1
|
Charlesworth JC, Watters C, Wong HL, Visscher PT, Burns BP. Isolation of novel quorum-sensing active bacteria from microbial mats in Shark Bay Australia. FEMS Microbiol Ecol 2019; 95:5382036. [PMID: 30877766 DOI: 10.1093/femsec/fiz035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/15/2019] [Indexed: 11/13/2022] Open
Abstract
Quorum sensing is a potent system of genetic control allowing phenotypes to be coordinated across localized communities. In this study, quorum sensing systems in Shark Bay microbial mats were delineated using a targeted approach analyzing whole mat extractions as well as the creation of an isolate library. A library of 165 isolates from different mat types were screened using the AHL biosensor E. coli MT102. Based on sequence identity 30 unique isolates belonging to Proteobacteria, Actinobacteria and Firmicutes were found to activate the AHL biosensor, suggesting AHLs or analogous compounds were potentially present. Several of the isolates have not been shown previously to produce signal molecules, particularly the members of the Actinobacteria and Firmicutes phyla including Virgibacillus, Halobacillius, Microbacterium and Brevibacterium. These active isolates were further screened using thin-layer chromatography (TLC) providing putative identities of AHL molecules present within the mat communities. Nine isolates were capable of producing several spots of varying sizes after TLC separation, suggesting the presence of multiple signalling molecules. This study is the first to delineate AHL-based signalling in the microbial mats of Shark Bay, and suggests quorum sensing may play a role in the ecosphysiological coordination of complex phenotypes across microbial mat communities.
Collapse
Affiliation(s)
- James C Charlesworth
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, 2052, Australia
| | - Cara Watters
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, 2052, Australia
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, 2052, Australia
| | - Pieter T Visscher
- Australian Centre for Astrobiology, University of New South Wales, Sydney, 2052, Australia.,Department of Marine Sciences, University of Connecticut, Storrs, 06269, CT, USA
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
2
|
Wang JP, Liu B, Liu GH, Chen DJ, Zhu YJ, Chen Z, Che JM. Genome Sequence of Virgibacillus pantothenticus DSM 26T (ATCC 14576), a Mesophilic and Halotolerant Bacterium Isolated from Soil. GENOME ANNOUNCEMENTS 2015; 3:e01064-15. [PMID: 26383648 PMCID: PMC4574377 DOI: 10.1128/genomea.01064-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 11/20/2022]
Abstract
Virgibacillus pantothenticus DSM 26(T) is a Gram-positive, spore-forming, aerobic, mesophilic, and halotolerant bacterium. Here, we report its 4.76-Mb draft genome sequence, which is the first genome information of V. pantothenticus and will promote biological research and biotechnological application for the species.
Collapse
Affiliation(s)
- Jie-Ping Wang
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Bo Liu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Guo-Hong Liu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - De-Ju Chen
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Yu-Jing Zhu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Zheng Chen
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Jian-Mei Che
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Ecological roles and biotechnological applications of marine and intertidal microbial biofilms. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 146:163-205. [PMID: 24817086 DOI: 10.1007/10_2014_271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This review is a retrospective of ecological effects of bioactivities produced by biofilms of surface-dwelling marine/intertidal microbes as well as of the industrial and environmental biotechnologies developed exploiting the knowledge of biofilm formation. Some examples of significant interest pertaining to the ecological aspects of biofilm-forming species belonging to the Roseobacter clade include autochthonous bacteria from turbot larvae-rearing units with potential application as a probiotic as well as production of tropodithietic acid and indigoidine. Species of the Pseudoalteromonas genus are important examples of successful surface colonizers through elaboration of the AlpP protein and antimicrobial agents possessing broad-spectrum antagonistic activity against medical and environmental isolates. Further examples of significance comprise antiprotozoan activity of Pseudoalteromonas tunicata elicited by violacein, inhibition of fungal colonization, antifouling activities, inhibition of algal spore germination, and 2-n-pentyl-4-quinolinol production. Nitrous oxide, an important greenhouse gas, emanates from surface-attached microbial activity of marine animals. Marine and intertidal biofilms have been applied in the biotechnological production of violacein, phenylnannolones, and exopolysaccharides from marine and tropical intertidal environments. More examples of importance encompass production of protease, cellulase, and xylanase, melanin, and riboflavin. Antifouling activity of Bacillus sp. and application of anammox bacterial biofilms in bioremediation are described. Marine biofilms have been used as anodes and cathodes in microbial fuel cells. Some of the reaction vessels for biofilm cultivation reviewed are roller bottle, rotating disc bioreactor, polymethylmethacrylate conico-cylindrical flask, fixed bed reactor, artificial microbial mats, packed-bed bioreactors, and the Tanaka photobioreactor.
Collapse
|
4
|
Induced Biofilm Cultivation Enhances Riboflavin Production by an Intertidally Derived Candida famata. Appl Biochem Biotechnol 2012; 166:1991-2006. [DOI: 10.1007/s12010-012-9626-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
|
5
|
Cellulase and xylanase activity in relation to biofilm formation by two intertidal filamentous fungi in a novel polymethylmethacrylate conico-cylindrical flask. Bioprocess Biosyst Eng 2011; 34:1087-101. [DOI: 10.1007/s00449-011-0559-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/23/2011] [Indexed: 11/26/2022]
|
6
|
Mitra S, Sarkar S, Gachhui R, Mukherjee J. A novel conico-cylindrical flask aids easy identification of critical process parameters for cultivation of marine bacteria. Appl Microbiol Biotechnol 2011; 90:321-30. [PMID: 21210106 DOI: 10.1007/s00253-010-3041-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/23/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
Abstract
A polymethylmethacrylate (PMMA) conico-cylindrical flask (CCF) with an inner arrangement consisting of eight equidistantly spaced rectangular strips mounted radially on a circular disk to provide additional surface area for microbial attachment and ports to allow air supply was employed for melanin production by Shewanella colwelliana and antibiotic production by Pseudoalteromonas rubra. The design allowed comparison of production between (1) CCF with hydrophobic surface (PMMA-CCF), (2) CCF with hydrophilic glass surface (GS-CCF), and (3) standard unbaffled Erlenmeyer flask (EF). Melanin production in the PMMA-CCF was higher by at most 33.5% and growth of S. colwelliana by at most 309.2% compared to the other vessels. Melanin synthesis was positively correlated with reactor surface area and hydrophobicity, suspended cell growth, and biofilm formation. Antibiotic production in the EF was higher by at most 83.3%, but growth of P. rubra was higher in the PMMA-CCF by at most 54.5% compared to the other vessels. A hydrophilic vessel surface, abundant air supply, but low shear stress enhanced antibiotic production. The CCF together with the EF allowed identification of the crucial parameters (vessel surface characteristics, growth, biofilm formation, and aeration) influencing productivity, knowledge of which in the initial stages of process development will facilitate informed decisions at the later phases.
Collapse
Affiliation(s)
- Sayani Mitra
- School of Environmental Studies, Jadavpur University, Kolkata, 700 032, India
| | | | | | | |
Collapse
|