1
|
Liao PL, Mahasti N, Effendi LW, Huang YH. Sulfide recovery using fluidized bed homogeneous crystallization technology to produce nickel sulfide from wastewater that contains sulfides. ENVIRONMENTAL RESEARCH 2023; 236:116782. [PMID: 37517497 DOI: 10.1016/j.envres.2023.116782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Sulfide-containing wastewater, characterized by its foul odor, corrosiveness, and toxicity, can endanger human health. Fluidized-bed homogeneous crystallization (FBHC) avoids the excessive sludge production commonly associated with conventional chemical precipitation methods. In this study, FBHC is used to treat sulfur-containing synthetic wastewater. Furthermore, nickel-containing wastewater was utilized as a precipitant in the system, hence the advantage of simultaneous sulfur and nickel removal from the wastewater. The operating parameters, including pH, a precipitant dosage of [Ni2+]0/[S2-]0, and cross-sectional surface loading (LS, kg/m2h) are optimized. The optimum operating conditions of pH 9.8 ± 0.3, [Ni2+]0/[S2-]0 = 0.8, and LS = 1.5 kg/m2h results in total sulfur removal (TR) of 95.7% and crystallization ratio (CR) of 94.8%. The effect of organic compounds (acetic acid, oxalic acid, EDTA, and citric acid) and inorganic ions (NO3-, CO32-, PO43-, F-, and Cl-) on the nickel sulfide granulation process was discussed.
Collapse
Affiliation(s)
- Po-Lin Liao
- Department of Chemical Engineering, National Cheng-Kung University, Tainan, 701, Taiwan
| | - Nicolaus Mahasti
- Department of Chemical Engineering, National Cheng-Kung University, Tainan, 701, Taiwan
| | | | - Yao-Hui Huang
- Department of Chemical Engineering, National Cheng-Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
2
|
Chen X, Xiao B, Tang X, Bian C, Liu J, Li L. Microbial electrolysis cell simultaneously enhancing methanization and reducing hydrogen sulfide production in anaerobic digestion of sewage sludge. CHEMOSPHERE 2023; 337:139445. [PMID: 37423410 DOI: 10.1016/j.chemosphere.2023.139445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
The effects of microbial electrolysis cells (MECs) at three applied voltages (0.8, 1.3, and 1.6 V) on simultaneously enhancing methanization and reducing hydrogen sulfide (H2S) production in the anaerobic digestion (AD) of sewage sludge were studied. The results showed that the MECs at 1.3 V and 1.6 V simultaneously enhanced the methane production by 57.02 and 12.70% and organic matter removal by 38.77 and 11.13%, and reduced H2S production by 94.8 and 98.2%, respectively. MECs at 1.3 V and 1.6 V created a micro-aerobic conditions for the digesters with oxidation-reduction potential as -178∼-232 mv, which enhanced methanization and reduced H2S production. Sulfur reduction, H2S and elemental sulfur oxidation occurred simultaneously in the ADs at 1.3 V and 1.6 V. The relative abundances of sulfur-oxidizing bacteria increased from 0.11% to 0.42% and those of sulfur-reducing bacteria decreased from 1.24% to 0.33% when the applied voltage of MEC increased from 0 V to 1.6 V. Hydrogen produced by electrolysis enhanced the abundance of Methanobacterium and changed the methanogenesis pathway.
Collapse
Affiliation(s)
- Xiangyu Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Benyi Xiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Science, Beijing, 100049, China.
| | - Xinyi Tang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Chunlin Bian
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Junxin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Lin Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Science, Beijing, 100049, China
| |
Collapse
|
3
|
Li R, Fan X, Jiang Y, Wang R, Guo R, Zhang Y, Fu S. From anaerobic digestion to single cell protein synthesis: A promising route beyond biogas utilization. WATER RESEARCH 2023; 243:120417. [PMID: 37517149 DOI: 10.1016/j.watres.2023.120417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
The accumulation of a large amount of organic solid waste and the lack of sufficient protein supply worldwide are two major challenges caused by rapid population growth. Anaerobic digestion is the main force of organic waste treatment, and the high-value utilization of its products (biogas and digestate) has been widely concerned. These products can be used as nutrients and energy sources for microorganisms such as microalgae, yeast, methane-oxidizing bacteria(MOB), and hydrogen-oxidizing bacteria(HOB) to produce single cell protein(SCP), which contributes to the achievement of sustainable development goals. This new model of energy conversion can construct a bioeconomic cycle from waste to nutritional products, which treats waste without additional carbon emissions and can harvest high-value biomass. Techno-economic analysis shows that the SCP from biogas and digestate has higher profit than biogas electricity generation, and its production cost is lower than the SCP using special raw materials as the substrate. In this review, the case of SCP-rich microorganisms using anaerobic digestion products for growth was investigated. Some of the challenges faced by the process and the latest developments were analyzed, and their potential economic and environmental value was verified.
Collapse
Affiliation(s)
- Rui Li
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - XiaoLei Fan
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - YuFeng Jiang
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - RuoNan Wang
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - RongBo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China.
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - ShanFei Fu
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China.
| |
Collapse
|
4
|
Xie Z, Jin Z, Zhang S, Chen L. Biogas utilization without desulfurization pretreatment in a bioelectrochemical system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162239. [PMID: 36796222 DOI: 10.1016/j.scitotenv.2023.162239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Utilizing biogas as a fuel for heating and power generation usually requires desulfurization pretreatment. In this study, the biogas utilization without desulfurization pretreatment in a bioelectrochemical system (BES) was explored. The results showed that the biogas-fueled BES was successfully started up within 36 d and the presence of hydrogen sulfide promoted both methane consumption and electricity generation. The optimal performance (i.e., a methane consumption of 0.523 ± 0.004 mmol/d, a peak voltage of 577 ± 1 mV, a coulomb production of 37.86 ± 0.43C/d, a coulombic efficiency of 9.37 ± 0.06 % and the maximum power density of 2.070 W/m3) was obtained under bicarbonate buffer solution and 40 °C conditions. The addition of 1 mg/L sulfide and 5 mg/L L-cysteine facilitated methane consumption and electricity generation. In the anode biofilm, the dominant bacteria were Sulfurivermis, unclassified_o__Ignavibacteriales and Lentimicrobium, while Methanobacterium, Methanosarcina and Methanothrix were the predominant archaea. Besides, the metagenomics profiles reveal that anaerobic methane oxidation and electricity generation were closely related to sulfur metabolism. These findings provide a novel approach for utilizing biogas without desulfurization pretreatment.
Collapse
Affiliation(s)
- Zexiang Xie
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zhixin Jin
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Shaohui Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China; Hubei Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Long Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
5
|
Castro IMP, Azevedo LS, Souza CL. Evaluation of microaeration strategies in the digestion zone of UASB reactors as an alternative for biogas desulfurization. ENVIRONMENTAL TECHNOLOGY 2023; 44:431-445. [PMID: 34463202 DOI: 10.1080/09593330.2021.1974574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
This study aimed at evaluating the microaeration as an alternative for hydrogen sulfide removal from biogas of UASB reactors treating sewage. The set-up consisted of two pilot-scale UASB reactors, including a conventional anaerobic and a modified UASB reactor, operated under microaerated conditions. Air was supplied in the digestion zone, at 1 and 3 m from the bottom of the reactor, and three different air flows were investigated: 10, 20, and 30 mL.min-1, corresponding to 0.003, 0.005 and 0.005 LO2/Linfluent, respectively. The main results showed that the microaeration provided a substantial decrease in hydrogen sulfide concentrations when compared to the concentrations observed in the biogas of the anaerobic UASB reactor. Hydrogen sulfide concentrations remained below 70 ppmv throughout the experimental period, corresponding to an average removal efficiency of 98%. Although a decrease in methane concentrations in biogas was observed, the feasibility of energy use would not be affected. The effect of microaeration on the overall performance of the reactor was evaluated, however, no significant differences were observed. The feasibility of limiting aeration conditions in the reactor digestion zone as an efficient alternative for hydrogen sulfide removal from biogas was demonstrated.
