives, such as hydroxypropyl-beta-cyclodextrin (HPBCD) and randomly methylated-beta-cyclodextrin (RAMEB), on the solubilization of a high molecular weight polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) and on its degradation by Fenton's reaction. The results show that BaP apparent solubility was significantly increased in the presence of cyclodextrin (CD) in the following order: beta-CD<RAMEB<HPCD. BaP Fenton degradation was strongly dependent on the capacity of cyclodextrin to solubilize BaP. In the presence of a radical scavenger (mannitol), BaP Fenton degradation was inhibited with RAMEB but not in the presence of HPCD. Molecular modelisation was used to visualize the steric complementarity of these host-guest systems. No significant difference of encapsulation between the two modified CDs was observed. Nevertheless, the results suggest a probable existence of a ternary complex HPCD-BaP-iron permitting the generation of hydroxyl radicals in close proximity to BaP. On the basis of these results, it appears that HPCD may be useful for developing targeted BaP degradation system.
Collapse
Affiliation(s)
- Etienne Veignie
- Laboratoire de Synthèse Organique et Environnement (EA2599), Université du Littoral Côte d'Opale, 59140 Dunkerque, France
| | | | | | | | | |
Collapse
|