1
|
Syngas Fermentation to Acetate and Ethanol with Adaptative Electroactive Carboxydotrophs in Single Chambered Microbial Electrochemical System. MICROMACHINES 2022; 13:mi13070980. [PMID: 35888797 PMCID: PMC9319612 DOI: 10.3390/mi13070980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/28/2022]
Abstract
Microbial electrosynthesis system (MES; single-chambered) was fabricated and evaluated with carbon cloth/graphite as a working/counter electrode employing an enriched microbiome. Continuous syngas sparging (at working electrode; WE) enabled the growth of endo electrogenic bacteria by availing the inorganic carbon source. Applied potential (−0.5 V) on the working electrode facilitated the reduction in syngas, leading to the synthesis of fatty acids and alcohols. The higher acetic acid titer of 3.8 g/L and ethanol concentration of 0.2 g/L was observed at an active microbial metabolic state, evidencing the shift in metabolism from acetogenic to solventogenesis. Voltammograms evidenced distinct redox species with low charge transfer resistance (Rct; Nyquist impedance). Reductive catalytic current (−0.02 mA) enabled the charge transfer efficiency of the cathodes favoring syngas conversion to products. The surface morphology of carbon cloth and system-designed conditions favored the growth of electrochemically active consortia. Metagenomic analysis revealed the enrichment of phylum/class with Actinobacteria, Firmicutes/Clostridia and Bacilli, which accounts for the syngas fermentation through suitable gene loci.
Collapse
|
2
|
Microbial Fuel Cell: Recent Developments in Organic Substrate Use and Bacterial Electrode Interaction. J CHEM-NY 2021. [DOI: 10.1155/2021/4570388] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A new bioelectrochemical approach based on metabolic activities inoculated bacteria, and the microbial fuel cell (MFC) acts as biocatalysts for the natural conversion to energy of organic substrates. Among several factors, the organic substrate is the most critical challenge in MFC, which requires long-term stability. The utilization of unstable organic substrate directly affects the MFC performance, such as low energy generation. Similarly, the interaction and effect of the electrode with organic substrate are well discussed. The electrode-bacterial interaction is also another aspect after organic substrate in order to ensure the MFC performance. The conclusion is based on this literature view; the electrode content is also a significant challenge for MFCs with organic substrates in realistic applications. The current review discusses several commercial aspects of MFCs and their potential prospects. A durable organic substrate with an efficient electron transfer medium (anode electrode) is the modern necessity for this approach.
Collapse
|
3
|
DePoy AN, King GM, Ohta H. Anaerobic Carbon Monoxide Uptake by Microbial Communities in Volcanic Deposits at Different Stages of Successional Development on O-yama Volcano, Miyake-jima, Japan. Microorganisms 2020; 9:E12. [PMID: 33375160 PMCID: PMC7822213 DOI: 10.3390/microorganisms9010012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Research on Kilauea and O-yama Volcanoes has shown that microbial communities and their activities undergo major shifts in response to plant colonization and that molybdenum-dependent CO oxidizers (Mo-COX) and their activities vary with vegetation and deposit age. Results reported here reveal that anaerobic CO oxidation attributed to nickel-dependent CO oxidizers (Ni-COX) also occurs in volcanic deposits that encompass different developmental stages. Ni-COX at three distinct sites responded rapidly to anoxia and oxidized CO from initial concentrations of about 10 ppm to sub-atmospheric levels. CO was also actively consumed at initial 25% concentrations and 25 °C, and during incubations at 60 °C; however, uptake under the latter conditions was largely confined to an 800-year-old forested site. Analyses of microbial communities based on 16S rRNA gene sequences in treatments with and without 25% CO incubated at 25 °C or 60 °C revealed distinct responses to temperature and CO among the sites and evidence for enrichment of known and potentially novel Ni-COX. The results collectively show that CO uptake by volcanic deposits occurs under a wide range of conditions; that CO oxidizers in volcanic deposits may be more diverse than previously imagined; and that Ni-dependent CO oxidizers might play previously unsuspected roles in microbial succession.