Collapse
Affiliation(s)
- I M P Castro
- Departments of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - L S Azevedo
- Departments of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - C L Souza
- Departments of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
Pereira Silva T, Guimarães de Oliveira M, Marques Mourão JM, Collere Possetti GR, Lopes Pereira E, Bezerra dos Santos A. Bioenergy recovery potential from upflow microaerobic sludge blanket reactor fed with swine wastewater. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Sánchez A. Biogas improvement as renewable energy through conversion into methanol: A perspective of new catalysts based on nanomaterials and metal organic frameworks. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1012384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In recent years, the high cost and availability of energy sources have boosted the implementation of strategies to obtain different types of renewable energy. Among them, methane contained in biogas from anaerobic digestion has gained special relevance, since it also permits the management of a big amount of organic waste and the capture and long-term storage of carbon. However, methane from biogas presents some problems as energy source: 1) it is a gas, so its storage is costly and complex, 2) it is not pure, being carbon dioxide the main by-product of anaerobic digestion (30%–50%), 3) it is explosive with oxygen under some conditions and 4) it has a high global warming potential (27–30 times that of carbon dioxide). Consequently, the conversion of biogas to methanol is as an attractive way to overcome these problems. This process implies the conversion of both methane and carbon dioxide into methanol in one oxidation and one reduction reaction, respectively. In this dual system, the use of effective and selective catalysts for both reactions is a critical issue. In this regard, nanomaterials embedded in metal organic frameworks have been recently tested for both reactions, with very satisfactory results when compared to traditional materials. In this review paper, the recent configurations of catalysts including nanoparticles as active catalysts and metal organic frameworks as support materials are reviewed and discussed. The main challenges for the future development of this technology are also highlighted, that is, its cost in environmental and economic terms for its development at commercial scale.
Collapse
|
8
|
Ruxiang C, Ruiying C, Tianyun P, Chunyan H, Tengbing H, Guangliang T. Feeding controls H 2S production in situ in high solid anaerobic digestion. BIORESOUR BIOPROCESS 2022; 9:79. [PMID: 38647616 PMCID: PMC10992255 DOI: 10.1186/s40643-022-00567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
In this study, a high frequency monitoring method was used to assess how semi-continuous feeding affects H2S production in high solid anaerobic digestion. The results showed that H2S characteristics at a monitoring frequency of 1 point/3 h were different to that of 1 point/24 h, its concentration decreased from 3449 ± 227 mg/m3 at 0 h to 298 ± 45 mg/m3 at 3 h. H2S concentration was negatively correlated with volatile fatty acids (VFAs), and oxidation reduction potential (ORP). 72-82% of H2S reduction in the first 3 h resulted from the introduction of O2 during feeding, and 18-28% of that was closely related to the production of a large quantity of soluble acidic matter, such as VFAs. A more accurate H2S release model was established according to the content of VFAs. Totally, this study implies that feed carrying air is a promising method for in situ control of H2S production in anaerobic digestion.
Collapse
Affiliation(s)
- Cen Ruxiang
- Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agriculture, Institute of New Rural Development, Engineering Laboratory for Pollution Control and Resource Reuse Technology of Livestock and Poultry Breeding in Plateau Mountain (Guizhou Province), Guizhou University, Guiyang, 550025, China
| | - Chen Ruiying
- Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agriculture, Institute of New Rural Development, Engineering Laboratory for Pollution Control and Resource Reuse Technology of Livestock and Poultry Breeding in Plateau Mountain (Guizhou Province), Guizhou University, Guiyang, 550025, China
| | - Pu Tianyun
- Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agriculture, Institute of New Rural Development, Engineering Laboratory for Pollution Control and Resource Reuse Technology of Livestock and Poultry Breeding in Plateau Mountain (Guizhou Province), Guizhou University, Guiyang, 550025, China
| | - Huang Chunyan
- Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agriculture, Institute of New Rural Development, Engineering Laboratory for Pollution Control and Resource Reuse Technology of Livestock and Poultry Breeding in Plateau Mountain (Guizhou Province), Guizhou University, Guiyang, 550025, China
| | - He Tengbing
- Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agriculture, Institute of New Rural Development, Engineering Laboratory for Pollution Control and Resource Reuse Technology of Livestock and Poultry Breeding in Plateau Mountain (Guizhou Province), Guizhou University, Guiyang, 550025, China.
| | - Tian Guangliang
- Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agriculture, Institute of New Rural Development, Engineering Laboratory for Pollution Control and Resource Reuse Technology of Livestock and Poultry Breeding in Plateau Mountain (Guizhou Province), Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
9
|
Zhou H, Xing D, Xu M, Su Y, Ma J, Angelidaki I, Zhang Y. Optimization of a newly developed electromethanogenesis for the highest record of methane production. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124363. [PMID: 33199142 DOI: 10.1016/j.jhazmat.2020.124363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
The development of an effective biocathode with high catalytic ability and dense biomass is a major challenge for the industrial applications of electromethanogenesis (EM) process. In our previous study, intact anaerobic granular sludge (AnGS) biocathode and EM hybrid system (AnGS-EM) showed superior ability and stability when treating raw biogas, but its maximum CO2-to-CH4 conversion potential and the response to different operating conditions are still unknown. Herein, we optimized the performance of the AnGS-EM system and explored its maximum CH4 production capacity. The AnGS-EM system achieved a maximum methane production rate of 202.15 L CH4/m2catproj/d, which is over 3 times higher than the maximum value reported so far. Within a certain range, the methane production rate increased with the buffer concentration, applied voltage, and bicarbonate concentration. Excessive applied voltage and carbonate concentration not only led to resource waste but also inhibited methanogen performance. The AnGS biocathode could withstand oxygen exposure for 24 h, the acidic (pH of 5.5), and alkaline conditions (pH over 9). Illumina sequencing results showed that hydrogenotrophic methanogen (especially Methanobacterium) were dominant. This work using AnGS as biocathode for CH4 synthesis offers insight into the development of scalable, efficient, and cost-effective biocathode for biofuels and value-added chemicals production.
Collapse
Affiliation(s)
- Huihui Zhou
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Defeng Xing
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Mingyi Xu
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yanyan Su
- Carlsberg Research Laboratory, Bjerregaardsvej 5, 2500 Valby, Denmark
| | - Jun Ma
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
10
|
Han Z, Li R, Shen H, Qi F, Liu B, Shen X, Zhang L, Wang X, Sun D. Emission characteristics and assessment of odors from sludge anaerobic digestion with thermal hydrolysis pretreatment in a wastewater treatment plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116516. [PMID: 33529890 DOI: 10.1016/j.envpol.2021.116516] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) with thermal hydrolysis pre-treatment (THP) is an effective sludge treatment method which provides several advantages such as enhanced biogas formation and fertilizer production. The main limitation to THP-AD is that hazardous odors, including NH3 and volatile sulfur compounds (VSCs), are emitted during the sludge treatment process. In order to develop strategies to eliminate odors, it is necessary to identify the key odors and emissions sites. This study identified production of NH3 (741.60 g·dry sludge t-1) and VSCs (277.27 g·dry sludge t-1) during sludge AD after THP, and measured emissions in each of the THP-AD sludge treatment sites. Odor intensity, odor active values, permissible concentration-time weighted average, and non-carcinogenic risks were also assessed in order to determine the sensory impact, odor contribution, and health impacts of NH3 and VSCs. The results revealed that odor pollution existed in all of the test sites, particularly in the sludge pump room and pre-dehydration workshop. NH3, H2S, and methyl mercaptan caused very strong odors, and levels of NH3 and H2S were enough to impact the health of on-site employees.
Collapse
Affiliation(s)
- Zhangliang Han
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China; College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ruoyu Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hanzhang Shen
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Baoxian Liu
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing, 100048, China; Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing, 100048, China
| | - Xiue Shen
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing, 100048, China; Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing, 100048, China
| | - Lin Zhang
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing, 100048, China; Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing, 100048, China
| | - Xiaoju Wang
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing, 100048, China; Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing, 100048, China
| | - Dezhi Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
11
|
Key parameters influencing hydrogen sulfide removal in microaerobic sequencing batch reactor. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Yang Z, Liu Z, Sklodowska A, Musialowski M, Bajda T, Yin H, Drewniak L. Microbiological Sulfide Removal-From Microorganism Isolation to Treatment of Industrial Effluent. Microorganisms 2021; 9:microorganisms9030611. [PMID: 33809787 PMCID: PMC8002234 DOI: 10.3390/microorganisms9030611] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 11/29/2022] Open
Abstract
Management of excessive aqueous sulfide is one of the most significant challenges of treating effluent after biological sulfate reduction for metal recovery from hydrometallurgical leachate. The main objective of this study was to characterize and verify the effectiveness of a sulfide-oxidizing bacterial (SOB) consortium isolated from post-mining wastes for sulfide removal from industrial leachate through elemental sulfur production. The isolated SOB has a complete sulfur-oxidizing metabolic system encoded by sox genes and is dominated by the Arcobacter genus. XRD analysis confirmed the presence of elemental sulfur in the collected sediment during cultivation of the SOB in synthetic medium under controlled physicochemical conditions. The growth yield after three days of cultivation reached ~2.34 gprotein/molsulfid, while approximately 84% of sulfide was transformed into elemental sulfur after 5 days of incubation. Verification of isolated SOB on the industrial effluent confirmed that it can be used for effective sulfide concentration reduction (~100% reduced from the initial 75.3 mg/L), but for complete leachate treatment (acceptable for discharged limits), bioaugmentation with other bacteria is required to ensure adequate reduction of chemical oxygen demand (COD).
