1
|
Garg S, Behera S, Ruiz HA, Kumar S. A Review on Opportunities and Limitations of Membrane Bioreactor Configuration in Biofuel Production. Appl Biochem Biotechnol 2023; 195:5497-5540. [PMID: 35579743 DOI: 10.1007/s12010-022-03955-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/02/2022] [Indexed: 12/13/2022]
Abstract
Biofuels are a clean and renewable source of energy that has gained more attention in recent years; however, high energy input and processing cost during the production and recovery process restricted its progress. Membrane technology offers a range of energy-saving separation for product recovery and purification in biorefining along with biofuel production processes. Membrane separation techniques in combination with different biological processes increase cell concentration in the bioreactor, reduce product inhibition, decrease chemical consumption, reduce energy requirements, and further increase product concentration and productivity. Certain membrane bioreactors have evolved with the ability to deal with different biological production and separation processes to make them cost-effective, but there are certain limitations. The present review describes the advantages and limitations of membrane bioreactors to produce different biofuels with the ability to simplify upstream and downstream processes in terms of sustainability and economics.
Collapse
Affiliation(s)
- Shruti Garg
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India
- Department of Microbiology, Guru Nanak Dev University, Grand Trunk Road, Amritsar, Punjab, 143040, India
| | - Shuvashish Behera
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India.
- Department of Alcohol Technology and Biofuels, Vasantdada Sugar Institute, Manjari (Bk.), Pune, 412307, India.
| | - Hector A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280, Saltillo, Coahuila, Mexico
| | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India.
| |
Collapse
|
2
|
In-situ recovery of butanol from ABE fermentation solution by hydrophobic ionic liquid perstraction in tubular membranes assisted with vacuum. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
3
|
Si Z, Wu H, Qin P, Van der Bruggen B. Polydimethylsiloxane based membranes for biofuels pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Review of alternative technologies for acetone-butanol-ethanol separation: Principles, state-of-the-art, and development trends. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Teke GM, Tai SL, Pott RWM. Extractive Fermentation Processes: Modes of Operation and Application. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- George M. Teke
- University of Stellenbosch Department of Process Engineering Stellenbosch South Africa
| | - Siew L. Tai
- University of Cape Town Department of Chemical Engineering Cape Town South Africa
| | - Robert W. M. Pott
- University of Stellenbosch Department of Process Engineering Stellenbosch South Africa
| |
Collapse
|
6
|
Contreras-Martínez J, Mohsenpour S, Ameen AW, Budd PM, García-Payo C, Khayet M, Gorgojo P. High-Flux Thin Film Composite PIM-1 Membranes for Butanol Recovery: Experimental Study and Process Simulations. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42635-42649. [PMID: 34469119 DOI: 10.1021/acsami.1c09112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thin film composite (TFC) membranes of the prototypical polymer of intrinsic microporosity (PIM-1) have been prepared by dip-coating on a highly porous electrospun polyvinylidene fluoride (PVDF) nanofibrous support. Prior to coating, the support was impregnated in a non-solvent to avoid the penetration of PIM-1 inside the PVDF network. Different non-solvents were considered and the results were compared with those of the dry support. When applied for the separation of n-butanol/water mixtures by pervaporation (PV), the developed membranes exhibited very high permeate fluxes, in the range of 16.1-35.4 kg m-2 h-1, with an acceptable n-butanol/water separation factor of about 8. The PV separation index (PSI) of the prepared membranes is around 115, which is among the highest PSI values that have been reported so far. Hybrid PV-distillation systems have been designed and modeled in Aspen HYSYS using Aspen Custom Modeler for setting up the PIM-1 TFC and commercial PDMS membranes as a benchmark. The butanol recovery cost for the hybrid systems is compared with a conventional stand-alone distillation process used for n-butanol/water separation, and a 10% reduction in recovery cost was obtained.