Collapse
Affiliation(s)
- Amber N. DePoy
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Gary M. King
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Hiroyuki Ohta
- College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami-machi, Ibaraki 300-0393, Japan;
| |
Collapse
|
4
|
Chang TJ, Chang YH, Chao WL, Jane WN, Chang YT. Effect of hydraulic retention time on electricity generation using a solid plain-graphite plate microbial fuel cell anoxic/oxic process for treating pharmaceutical sewage. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:1185-1197. [PMID: 30596323 DOI: 10.1080/10934529.2018.1530338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/14/2018] [Indexed: 06/09/2023]
Abstract
Treatment efficiency and electricity generation were evaluated using a solid plain-graphite plate microbial fuel cell (MFC) anoxic/oxic (A/O) process that treated pharmaceutical sewage using different hydraulic retention times (HRT). Short HRTs increased the volumetric organic loading rate, thereby reducing the MFC performance due to rapid depletion of the substrate (carbon/nitrogen source). The COD removal efficiency decreased from 96.28% at a HRT of 8 h to 90.67% at a HRT of 5 h. The removal efficiency of total nitrogen was reduced from 74.16% at a HRT of 8 h to 53.42% at a HRT of 5 h. A shorter HRT decreased the efficiency in treatment of the pharmaceutical products (PPs), which included acetaminophen, ibuprofen and sulfamethoxazole in an aerobic reactor because these antibiotic compounds inhibited the microbial activity of the aerobic activated sludge in the MFC A/O system. The average power density and coulombic efficiency values were 162.74 mW m-2 and 7.09% at a HRT of 8 h and 29.12 mW m-2 and 2.23% at a HRT of 5 h, respectively. The dominant bacterial species including Hydrogenophaga spp., Rubrivivax spp. and Leptothrix spp., which seem to be involved in PP biodegradation; these were identified in the MFC A/O system under all HRT conditions for the first time using next generation sequencing. Bacterial nanowires were involved in accelerating the transfer of electrons and served as mediators in the SPGRP biofilm. In conclusion, a SPGRP MFC A/O system at a HRT of 8 h gave better removal of COD, T-N and PPs, as well as generated more electricity.
Collapse
Affiliation(s)
- Ting-J Chang
- a Department of Microbiology , Soochow University , Taipei , Taiwan
| | - Yun-H Chang
- a Department of Microbiology , Soochow University , Taipei , Taiwan
| | - Wei-L Chao
- a Department of Microbiology , Soochow University , Taipei , Taiwan
| | - Wann-N Jane
- b Academia Sinica , Institute of Plant and Microbial Biology , Taipei , Taiwan
| | - Yi-T Chang
- a Department of Microbiology , Soochow University , Taipei , Taiwan
| |
Collapse
|
5
|
Kim T, Kang S, Kim HW, Paek Y, Sung JH, Kim YH, Jang JK. Assessment of organic removal in series- and parallel-connected microbial fuel cell stacks. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-017-0378-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Tang Y, Deng D, Zhou L, Jiang Y, Ma Y, Tian G, Liu Y. Analysis of electricity generation and community of electroactive biofilms enriched from various wastewater treatment stages. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Esquivel-Elizondo S, Delgado AG, Rittmann BE, Krajmalnik-Brown R. The effects of CO 2 and H 2 on CO metabolism by pure and mixed microbial cultures. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:220. [PMID: 28936234 PMCID: PMC5603099 DOI: 10.1186/s13068-017-0910-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/07/2017] [Indexed: 05/27/2023]
Abstract
BACKGROUND Syngas fermentation, the bioconversion of CO, CO2, and H2 to biofuels and chemicals, has undergone considerable optimization for industrial applications. Even more, full-scale plants for ethanol production from syngas fermentation by pure cultures are being built worldwide. The composition of syngas depends on the feedstock gasified and the gasification conditions. However, it remains unclear how different syngas mixtures affect the metabolism of carboxidotrophs, including the ethanol/acetate ratios. In addition, the potential application of mixed cultures in syngas fermentation and their advantages over pure cultures have not been deeply explored. In this work, the effects of CO2 and H2 on the CO metabolism by pure and mixed cultures were studied and compared. For this, a CO-enriched mixed culture and two isolated carboxidotrophs were grown with different combinations of syngas components (CO, CO:H2, CO:CO2, or CO:CO2:H2). RESULTS The CO metabolism of the mixed culture was somehow affected by the addition of CO2 and/or H2, but the pure cultures were more sensitive to changes in gas composition than the mixed culture. CO2 inhibited CO oxidation by the Pleomorphomonas-like isolate