Collapse
Affiliation(s)
- Zhendong Yang
- Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (Z.Y.); (A.S.); (M.M.)
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, No. 932 Lushan South Road, Changsha 410083, China; (Z.L.); (H.Y.)
| | - Aleksandra Sklodowska
- Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (Z.Y.); (A.S.); (M.M.)
| | - Marcin Musialowski
- Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (Z.Y.); (A.S.); (M.M.)
| | - Tomasz Bajda
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology in Krakow, A. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, No. 932 Lushan South Road, Changsha 410083, China; (Z.L.); (H.Y.)
| | - Lukasz Drewniak
- Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (Z.Y.); (A.S.); (M.M.)
- Correspondence: ; Tel./Fax: +48-22-55-41-219
| |
Collapse
|
13
|
Yang H, Deng L. Using air instead of biogas for mixing and its effect on anaerobic digestion of animal wastewater with high suspended solids. BIORESOURCE TECHNOLOGY 2020; 318:124047. [PMID: 32871320 DOI: 10.1016/j.biortech.2020.124047] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
This study proposed a new mixing method for anaerobic digestion treating animal wastewater using air as gas source of agitation (named "air mixing") and demonstrated its feasibility by comparing with other mixing modes. The results indicated that the methane production for air mixing was increased by 6.4%, 11.9% and 19.6% compared with biogas mixing, mechanical mixing and no mixing. Air mixing improved the mass transfer and the homogeneous mixing time was shortened from 10 min of mechanical mixing to 1.5 min at the same power input. A transient microaerobic environment was created by air mixing, which increased the hydrolysis efficiency by 1.7-11.4% compared with biogas mixing and facilitated VFAs generation and consumption, as well as promoted the syntrophic relationship between facultative bacteria and hydrogenotrophic methanogens. The relative contribution of the improvement of mass transfer and the reaction of microaerobic environment to methane production was 62.9% and 37.1%, respectively.
Collapse
Affiliation(s)
- Hongnan Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| |
Collapse
|
14
|
Gonzalez-Salgado I, Cavaillé L, Dubos S, Mengelle E, Kim C, Bounouba M, Paul E, Pommier S, Bessiere Y. Combining thermophilic aerobic reactor (TAR) with mesophilic anaerobic digestion (MAD) improves the degradation of pharmaceutical compounds. WATER RESEARCH 2020; 182:116033. [PMID: 32721702 DOI: 10.1016/j.watres.2020.116033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
The removal efficiency of nine pharmaceutical compounds from primary sludge was evaluated in two different operating conditions: (i) in conventional Mesophilic Anaerobic Digestion (MAD) alone and (ii) in a co-treatment process combining Mesophilic Anaerobic Digestion and a Thermophilic Aerobic Reactor (MAD-TAR). The pilot scale reactors were fed with primary sludge obtained after decantation of urban wastewater. Concerning the biodegradation of organic matter, thermophilic aeration increased solubilization and hydrolysis yields of digestion, resulting in a further 26% supplementary removal of chemical oxygen demand (COD) in MAD-TAR process compared to the conventional mesophilic anaerobic digestion. The highest removal rate of target micropollutants were observed for caffeine (CAF) and sulfamethoxazole (SMX) (>89%) with no substantial differences between both processes. Furthermore, MAD-TAR process showed a significant increase of removal efficiency for oxazepam (OXA) (73%), propranolol (PRO) (61%) and ofloxacine (OFL) (41%) and a slight increase for diclofenac (DIC) (4%) and 2 hydroxy-ibuprofen (2OH-IBP) (5%). However, ibuprofen (IBP) and carbamazepine (CBZ) were not degraded during both processes. Anaerobic digestion affected the liquid-solid partition of most target compounds. Sorbed fraction of pharmaceutical compounds on the sludge tend to decrease after digestion, this tendency being more pronounced in the case of the MAD-TAR process due to much lower concentration of solids.
Collapse
Affiliation(s)
| | - L Cavaillé
- Univ Toulouse, INPT, UPS, Lab Genie Chim, 4 Allee Emile Monso, F-31432, Toulouse, France.
| | - S Dubos
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - E Mengelle
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - C Kim
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - M Bounouba
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - E Paul
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - S Pommier
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Y Bessiere
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| |
Collapse
|
15
|
Han Z, Qi F, Li R, Wang H, Sun D. Health impact of odor from on-situ sewage sludge aerobic composting throughout different seasons and during anaerobic digestion with hydrolysis pretreatment. CHEMOSPHERE 2020; 249:126077. [PMID: 32045752 DOI: 10.1016/j.chemosphere.2020.126077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/19/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Aerobic composting and anaerobic digestion with hydrolysis pretreatment are two mainstream methods used to recycle and reclaim sewage sludge. However, during these sludge treatment processes, many odors are emitted that may cause severe emotional disturbance and health risks to those exposed. This study identified odor pollution (i.e. sensory influence, odor contribution, and human risks) from samples collected during sludge aerobic composting throughout different seasons as well as during anaerobic digestion with hydrolysis pretreatment. Odor intensity, odor active values, and permissible concentration-time weighted averages for ammonia and five volatile sulfur compounds were assessed. The results revealed serious odor pollution from all sampling sites during aerobic composting, especially in winter. Excessively strong odors were identified in the composting workshop, with total odor active values between 997 and 8980 which accounted for 78.45%-96.18% of the total sludge aerobic composting plant. Levels of ammonia and dimethyl disulfide in the ambient air were high enough to harm employees' health. During anaerobic digestion, excessively strong odors were identified in dehydration workshop 2, and the total odor active values of six odors reached 32,268, with ammonia and hydrogen sulfide levels significant enough to harm human health.
Collapse
Affiliation(s)
- Zhangliang Han
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Ruoyu Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hui Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Dezhi Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
16
|
Value-added co-products from biomass of the diatoms Staurosirella pinnata and Phaeodactylum tricornutum. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Chen Q, Wu W, Qi D, Ding Y, Zhao Z. Review on microaeration-based anaerobic digestion: State of the art, challenges, and prospectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136388. [PMID: 31923694 DOI: 10.1016/j.scitotenv.2019.136388] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
Microaeration (dosing small quantities of air or oxygen) is an effective approach to facilitate anaerobic digestion (AD) process and has gained increased attention in recent years. The underlying mechanisms of the facilitation effect of microaeration on AD process were reviewed in terms of accelerating hydrolysis, scavenging hydrogen sulfide, and affecting microbial diversity. Process parameters and control strategies were summarized to reveal considerable factors in implementing microaeration-based AD process. In addition, current applications, including lab-, pilot- and full-scale level cases, were summarized to provide guidance for further improvement in large-scale applications. The challenges and future perspectives were also highlighted to promote the development of AD process associated with microaeration.
Collapse
Affiliation(s)
- Qing Chen
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China
| | - Wanqing Wu
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China.
| | - Dacheng Qi
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China
| | - Yihong Ding
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China
| | - Zihao Zhao
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China
| |
Collapse
|
18
|
Li X, Zhan Y, Su L, Chen Y, Chen M, Zhang L, Zhen G, Han Z, Chai X. Sequestration of Sulphide from Biogas by thermal-treated iron nanoparticles synthesized using tea polyphenols. ENVIRONMENTAL TECHNOLOGY 2020; 41:741-750. [PMID: 30092715 DOI: 10.1080/09593330.2018.1509891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Dark tea-iron nanoparticles (DT-Fe NPs) were prepared using extracts of dark tea leaves as a reducing agent, and further underwent thermal treatment in air. The H2S removal performances of thermal-treated DT-Fe NPs for biogas were further evaluated using a custom-designed fixed-bed reactor (reaction temperature of 250°C, H2S content of 1%). Significant morphology and chemical composition differences were observed when DT-Fe NPs were treated at different temperatures (300-800oC). X-ray diffractometer analysis revealed that a phase transition from γ-Fe2O3 to α-Fe2O3 occurred under heat treatment. When the thermal treatment temperature was 300°C, only α-Fe2O3 was detected. Both α-Fe2O3 and γ-Fe2O3 were present in the sample treated at 400°C. When the thermal treatment temperature was 500-800°C, γ-Fe2O3 in the sample was completely converted to α-Fe2O3. The H2S removal capacity is 14.72 mg H2S/g for DT-Fe NPs without treatment. However, the value increased significantly to 408.30 mg H2S/g after 400°C thermal treatment, which can be explained by the formation of highly active γ-Fe2O3. The reaction product of thermal-treated DT-Fe NPs at 400°C and H2S were further characterized by X-ray diffractometer and X-ray photoelectron spectroscopy. The results showed that it is composed of FeS2 and FeS, in which 72.6% of the sulphur existed as disulphide and 27.4% as monosulphide.
Collapse
Affiliation(s)
- Xiaolin Li
- Nanjing Institute of Environmental Sciences of the Ministry of Environmental Protection, Nanjing, People's Republic of China
- College of Environment, Hohai University, Nanjing, People's Republic of China
| | - Yongxing Zhan
- Jiangsu Taihu Planning and Design Institute of Water Resources Co., Ltd., Suzhou, People's Republic of China
| | - Lianghu Su
- Nanjing Institute of Environmental Sciences of the Ministry of Environmental Protection, Nanjing, People's Republic of China
| | - Yudong Chen
- Nanjing Institute of Environmental Sciences of the Ministry of Environmental Protection, Nanjing, People's Republic of China
| | - Mei Chen
- Nanjing Institute of Environmental Sciences of the Ministry of Environmental Protection, Nanjing, People's Republic of China
| | - Longjiang Zhang
- Nanjing Institute of Environmental Sciences of the Ministry of Environmental Protection, Nanjing, People's Republic of China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Zhihua Han
- Nanjing Institute of Environmental Sciences of the Ministry of Environmental Protection, Nanjing, People's Republic of China
| | - Xiaoli Chai
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
19
|
Sousa MR, Oliveira CJS, Carneiro JM, Lopes AC, Rodríguez E, Vasconcelos EAF, Holanda GBM, Landim PGC, Silva MER, Firmino PIM, Dos Santos AB. Evaluation of different air dosing strategies to enhance H 2S removal in microaerobic systems treating low-strength wastewaters. ENVIRONMENTAL TECHNOLOGY 2019; 40:3724-3734. [PMID: 29888986 DOI: 10.1080/09593330.2018.1487470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to evaluate different air dosing strategies such as microaeration flow rates and air dosing points to enhance H2S removal in microaerobic systems treating low-strength wastewaters. Efficiency and stability of the reactors, as well as biogas quality, were assessed, and microbial community changes were evaluated using the PCR-DGGE technique. The results showed that the air dosing point affected the H2S concentration and that air dosing at the headspace promoted the highest H2S removal efficiency. The airflow rate also affected the process, since H2S concentration in the biogas was higher at 0.1 mL air.min-1 than at 0.3 mL air.min-1. The methane concentration in the biogas was also affected by both air dosing point and flow rate, since the lowest value was observed at the highest airflow rate of the headspace dosing point, due to dilution by the N2 influx applied to the system. The highest productivity and operational efficiency were observed at this air dosing point, with this airflow (HD0.3), which corroborates with the operational results and the ecological parameters, since the microaeration at this stage promoted high bacterial and archaeal species richness and diversity, optimum functional organization, high COD and H2S removal efficiencies.
Collapse
Affiliation(s)
- M R Sousa
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - C J S Oliveira
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - J M Carneiro
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - A C Lopes
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - E Rodríguez
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - E A F Vasconcelos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - G B M Holanda
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - P G C Landim
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - M E R Silva
- Department of Civil Construction, Federal Institute of Science and Technology of Ceará, Fortaleza, Ceará, Brazil
| | - P I M Firmino
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - A B Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
20
|
Han Z, Qi F, Wang H, Li R, Sun D. Odor assessment of NH 3 and volatile sulfide compounds in a full-scale municipal sludge aerobic composting plant. BIORESOURCE TECHNOLOGY 2019; 282:447-455. [PMID: 30889536 DOI: 10.1016/j.biortech.2019.03.062] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Methods for assessing odors in municipal sewage sludge aerobic composting plants (MSSACPs) have been ineffective. This study identified the emission amount of typical odor-producing compounds, including NH3 and volatile sulfide compounds from a full-scale MSSACP, and evaluated risks of odor emissions based on odor intensity and odor active value. Results revealed all sampling sites (i.e. sludge stacking yard, composting workshop, and screening workshop) produced serious odors, especially in the composting workshop. In the composting workshop, the amounts of DMDS (174.59 μg·dry kg-1) and DMS (71.64 μg·dry kg-1) emitted were far lower than that of NH3 (6062.56 μg·dry kg-1). However, DMDS and DMS showed a similar intensity as NH3 according to odor intensity assessment. Furthermore, both of their odor active values were higher than that of NH3. Using results from both odor intensity and odor active value were more reliable for the assessment of odors from MSSACPs.
Collapse
Affiliation(s)
- Zhangliang Han
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hui Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Ruoyu Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
21
|
Ahmad W, Sethupathi S, Kanadasan G, Lau LC, Kanthasamy R. A review on the removal of hydrogen sulfide from biogas by adsorption using sorbents derived from waste. REV CHEM ENG 2019. [DOI: 10.1515/revce-2018-0048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Biogas is a vital renewable energy source that could play an effective role in fulfilling the world’s energy demand, not only in heat and power generation but also as a vehicle fuel in the future. Unfortunately, due to impurities, biogas requires a series of upgrading steps, which affects its economics and sustainability. Hydrogen sulfide (H2S) is one of the impurities that economically and environmentally hinder the biogas utilization as a source of energy. H2S removal from biogas using different technologies was extensively studied and established. One of such technology is adsorption. Adsorption by solid sorbents is considered as a suitable removal technique for toxic gases such as H2S because of its simplicity, easy handling, and environmental friendly sorbents. In this review, the utilization of waste material-based sorbent for H2S removal was appraised. Other gaseous components of biogas such as siloxanes, CO2, etc., are out of the scope of this work. The potential and effectiveness of the waste-derived sorbents, either raw waste or modified waste, were summarized in terms of its characteristics, suitability, and sustainability. The review provides an insightful analysis of different types of wastes such as sewage sludge, food waste, forestry waste, fly ash, and industrial wastes as an alternative to commercial adsorbents to adsorb H2S gas. Based on the analysis, it was concluded that if these sorbents are to be successfully commercialized, its economic analysis, regeneration conditions, and potential utilization of the spent sorbents has to be further exploited. Nevertheless, there is a great prospectus in the future for these waste materials to be utilized as sorbents for H2S removal.
Collapse
Affiliation(s)
- Waseem Ahmad
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti , Bandar Barat , 31900 Kampar, Perak , Malaysia
| | - Sumathi Sethupathi
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti , Bandar Barat , 31900 Kampar, Perak , Malaysia
| | - Gobi Kanadasan
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti , Bandar Barat , 31900 Kampar, Perak , Malaysia
| | - Lee Chung Lau
- Universiti Teknologi MARA , Sarawak Branch , Jalan Meranek, 94300 Kota Samarahan , Sarawak , Malaysia
| | - Ramesh Kanthasamy
- Faculty of Engineering, King Abdulaziz University , P.O. Box 344 , Rabigh 21911 , Saudi Arabia
| |
Collapse
|
22
|
Alfaro N, Fdz-Polanco M, Fdz-Polanco F, Díaz I. H 2 addition through a submerged membrane for in-situ biogas upgrading in the anaerobic digestion of sewage sludge. BIORESOURCE TECHNOLOGY 2019; 280:1-8. [PMID: 30743054 DOI: 10.1016/j.biortech.2019.01.135] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
In-situ upgrading of biogas in a mesophilic anaerobic digester of sewage sludge by sparging H2 through a membrane was studied. Large gas recirculation rates were required to facilitate H2 transfer to the bulk liquid phase; at ∼200 L Lreactor-1 d-1, H2 utilization efficiency averaged 94% and the specific CH4 production increased from 0.38 L Lreactor-1 d-1, during conventional digestion, to 0.54 L Lreactor-1 d-1. Sludge digestion was not compromised by elevated H2 partial pressure nor by the associated rise in the pH (8.1) because of CO2 removal. In this regard, VFA accumulation was not detected and the performance of VS removal was similar to the observed without H2 supply. Microbial analysis revealed that homoacetogens were outcompeted by hydrogenotrophic methanogens. Methanoculleus sp., Methanospirillum sp., Methanolinea sp. and Methanobacterium sp. were the hydrogenotrophic archaea present over the experiment.