and decreased the ethanol/acetate ratio by the Acetobacterium-like isolate. H2 did not inhibit ethanol or H2 production by the Acetobacterium and Pleomorphomonas isolates, respectively, but decreased their CO consumption rates. As part of the mixed culture, these isolates, together with other microorganisms, consumed H2 and CO2 (along with CO) for all conditions tested and at similar CO consumption rates (2.6 ± 0.6 mmol CO L-1 day-1), while maintaining overall function (acetate production). Providing a continuous supply of CO by membrane diffusion caused the mixed culture to switch from acetate to ethanol production, presumably due to the increased supply of electron donor. In parallel with this change in metabolic function, the structure of the microbial community became dominated by Geosporobacter phylotypes, instead of Acetobacterium and Pleomorphomonas phylotypes. CONCLUSIONS These results provide evidence for the potential of mixed-culture syngas fermentation, since the CO-enriched mixed culture showed high functional redundancy, was resilient to changes in syngas composition, and was capable of producing acetate or ethanol as main products of CO metabolism.
Collapse
Affiliation(s)
- Sofia Esquivel-Elizondo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701 USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ USA
| | - Anca G. Delgado
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701 USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ USA
| | - Bruce E. Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701 USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ USA
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701 USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ USA
| |
Collapse
|
8
|
Kim T, An J, Lee H, Jang JK, Chang IS. pH-dependent ammonia removal pathways in microbial fuel cell system. BIORESOURCE TECHNOLOGY 2016; 215:290-295. [PMID: 27090407 DOI: 10.1016/j.biortech.2016.03.167] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
In this work, ammonia removal paths in microbial fuel cells (MFCs) under different initial pH conditions (pH 7.0, 8.0, and 8.6) were investigated. At a neutral pH condition (pH 7.0), MFC used an electrical energy of 27.4% and removed 23.3% of total ammonia by electrochemical pathway for 192h. At the identical pH condition, 36.1% of the total ammonia was also removed by the biological path suspected to be biological ammonia oxidation process (e.g., Anammox). With the initial pH increased, the electrochemical removal efficiency decreased to less than 5.0%, while the biological removal efficiency highly increased to 61.8%. In this study, a neutral pH should be maintained in the anode to utilize MFCs for ammonia recovery via electrochemical pathways from wastewater stream.
Collapse
Affiliation(s)
- Taeyoung Kim
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Junyeong An
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Hyeryeong Lee
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jae Kyung Jang
- Energy and Environmental Engineering Division, National Institute of Agricultural Science, Rural Development Administration, Jeonju-si 54875, Republic of Korea
| | - In Seop Chang
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
9
|
Dürre P, Eikmanns BJ. C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr Opin Biotechnol 2015; 35:63-72. [DOI: 10.1016/j.copbio.2015.03.008] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/06/2015] [Accepted: 03/12/2015] [Indexed: 12/25/2022]
|
10
|
Yasin M, Jeong Y, Park S, Jeong J, Lee EY, Lovitt RW, Kim BH, Lee J, Chang IS. Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. BIORESOURCE TECHNOLOGY 2015; 177:361-374. [PMID: 25443672 DOI: 10.1016/j.biortech.2014.11.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/06/2014] [Accepted: 11/08/2014] [Indexed: 06/04/2023]
Abstract
Microbial conversion of syngas to energy-dense biofuels and valuable chemicals is a potential technology for the efficient utilization of fossils (e.g., coal) and renewable resources (e.g., lignocellulosic biomass) in an environmentally friendly manner. However, gas-liquid mass transfer and kinetic limitations are still major constraints that limit the widespread adoption and successful commercialization of the technology. This review paper provides rationales for syngas bioconversion and summarizes the reaction limited conditions along with the possible strategies to overcome these challenges. Mass transfer and economic performances of various reactor configurations are compared, and an ideal case for optimum bioreactor operation is presented. Overall, the challenges with the bioprocessing steps are highlighted, and potential solutions are suggested. Future research directions are provided and a conceptual design for a membrane-based syngas biorefinery is proposed.