Collapse
Affiliation(s)
- Natalia Alfaro
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - María Fdz-Polanco
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Fernando Fdz-Polanco
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Israel Díaz
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| |
Collapse
|
23
|
Tasca AL, Bacci di Capaci R, Tognotti L, Puccini M. Biomethane from Short Rotation Forestry and Microalgal Open Ponds: System Modeling and Life Cycle Assessment. BIORESOURCE TECHNOLOGY 2019; 273:468-477. [PMID: 30469137 DOI: 10.1016/j.biortech.2018.11.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Gasification of Short Rotation Forestry (SRF) poplar wood chips and anaerobic digestion of the microalga Chlorella vulgaris have been analyzed as alternative supply chains for the production of biomethane. Life Cycle Assessment (LCA) was performed from the biomass cultivation to the upgrading stages. Process simulation of gasification and upgrading was carried out, environmental impacts of the entire supply chains have been estimated and discussed. The highest CO2 removal has been reached by absorption on monoethanolamine. Electricity requirements heavily affect the SRF chain, while productions of carbon dioxide and fertilizers are the main sources of impact of the microalgae cultivation. The recycle of non-absorbed fertilizers, as well as integration of microalgae digestion in wastewater plants, are recommended. Capture and re-injection of the CO2 lost during the upgrading stages would result, simultaneously, in an 8.53% reduction of the atmospheric emission, and in a minor demand to promote algal growth.
Collapse
Affiliation(s)
- Andrea Luca Tasca
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy.
| | | | - Leonardo Tognotti
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | - Monica Puccini
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy.
| |
Collapse
|
24
|
Nguyen D, Khanal SK. A little breath of fresh air into an anaerobic system: How microaeration facilitates anaerobic digestion process. Biotechnol Adv 2018; 36:1971-1983. [DOI: 10.1016/j.biotechadv.2018.08.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/07/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
|
25
|
Pokorna-Krayzelova L, Bartacek J, Vejmelkova D, Alvarez AA, Slukova P, Prochazka J, Volcke EI, Jenicek P. The use of a silicone-based biomembrane for microaerobic H2S removal from biogas. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.07.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Dai X, Hu C, Zhang D, Chen Y. A new method for the simultaneous enhancement of methane yield and reduction of hydrogen sulfide production in the anaerobic digestion of waste activated sludge. BIORESOURCE TECHNOLOGY 2017; 243:914-921. [PMID: 28738546 DOI: 10.1016/j.biortech.2017.07.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
The biogas generated from anaerobic digestion (AD) also includes undesirable by-product such as hydrogen sulfide (H2S), which must be removed before the biogas can be used as a clean energy source. Therefore, it is necessary to find an appropriate strategy to simultaneously enhance the methane yield and reduce H2S production. An efficient strategy-pretreating sludge at pH 10 for 8d and adjusting the system at neutral pH to produce methane for 20d-is reported for the synchronous enhancement of methane production and reduction of H2S production during AD. The experimental results showed that the cumulative methane yield was 861.2±6.1mL/g volatile solids (VS) of sludge pretreated at pH 10 in semi-continuous stirred anaerobic reactors for 84d, an increase of 49.6% over the yield in the control. Meanwhile, the cumulative production of H2S was 144.1×10-4mL/g VS, 54.2% lower than that in the control.
Collapse
Affiliation(s)
- Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chongliang Hu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Dong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
27
|
Pokorna-Krayzelova L, Mampaey KE, Vannecke TP, Bartacek J, Jenicek P, Volcke EI. Model-based optimization of microaeration for biogas desulfurization in UASB reactors. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Simple biogas desulfurization by microaeration – Full scale experience. Anaerobe 2017; 46:41-45. [DOI: 10.1016/j.anaerobe.2017.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/25/2016] [Accepted: 01/04/2017] [Indexed: 11/22/2022]
|
29
|
The Influence of Micro-Oxygen Addition on Desulfurization Performance and Microbial Communities during Waste-Activated Sludge Digestion in a Rusty Scrap Iron-Loaded Anaerobic Digester. ENERGIES 2017. [DOI: 10.3390/en10020258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Wu M, Zhang Y, Ye Y, Lin C. In situ Removal of Hydrogen Sulfide During Biogas Fermentation at Microaerobic Condition. Appl Biochem Biotechnol 2016; 180:817-825. [PMID: 27250342 DOI: 10.1007/s12010-016-2135-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 05/10/2016] [Indexed: 12/25/2022]
Abstract
In this paper, rice straw was used as a raw material to produce biogas by anaerobic batch fermentation at 35 °C (mesophilic) or 55 °C (thermophilic). The hydrogen sulfide in biogas can be converted to S0 or sulfate and removed in-situ under micro-oxygen environment. Trace oxygen was conducted to the anaerobic fermentation tank in amount of 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, or 10.0 times stoichiometric equivalence, respectively, and the control experiment without oxygen addition was carried out. The results showed that the initial H2S concentrations of biogas are about 3235 ± 185 mg/m3 (mesophilic) or 3394 ± 126 mg/m3 (thermophilic), respectively. The desulfurization efficiency is 72.3 % (mesophilic) or 65.6 % (thermophilic), respectively, with oxygen addition by stoichiometric relation. When the oxygen feeded in amount of 2∼4 times, theoretical quantity demanded the removal efficiency of hydrogen sulfide could be over 92 %, and the oxygen residue in biogas could be maintained less than 0.5 %, which fit the requirement of biogas used as vehicle fuel or combined to the grid. Though further more oxygen addition could promote the removal efficiency of hydrogen sulfide (about 93.6 %), the oxygen residue in biogas would be higher than the application limit concentration (0.5 %). Whether mesophilic or thermophilic fermentation with the extra addition of oxygen, there were no obvious changes in the gas production and methane concentration. In conclusion, in-situ desulfurization can be achieved in the anaerobic methane fermentation system under micro-oxygen environment. In addition, air could be used as a substitute oxygen resource on the situation without strict demand for the methane content of biogas.
Collapse
Affiliation(s)
- Mengmeng Wu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yima Zhang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yuanyuan Ye
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Chunmian Lin
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
31
|
Technical, Economical, and Microbiological Aspects of the Microaerobic Process on H 2S Removal for Low Sulfate Concentration Wastewaters. Appl Biochem Biotechnol 2016; 180:1386-1400. [PMID: 27364332 DOI: 10.1007/s12010-016-2174-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
Abstract
We studied the feasibility of the microaerobic process, in comparison with the traditional chemical absorption process (NaOH), on H2S removal in order to improve the biogas quality. The experiment consisted of two systems: R1, biogas from an anaerobic reactor was washed in a NaOH solution, and R2, headspace microaeration with atmospheric air in a former anaerobic reactor. The microaeration used for low sulfate concentration wastewater did not affect the anaerobic digestion, but even increased system stability. Methane production in the R2 was 14 % lower compared to R1, due to biogas dilution by the atmospheric air used. The presence of oxygen in the biogas reveals that not all the oxygen was consumed for sulfide oxidation in the liquid phase indicating mass transfer limitations. The reactor was able to rapidly recover its capacity on H2S removal after an operational failure. Bacterial and archaeal richness shifted due to changes in operational parameters, which match with the system functioning. Finally, the microaerobic system seems to be more advantageous for both technical and economical reasons, in which the payback of microaerobic process for H2S removal was 4.7 months.
Collapse
|
32
|
Meng Y, Jost C, Mumme J, Wang K, Linke B. Oxygen tolerance capacity of upflow anaerobic solid-state (UASS) with anaerobic filter (AF) system. J Environ Sci (China) 2016; 45:200-206. [PMID: 27372134 DOI: 10.1016/j.jes.2016.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 06/06/2023]
Abstract
In order to investigate the oxygen tolerance capacity of upflow anaerobic solid-state (UASS) with anaerobic filter (AF) system, the effect of microaeration on thermophilic anaerobic digestion of maize straw was investigated under batch conditions and in the UASS with AF system. Aeration intensities of 0-431mL O2/gvs were conducted as pretreatment under batch conditions. Aeration pretreatment obviously enhanced anaerobic digestion and an aeration intensity of 431mL O2/gvs increased the methane yield by 82.2%. Aeration intensities of 0-355mL O2/gvs were conducted in the process liquor circulation of the UASS with AF system. Dissolved oxygen (DO) of UASS and AF reactors kept around 1.39±0.27 and 0.99±0.38mg/L, respectively. pH was relatively stable around 7.11±0.04. Volatile fatty acids and soluble chemical oxygen demand concentration in UASS reactor were higher than those in AF reactor. Methane yield of the whole system was almost stable at 85±7mL/gvs as aeration intensity increased step by step. The UASS with AF system showed good oxygen tolerance capacity.
Collapse
Affiliation(s)
- Yao Meng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Department Bioengineering, Leibniz Institute for Agricultural Engineering, Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - Carsten Jost
- Department Bioengineering, Leibniz Institute for Agricultural Engineering, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Jan Mumme
- UK Biochar Centre, School of GeoSciences, University of Edinburgh, Crew Building, King's Buildings, Edinburgh EH9 3JN, UK
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Bernd Linke
- Department Bioengineering, Leibniz Institute for Agricultural Engineering, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| |
Collapse
|
33
|
Su L, Zhen G, Zhang L, Zhao Y, Niu D, Chai X. The use of the core-shell structure of zero-valent iron nanoparticles (NZVI) for long-term removal of sulphide in sludge during anaerobic digestion. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:2013-2021. [PMID: 26565792 DOI: 10.1039/c5em00470e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A core-shell structure results in zero-valent iron nanoparticles (NZVI) with manifold functional properties. In this study, the long-term effects of NZVI on hydrogen sulphide removal in an anaerobic sludge digester were investigated. Within 20 days, the average hydrogen sulphide content in the biogas was successfully reduced from 300 (or 3620 of sulphate-rich sludge) mg Nm(-3) to 6.1 (121), 0.9 (3.3) and 0.5 (1.3) mg Nm(-3) in the presence of 0.05, 0.10 and 0.20% (wt) NZVI, respectively. Methane yield was enhanced at the low NZVI dose (0.05-0.10%) but decreased at the elevated dose (0.20%). Methane production and volatile solid degradation analyses implied that doses of 0.5-0.10% NZVI could accelerate sludge stabilization during anaerobic digestion. The phosphorus fractionation profile suggested that methane production could be inhibited at the elevated NZVI dose, partly due to the limited availability of soluble phosphorus due to the immobilization of bioavailable-P through the formation of vivianite. An analysis of the reducible inorganic sulphur species revealed that the elimination of hydrogen sulphide occurred via the reaction between hydrogen sulphide and the oxide shell of NZVI, which mainly formed FeS and some FeS2 and S(0).
Collapse
Affiliation(s)
- Lianghu Su
- Nanjing Institute of Environmental Sciences of the Ministry of Environmental Protection, 210046, Nanjing, PR China. and The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 200092, Shanghai, PR China.
| | - Guangyin Zhen
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 200092, Shanghai, PR China. and Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Longjiang Zhang
- Nanjing Institute of Environmental Sciences of the Ministry of Environmental Protection, 210046, Nanjing, PR China.
| | - Youcai Zhao
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 200092, Shanghai, PR China.
| | - Dongjie Niu
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 200092, Shanghai, PR China.
| | - Xiaoli Chai
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 200092, Shanghai, PR China.
| |
Collapse
|
34
|
Pokorna D, Zabranska J. Sulfur-oxidizing bacteria in environmental technology. Biotechnol Adv 2015; 33:1246-59. [DOI: 10.1016/j.biotechadv.2015.02.007] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 02/02/2015] [Accepted: 02/12/2015] [Indexed: 11/16/2022]
|
35
|
Bayrakdar A, Tilahun E, Calli B. Biogas desulfurization using autotrophic denitrification process. Appl Microbiol Biotechnol 2015; 100:939-48. [DOI: 10.1007/s00253-015-7017-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/09/2015] [Accepted: 09/16/2015] [Indexed: 11/24/2022]
|
36
|
Díaz I, Ramos I, Fdz-Polanco M. Economic analysis of microaerobic removal of H2S from biogas in full-scale sludge digesters. BIORESOURCE TECHNOLOGY 2015; 192:280-286. [PMID: 26046427 DOI: 10.1016/j.biortech.2015.05.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
The application of microaerobic conditions during sludge digestion has been proven to be an efficient method for H2S removal from biogas. In this study, three microaerobic treatments were considered as an alternative to the technique of biogas desulfurization applied (FeCl3 dosing to the digesters) in a WWTP comprising three full-scale anaerobic reactors treating sewage sludge, depending on the reactant: pure O2 from cryogenic tanks, concentrated O2 from PSA generators, and air. These alternatives were compared in terms of net present value (NPV) with a fourth scenario consisting in the utilization of iron-sponge-bed filter inoculated with thiobacteria. The analysis revealed that the most profitable alternative to FeCl3 addition was the injection of concentrated O2 (0.0019 €/m(3) biogas), and this scenario presented the highest robustness towards variations in the price of FeCl3, electricity, and in the H2S concentration.
Collapse
Affiliation(s)
- I Díaz
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| | - I Ramos
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| | - M Fdz-Polanco
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| |
Collapse
|
37
|
Díaz I, Pérez C, Alfaro N, Fdz-Polanco F. A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes. BIORESOURCE TECHNOLOGY 2015; 185:246-53. [PMID: 25770473 DOI: 10.1016/j.biortech.2015.02.114] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 05/07/2023]
Abstract
In this study, the potential of a pilot hollow-fiber membrane bioreactor for the conversion of H2 and CO2 to CH4 was evaluated. The system transformed 95% of H2 and CO2 fed at a maximum loading rate of 40.2 [Formula: see text] and produced 0.22m(3) of CH4 per m(3) of H2 fed at thermophilic conditions. H2 mass transfer to the liquid phase was identified as the limiting step for the conversion, and kLa values of 430h(-1) were reached in the bioreactor by sparging gas through the membrane module. A simulation showed that the bioreactor could upgrade biogas at a rate of 25m(3)/mR(3)d, increasing the CH4 concentration from 60 to 95%v. This proof-of-concept study verified that gas sparging through a membrane module can efficiently transfer H2 from gas to liquid phase and that the conversion of H2 and CO2 to biomethane is feasible on a pilot scale at noteworthy load rates.
Collapse
Affiliation(s)
- I Díaz
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| | - C Pérez
- Department of Process Engineering, Ros Roca Indox Cryo Energy S.L., Spain
| | - N Alfaro
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - F Fdz-Polanco
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| |
Collapse
|
38
|
Sheets JP, Ge X, Li Y. Effect of limited air exposure and comparative performance between thermophilic and mesophilic solid-state anaerobic digestion of switchgrass. BIORESOURCE TECHNOLOGY 2015; 180:296-303. [PMID: 25618499 DOI: 10.1016/j.biortech.2015.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/01/2015] [Accepted: 01/03/2015] [Indexed: 06/04/2023]
Abstract
Switchgrass is an attractive feedstock for biogas production via anaerobic digestion (AD). Many studies have used switchgrass for liquid anaerobic digestion (L-AD), but few have used switchgrass for solid-state anaerobic digestion (SS-AD). Limited air exposure to the reactor headspace has been adopted in commercial scale anaerobic digesters for different applications. However, little research has examined the effect of limited air exposure on biogas production during SS-AD. In this study, the effects of air exposure and total solids (TS) content on SS-AD performance were evaluated under mesophilic (36±1°C) and thermophilic (55±0.3°C) conditions. Limited air exposure did not significantly influence the methane yield during SS-AD. Thermophilic SS-AD had greater methane yields (102-145LCH4kg(-1)VSadded) than mesophilic SS-AD (88-113LCH4kg(-1)VSadded). Both mesophilic SS-AD (73-136GJ) and thermophilic SS-AD (2-95GJ) produced positive net energy based on a theoretical 'garage-type' SS-AD digester operating in a temperate climate.