Collapse
Affiliation(s)
- Muhammad Yasin
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Republic of Korea
| | - Yeseul Jeong
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Republic of Korea
| | - Shinyoung Park
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Republic of Korea
| | - Jiyeong Jeong
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do 446-701, Republic of Korea
| | - Robert W Lovitt
- College of Engineering, Swansea University, Swansea SA2 8PP, United Kingdom
| | - Byung Hong Kim
- Fuel Cell Institute, National University of Malaysia, 43600 UKM, Bangi, Malaysia
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Republic of Korea
| | - In Seop Chang
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Republic of Korea.
| |
Collapse
|
11
|
Population Analysis of Mesophilic Microbial Fuel Cells Fed with Carbon Monoxide. Appl Biochem Biotechnol 2013; 172:713-26. [DOI: 10.1007/s12010-013-0556-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 09/26/2013] [Indexed: 11/25/2022]
|
12
|
Li J, Li M, Zhang J, Ye D, Zhu X, Liao Q. A microbial fuel cell capable of converting gaseous toluene to electricity. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Rodríguez-Barreiro R, Abendroth C, Vilanova C, Moya A, Porcar M. Towards a microbial thermoelectric cell. PLoS One 2013; 8:e56358. [PMID: 23468862 PMCID: PMC3582603 DOI: 10.1371/journal.pone.0056358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/14/2013] [Indexed: 02/07/2023] Open
Abstract
Microbial growth is an exothermic process. Biotechnological industries produce large amounts of heat, usually considered an undesirable by-product. In this work, we report the construction and characterization of the first microbial thermoelectric cell (MTC), in which the metabolic heat produced by a thermally insulated microbial culture is partially converted into electricity through a thermoelectric device optimized for low ΔT values. A temperature of 41°C and net electric voltage of around 250-600 mV was achieved with 1.7 L baker's yeast culture. This is the first time microbial metabolic energy has been converted into electricity with an ad hoc thermoelectric device. These results might contribute towards developing a novel strategy to harvest excess heat in the biotechnology industry, in processes such as ethanol fermentation, auto thermal aerobic digestion (ATAD) or bioremediation, which could be coupled with MTCs in a single unit to produce electricity as a valuable by-product of the primary biotechnological product. Additionally, we propose that small portable MTCs could be conceived and inoculated with suitable thermophilic of hyperthermophilic starter cultures and used for powering small electric devices.