Collapse
Affiliation(s)
- Johnathon P Sheets
- Department of Food, Agricultural and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096, USA
| | - Xumeng Ge
- Department of Food, Agricultural and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096, USA
| | - Yebo Li
- Department of Food, Agricultural and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096, USA.
| |
Collapse
|
39
|
Nghiem LD, Manassa P, Dawson M, Fitzgerald SK. Oxidation reduction potential as a parameter to regulate micro-oxygen injection into anaerobic digester for reducing hydrogen sulphide concentration in biogas. BIORESOURCE TECHNOLOGY 2014; 173:443-447. [PMID: 25306445 DOI: 10.1016/j.biortech.2014.09.052] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 06/04/2023]
Abstract
This study aims to evaluate the use of oxidation reduction potential (ORP) to regulate the injection of a small amount of oxygen into an anaerobic digester for reducing H2S concentration in biogas. The results confirm that micro-oxygen injection can be effective for controlling H2S formation during anaerobic digestion without disturbing the performance of the digester. Biogas production, composition, and the removal of volatile solids (VS) and chemical oxygen demand (COD) were monitored to assessment the digester's performance. Six days after the start of the micro-oxygen injection, the ORP values increased to between -320 and -270 mV, from the natural baseline value of -485 mV. Over the same period the H2S concentration in the biogas decreased from over 6000 ppm to just 30 ppm. No discernible changes in the VS and COD removal rates, pH and alkalinity of the digestate or in the biogas production or composition were observed.
Collapse
Affiliation(s)
- Long D Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Patrick Manassa
- Strategic Water Infrastructure Laboratory, School of Civil Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marcia Dawson
- Sydney Water Corporation, Parramatta, NSW 2124, Australia
| | | |
Collapse
|
40
|
Ramos I, Peña M, Fdz-Polanco M. Where does the removal of H₂S from biogas occur in microaerobic reactors? BIORESOURCE TECHNOLOGY 2014; 166:151-157. [PMID: 24907574 DOI: 10.1016/j.biortech.2014.05.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/10/2014] [Accepted: 05/17/2014] [Indexed: 06/03/2023]
Abstract
In order to maximise the efficiency of biogas desulphurisation and reduce the oxygen cost during microaerobic digestion, it is essential to know how the process occurs. For this purpose, a reactor with a total volume of 266 L, treating 10 L/d of sewage sludge, was operated with 25.0 L and without headspace. Under anaerobic conditions, the H2S concentration in the biogas varied between 0.21 and 0.38%v/v. Next, O2 was supplied from the bottom of the reactor. At 0.25-0.30 NLO₂/Lfed, the biogas was entirely desulphurised, and its O₂ content remained below 1.03%v/v, when the digester had 25.0 L of gas space. However, with almost no headspace, the H2S content in the biogas fluctuated from 0.08 to 0.21%v/v, while the average O2 concentration was 1.66%v/v. The removed H2S accumulated in the outlet pipe of the biogas in the form of S(0) due to the insufficient headspace.
Collapse
Affiliation(s)
- I Ramos
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| | - M Peña
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| | - M Fdz-Polanco
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| |
Collapse
|
41
|
Chen A, Zeng G, Chen G, Zhang C, Yan M, Shang C, Hu X, Lu L, Chen M, Guo Z, Zuo Y. Hydrogen sulfide alleviates 2,4-dichlorophenol toxicity and promotes its degradation in Phanerochaete chrysosporium. CHEMOSPHERE 2014; 109:208-212. [PMID: 24530160 DOI: 10.1016/j.chemosphere.2014.01.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/21/2014] [Accepted: 01/21/2014] [Indexed: 06/03/2023]
Abstract
In this study, the H2S donor, sodium hydrosulfide (NaHS) was used to pretreat Phanerochaete chrysosporium in order to improve its ability to degrade 2,4-dichlorophenol (2,4-DCP). When pretreated with 100μM NaHS, P. chrysosporium was able to degrade 2,4-DCP completely in 24h, whereas the degradation efficiency of the untreated control was only 57%. The 2,4-DCP-induced oxidative stress was alleviated by NaHS, and the percentage of surviving cells increased by 32%. H2S or HS(-), rather than other compounds derived from NaHS, were responsible for promoting 2,4-DCP degradation by P. chrysosporium. The results of this study suggest that H2S treatment is a potential strategy to alleviate environmental stress and improve the efficiency of the biological removal of pollutants from wastewater.
Collapse
Affiliation(s)
- Anwei Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Guiqiu Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Cui Shang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lunhui Lu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhi Guo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yanan Zuo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
42
|
Ramos I, Pérez R, Reinoso M, Torio R, Fdz-Polanco M. Microaerobic digestion of sewage sludge on an industrial-pilot scale: the efficiency of biogas desulphurisation under different configurations and the impact of O2 on the microbial communities. BIORESOURCE TECHNOLOGY 2014; 164:338-346. [PMID: 24874874 DOI: 10.1016/j.biortech.2014.04.109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 06/03/2023]
Abstract
Biogas produced in an industrial-pilot scale sewage sludge reactor (5m(3)) was desulphurised by imposing microaerobic conditions. The H2S concentration removal efficiency was evaluated under various configurations: different mixing methods and O2 injection points. Biogas was entirely desulphurised under all the configurations set, while the O2 demand of the digester decreased over time. Although the H2S removal seemed to occur in the headspace, S(0) (which was found to be the main oxidation product) was scarcely deposited there in the headspace. O2 did not have a significant impact on the digestion performance; the VS removal remained around 47%. Conversely, DGGE revealed that the higher O2 transfer rate to the sludge maintained by biogas recirculation increased the microbial richness and evenness, and caused an important shift in the structure of the bacterial and the archaeal communities in the long term. All the archaeal genera identified (Methanosaeta, Methanospirillum and Methanoculleus) were present under both anaerobic and microaerobic conditions.
Collapse
Affiliation(s)
- I Ramos
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| | - R Pérez
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| | - M Reinoso
- Socamex S.A.U (Grupo Urbaser), Polígono Industrial San Cristóbal, C/Cobalto 12, 47012 Valladolid, Spain.
| | - R Torio
- Socamex S.A.U (Grupo Urbaser), Polígono Industrial San Cristóbal, C/Cobalto 12, 47012 Valladolid, Spain.
| | - M Fdz-Polanco
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| |
Collapse
|
43
|
Ramos I, Fdz-Polanco M. The potential of oxygen to improve the stability of anaerobic reactors during unbalanced conditions: results from a pilot-scale digester treating sewage sludge. BIORESOURCE TECHNOLOGY 2013; 140:80-85. [PMID: 23672942 DOI: 10.1016/j.biortech.2013.04.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 06/02/2023]
Abstract
A well-functioning pilot reactor treating sewage sludge at approximately 4.4 NL/m(3)/d of oxygen supply and 18d of hydraulic retention time (HRT) was subjected to a hydraulic overload to investigate whether oxygen benefits successful operation in stressful circumstances. Only a mild imbalance was caused, which was overcome without deterioration in the digestion performance. Volatile solids (VS) removal was 45% and 43% at 18 and 14 d of HRT, respectively. Biogas productivity remained around 546 NmL/gVS, but it was slightly higher during the period of imbalance. Thereafter, similar performances were achieved. Under anaerobic conditions, VS removal and biogas productivity were respectively 41% and 525 NmL/gVS, hydrogen partial pressure rose, and acetic acid formation became less favourable. Oxygen seemed to form a more stable digestion system, which meant increased ability to deal successfully with overloads. Additionally, it improved the biogas quality; methane concentration was negligibly lower, while hydrogen sulphide and oxygen remained around 0.02 and 0.03%v/v, respectively.