Collapse
Affiliation(s)
- Raúl Rodríguez-Barreiro
- Cavanilles Institute of Biodiversity and Evolutive Biology, Universitat de València, València, Spain
| | - Christian Abendroth
- Cavanilles Institute of Biodiversity and Evolutive Biology, Universitat de València, València, Spain
| | - Cristina Vilanova
- Cavanilles Institute of Biodiversity and Evolutive Biology, Universitat de València, València, Spain
| | - Andrés Moya
- Cavanilles Institute of Biodiversity and Evolutive Biology, Universitat de València, València, Spain
- Unidad Mixta de Investigación en Genómica y Salud, Centro Superior de Investigación en Salud Pública (CSISP), València, Spain
| | - Manuel Porcar
- Cavanilles Institute of Biodiversity and Evolutive Biology, Universitat de València, València, Spain
- Fundació General de la Universitat de València, València, Spain
| |
Collapse
|
14
|
The performance of a thermophilic microbial fuel cell fed with synthesis gas. Enzyme Microb Technol 2012; 51:163-70. [DOI: 10.1016/j.enzmictec.2012.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 11/19/2022]
|
15
|
Kim D, An J, Kim B, Jang JK, Kim BH, Chang IS. Scaling-up microbial fuel cells: configuration and potential drop phenomenon at series connection of unit cells in shared anolyte. CHEMSUSCHEM 2012; 5:1086-1091. [PMID: 22570262 DOI: 10.1002/cssc.201100678] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 02/14/2012] [Indexed: 05/31/2023]
Abstract
To scale-up microbial fuel cells (MFCs), installing multiple unit cells in a common reactor has been proposed; however, there has been a serious potential drop when connecting unit cells in series. To determine the source of the loss, a basic stack-MFC (BS-MFC) has been devised, and the results show that the phenomenon is due to ions on the anode electrode traveling through the electrolyte to be reduced at the cathode connected in series. As calculated by means of the percentage potential drop, the degree of potential drop decreased with an increase in the unit-cell distance. When the distance was increased from 1 to 8 cm, the percentage potential drop in BS-MFC1 decreased from 46.76 ± 0.90 to 45.08 ± 0.70 % and in BS-MFC2 from 46.41 ± 0.95 to 43.82 ± 2.23 %. As the p-value of the t-test was lower than 0.05, the difference was considered significant; however, if the unit cells are installed far enough from each other to avoid the potential drop phenomenon, the system will be less dense, consequently reducing the ratio of electrode area per volume of anode compartment and decreasing the power density of the system. Finally, this study suggests design criteria for scaling-up MFC systems: Multiple-electrode-installed MFCs are modularized, and the unit cells are connected in series across the module (connecting each unit cell does not share the anolyte).
Collapse
Affiliation(s)
- Daehee Kim
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | |
Collapse
|
16
|
Hussain A, Tartakovsky B, Guiot SR, Raghavan V. Use of silicone membranes to enhance gas transfer during microbial fuel cell operation on carbon monoxide. BIORESOURCE TECHNOLOGY 2011; 102:10898-10906. [PMID: 21983405 DOI: 10.1016/j.biortech.2011.09.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/14/2011] [Accepted: 09/15/2011] [Indexed: 05/31/2023]
Abstract
Electricity generation in a microbial fuel cell (MFC) using carbon monoxide (CO) or synthesis gas (syngas) as a carbon source has been demonstrated recently. A major challenge associated with CO or syngas utilization is the mass transfer limitation of these sparingly soluble gases in the aqueous phase. This study evaluated the applicability of a dense polymer silicone membrane and thin wall silicone tubing for CO mass transfer in MFCs. Replacing the sparger used in our previous study with the membrane systems for CO delivery resulted in improved MFC performance and CO transformation efficiency. A power output and CO transformation efficiency of up to 18 mW LR(-1) (normalized to anode compartment volume) and 98%, respectively, was obtained. The use of membrane systems offers the advantage of improved mass transfer and reduced reactor volume, thus increasing the volumetric power output of MFCs operating on a gaseous substrate such as CO.
Collapse
Affiliation(s)
- A Hussain
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Ave., Montreal, QC, Canada H2P 2R2.
| | | | | | | |
Collapse
|
17
|
Hussain A, Guiot SR, Mehta P, Raghavan V, Tartakovsky B. Electricity generation from carbon monoxide and syngas in a microbial fuel cell. Appl Microbiol Biotechnol 2011; 90:827-36. [PMID: 21400198 DOI: 10.1007/s00253-011-3188-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 11/30/2022]
Abstract
Electricity generation in microbial fuel cells (MFCs) has been a subject of significant research efforts. MFCs employ the ability of electricigenic bacteria to oxidize organic substrates using an electrode as an electron acceptor. While MFC application for electricity production from a variety of organic sources has been demonstrated, very little research on electricity production from carbon monoxide and synthesis gas (syngas) in an MFC has been reported. Although most of the syngas today is produced from non-renewable sources, syngas production from renewable biomass or poorly degradable organic matter makes energy generation from syngas a sustainable process, which combines energy production with the reprocessing of solid wastes. An MFC-based process of syngas conversion to electricity might offer a number of advantages such as high Coulombic efficiency and biocatalytic activity in the presence of carbon monoxide and sulfur components. This paper presents a discussion on microorganisms and reactor designs that can be used for operating an MFC on syngas.