Collapse
Affiliation(s)
- I Ramos
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| | | |
Collapse
|
44
|
Carvajal A, Peña M, Pérez-Elvira S. Autohydrolysis pretreatment of secondary sludge for anaerobic digestion. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.03.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Su L, Zhao Y. Chemical reduction of odour in fresh sewage sludge in the presence of ferric hydroxide. ENVIRONMENTAL TECHNOLOGY 2013; 34:165-172. [PMID: 23530327 DOI: 10.1080/09593330.2012.689362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
To assess the potential of ferric hydroxide (FH) to reduce odour emission from dewatered sewage sludge with a moisture of approximately 86%, odour reduction was evaluated using an electronic nose and measurements of odorous compounds (hydrogen sulphide, ammonia and volatile fatty acids (VFAs)). The sulphur species including sulphate, acid-volatile sulphide (AVS), Cr(II)-reducible sulphide (CRS) and elemental sulphur (ES), were analysed by a modified cold diffusion sequential extraction method before and after anaerobic incubation. Within 32 days, 69.3, 83.8 and 88.6% of the odour (or 81.3, 93.7 and 97.5% of hydrogen sulphide) were eliminated, respectively, at the rates of 0.05, 0.10 and 0.25% (wt) of FH. The sulphur species analysis indicated that FeS, FeS2 and a small portion of S0 were formed by FH-sulphide reaction. This study also found that the relationship between odour and H2S concentrations could be well expressed by Steven's law. We believe that FH can be a cost-effective reagent for sludge odour control in sewage treatment processes.
Collapse
Affiliation(s)
- Lianghu Su
- School of Environmental Science and Engineering, The State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, China
| | | |
Collapse
|
46
|
Peu P, Picard S, Diara A, Girault R, Béline F, Bridoux G, Dabert P. Prediction of hydrogen sulphide production during anaerobic digestion of organic substrates. BIORESOURCE TECHNOLOGY 2012; 121:419-424. [PMID: 22864178 DOI: 10.1016/j.biortech.2012.06.112] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/29/2012] [Accepted: 06/30/2012] [Indexed: 06/01/2023]
Abstract
The main objective of this study was to develop a methodology to predict the hydrogen sulphide content of raw biogas produced during anaerobic mono-digestion of a bioenergy feedstock. Detailed chemical and biological analyses were made on 37 different feedstocks originating from urban wastewater treatment plants, farms, agri-food facilities and municipal wastes. Total sulphur content ranged from 1 to 29.6 mg S/kg of total solids, and 66% of the feedstocks analysed contained less than 5 mg S/kg of total solids. The biochemical methanogenic potential and biochemical biogas potential of each feedstock combined with its S content were used to predict appearance of H(2)S in the raw biogas. A model to link H(2)S in biogas with the carbon:sulphur ratio was established. Based on this model, a minimum carbon:sulphur ratio of 40 is required in feedstock to limit the concentration of hydrogen sulphide in raw biogas to less than 2% (volume/volume).
Collapse
Affiliation(s)
- Pascal Peu
- IRSTEA, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes, France.
| | | | | | | | | | | | | |
Collapse
|
47
|
Peu P, Sassi JF, Girault R, Picard S, Saint-Cast P, Béline F, Dabert P. Sulphur fate and anaerobic biodegradation potential during co-digestion of seaweed biomass (Ulva sp.) with pig slurry. BIORESOURCE TECHNOLOGY 2011; 102:10794-10802. [PMID: 21982451 DOI: 10.1016/j.biortech.2011.08.096] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 08/18/2011] [Accepted: 08/22/2011] [Indexed: 05/31/2023]
Abstract
Seaweed (Ulva sp.) stranded on beaches were utilized as co-substrate for anaerobic digestion of pig slurry in three-month co-digestion tests in pilot scale anaerobic digesters in the laboratory. The methanogenic potential of Ulva sp. was low compared to that of other potential co-substrates available for use by farmers: 148 N m3CH4/t of volatile solids or 19 N m3CH4/t of crude product. When used as a co-substrate with pig manure (48%/52% w/w), Ulva sp. seaweed did not notably disrupt the process of digestion; however, after pilot stabilisation, biogas produced contained 3.5% H2S, making it unsuitable for energy recovery without treatment. Sequentially addition of the sulphate reduction inhibitor, potassium molybdate, to a final concentration of 3mM, temporarily reduced H2S emissions, but was unable to sustain this reduction over the three-month period. According to these pilot tests, the use of seaweed stranded on beaches as co-substrate in farm-based biogas plants shows some limitations.
Collapse
Affiliation(s)
- P Peu
- Cemagref, UR GERE, 17 avenue de Cucillé, CS 64427, F-35044 Rennes, France.
| | | | | | | | | | | | | |
Collapse
|
48
|
Díaz I, Donoso-Bravo A, Fdz-Polanco M. Effect of microaerobic conditions on the degradation kinetics of cellulose. BIORESOURCE TECHNOLOGY 2011; 102:10139-10142. [PMID: 21906933 DOI: 10.1016/j.biortech.2011.07.096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/23/2011] [Accepted: 07/26/2011] [Indexed: 05/31/2023]
Abstract
Limited oxygen supply to sludge digesters has shown to be an effective method to eliminate hydrogen sulfide from the biogas produced during anaerobic digestion but uneven results have been found in terms of the effect on the degradation of complex organic matter. In this study, the effect that the limited oxygen supply provoked on the "anaerobic" degradation of cellulose was evaluated in batch-tests. The microaerobic assays showed to reach a similar maximum production of methane than the anaerobic ones after 19 d and a similar hydrolytic activity (considering a first order rate constant); however, the microaerobic assays presented a shorter lag-phase time than the anaerobic test resulting in faster production of methane during the first steps of the degradation; specifically, the maximum methane production found in the anaerobic test in 19 d was found in the microaerobic test before the day 15.
Collapse
Affiliation(s)
- I Díaz
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | | | | |
Collapse
|
49
|
Díaz I, Pérez SI, Ferrero EM, Fdz-Polanco M. Effect of oxygen dosing point and mixing on the microaerobic removal of hydrogen sulphide in sludge digesters. BIORESOURCE TECHNOLOGY 2011; 102:3768-3775. [PMID: 21193305 DOI: 10.1016/j.biortech.2010.12.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 05/30/2023]
Abstract
Limited oxygen supply to anaerobic sludge digesters to remove hydrogen sulphide from biogas was studied. Micro-oxygenation showed competitive performance to reduce considerably the additional equipment necessary to perform biogas desulphurization. Two pilot-plant digesters with an HRT of ∼ 20 d were micro-oxygenated at a rate of 0.25 NL per L of feed sludge with a removal efficiency higher than 98%. The way of mixing (sludge or biogas recirculation) and the point of oxygen supply (headspace or liquid phase) played an important role on hydrogen sulphide oxidation. While micro-oxygenation with sludge recirculation removed only hydrogen sulphide from the biogas, dissolved sulphide was removed if micro-oxygenation was performed with biogas recirculation. Dosage in the headspace resulted in a more stable operation. The result of the hydrogen sulphide oxidation was mostly elemental sulphur, partially accumulated in the headspace of the digester, where different sulphide-oxidising bacteria were found.
Collapse
Affiliation(s)
- I Díaz
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | | | | | | |
Collapse
|
50
|
Beristain-Cardoso R, Gómez J, Méndez-Pampín R. Sulfide and ammonium oxidation, acetate mineralization by denitrification in a multipurpose UASB reactor. BIORESOURCE TECHNOLOGY 2011; 102:2549-2554. [PMID: 21146980 DOI: 10.1016/j.biortech.2010.11.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/18/2010] [Accepted: 11/19/2010] [Indexed: 05/30/2023]
Abstract
The physiological and kinetic behavior of a denitrifying granular sludge exposed to different sulfide loading rates (55-295 mg/L d) were evaluated in a UASB reactor fed with acetate, ammonium and nitrate. At any sulfide loading rates, the consumption efficiencies of sulfide, acetate and ammonium were above 95%, while nitrate consumption efficiencies were around 62-72%. At the highest sulfide loading rate the ammonium was used as electron donor for N(2) production. The increase of sulfide loading rate also affected the fate of sulfide oxidation, since elemental sulfur was the main end product instead of sulfate. However, the lithotrophic denitrifying kinetic was not affected. FISH oligonucleotide probes for Thiobacillus denitrificans, Thiomiscropira denitrificans, genus Paracoccus and Pseudomonas spp. were used to follow the microbial ecology. The results of this work have shown that four pollutants could simultaneously be removed, namely, sulfide, ammonium, acetate and nitrate under well defined denitrifying conditions.
Collapse
Affiliation(s)
- Ricardo Beristain-Cardoso
- University of Santiago de Compostela, Department of Chemical Engineering, Santiago de Compostela, Spain.
| | | | | |
Collapse
|