Collapse
Affiliation(s)
- Abid Hussain
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Ave, Montreal, QC, Canada H2P 2R2
| | | | | | | | | |
Collapse
|
18
|
Mehta P, Hussain A, Tartakovsky B, Neburchilov V, Raghavan V, Wang H, Guiot S. Electricity generation from carbon monoxide in a single chamber microbial fuel cell. Enzyme Microb Technol 2010; 46:450-5. [DOI: 10.1016/j.enzmictec.2010.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 02/10/2010] [Accepted: 02/16/2010] [Indexed: 11/30/2022]
|
19
|
Pant D, Van Bogaert G, Diels L, Vanbroekhoven K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. BIORESOURCE TECHNOLOGY 2010; 101:1533-43. [PMID: 19892549 DOI: 10.1016/j.biortech.2009.10.017] [Citation(s) in RCA: 700] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/04/2009] [Accepted: 10/07/2009] [Indexed: 05/20/2023]
Abstract
Microbial fuel cells (MFCs) have gained a lot of attention in recent years as a mode of converting organic waste including low-strength wastewaters and lignocellulosic biomass into electricity. Microbial production of electricity may become an important form of bioenergy in future because MFCs offer the possibility of extracting electric current from a wide range of soluble or dissolved complex organic wastes and renewable biomass. A large number of substrates have been explored as feed. The major substrates that have been tried include various kinds of artificial and real wastewaters and lignocellulosic biomass. Though the current and power yields are relatively low at present, it is expected that with improvements in technology and knowledge about these unique systems, the amount of electric current (and electric power) which can be extracted from these systems will increase tremendously providing a sustainable way of directly converting lignocellulosic biomass or wastewaters to useful energy. This article reviews the various substrates that have been explored in MFCs so far, their resulting performance, limitations as well as future potential substrates.
Collapse
Affiliation(s)
- Deepak Pant
- Separation and Conversion Technology, VITO - Flemish Institute for Technological Research, Boeretang 200, Mol 2400, Belgium
| | | | | | | |
Collapse
|
20
|
Venkata Mohan S, Mohanakrishna G, Sarma PN. Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell. BIORESOURCE TECHNOLOGY 2010; 101:970-976. [PMID: 19818602 DOI: 10.1016/j.biortech.2009.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 05/28/2023]
Abstract
Single chambered mediatorless microbial fuel cell (MFC; non-catalyzed electrodes) was operated to evaluate the potential of bioelectricity generation from the treatment of composite waste vegetables (EWV) extract under anaerobic microenvironment using mixed consortia as anodic biocatalyst. The system was operated with designed synthetic wastewater (DSW; 0.98 kg COD/m(3)-day) during adaptation phase and later shifted to EWV and operated at three substrate load conditions (2.08, 1.39 and 0.70 kg COD/m(3)-day). Experimental data illustrated the feasibility of bioelectricity generation through the utilization of EWV as substrate in MFC. Higher power output (57.38 mW/m(2)) was observed especially at lower substrate load. The performance of MFC was characterized based on the polarization behavior, cell potentials, cyclic voltammetric analysis and sustainable resistance. MFC operation also documented to stabilize the waste by effective removal of COD (62.86%), carbohydrates (79.84%) and turbidity (55.12%).
Collapse
Affiliation(s)
- S Venkata Mohan
- Bioengineering and Environmental Centre, Indian Institute of Chemical Technology, Hyderabad 500 607, India.
| | | | | |
Collapse
|