Collapse
Affiliation(s)
- Jorge Contreras-Martínez
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
| | - Sajjad Mohsenpour
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
| | - Ahmed W Ameen
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
| | - Peter M Budd
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
| | - Carmen García-Payo
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Mohamed Khayet
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Madrid Institute for Advanced Studies of Water (IMDEA Water Institute), Avda. Punto Com No 2, Alcalá de Henares, 28805 Madrid, Spain
| | - Patricia Gorgojo
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
- Nanoscience and Materials Institute of Aragón (INMA) CSIC-Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
7
|
Karaveli O, Deniz I. Key Challenges of Microbial Degradation of Keratinous Wastes. Protein J 2021; 40:361-366. [PMID: 33550498 DOI: 10.1007/s10930-021-09966-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 11/30/2022]
Abstract
Feather is the main waste of poultry industries and constitutes of 90% keratin. Wastes composed of keratin are insoluble and recalcitrant to degradation using conventional decomposing methods. Microbial degradation for keratinous wastes is a promising approach for being eco-friendly and economically. However, due to insolubility of keratinous waste, it has several challenges in upstream and downstream processes such as culture medium optimization, designing of bioreactor, bioreaction/flow type, bioreactor configurations considering mass and heat transfer limitations, rheology derived problems, monitoring of microbial activity, choosing of the right scale-up parameter and purification. In this study, the challenges for keratin degradation processes were discussed with the aim of opening new opportunities for keratinous waste treatments in industrial level.
Collapse
Affiliation(s)
- Ozlem Karaveli
- Bioengineering Department, Faculty of Engineering, Manisa Celal Bayar University, Muradiye, 45140, Manisa, Turkey
| | - Irem Deniz
- Bioengineering Department, Faculty of Engineering, Manisa Celal Bayar University, Muradiye, 45140, Manisa, Turkey.
| |
Collapse
|
8
|
Vees CA, Neuendorf CS, Pflügl S. Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives. J Ind Microbiol Biotechnol 2020; 47:753-787. [PMID: 32894379 PMCID: PMC7658081 DOI: 10.1007/s10295-020-02296-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
The sustainable production of solvents from above ground carbon is highly desired. Several clostridia naturally produce solvents and use a variety of renewable and waste-derived substrates such as lignocellulosic biomass and gas mixtures containing H2/CO2 or CO. To enable economically viable production of solvents and biofuels such as ethanol and butanol, the high productivity of continuous bioprocesses is needed. While the first industrial-scale gas fermentation facility operates continuously, the acetone-butanol-ethanol (ABE) fermentation is traditionally operated in batch mode. This review highlights the benefits of continuous bioprocessing for solvent production and underlines the progress made towards its establishment. Based on metabolic capabilities of solvent producing clostridia, we discuss recent advances in systems-level understanding and genome engineering. On the process side, we focus on innovative fermentation methods and integrated product recovery to overcome the limitations of the classical one-stage chemostat and give an overview of the current industrial bioproduction of solvents.
Collapse
Affiliation(s)
- Charlotte Anne Vees
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Christian Simon Neuendorf
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| |
Collapse
|
9
|
Zhu H, Li X, Pan Y, Liu G, Wu H, Jiang M, Jin W. Fluorinated PDMS membrane with anti-biofouling property for in-situ biobutanol recovery from fermentation-pervaporation coupled process. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118225] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Techno-Economic Analysis (TEA) of Different Pretreatment and Product Separation Technologies for Cellulosic Butanol Production from Oil Palm Frond. ENERGIES 2020. [DOI: 10.3390/en13010181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Among the driving factors for the high production cost of cellulosic butanol lies the pretreatment and product separation sections, which often demand high amounts of energy, chemicals, and water. In this study, techno-economic analysis of several pretreatments and product separation technologies were conducted and compared. Among the pretreatment technologies evaluated, low-moisture anhydrous ammonia (LMAA) pretreatment has shown notable potential with a pretreatment cost of $0.16/L butanol. Other pretreatment technologies evaluated were autohydrolysis, soaking in aqueous ammonia (SAA), and soaking in sodium hydroxide solution (NaOH) with pretreatment costs of $1.98/L, $3.77/L, and $0.61/L, respectively. Evaluation of different product separation technologies for acetone-butanol-ethanol (ABE) fermentation process have shown that in situ stripping has the lowest separation cost, which was $0.21/L. Other product separation technologies tested were dual extraction, adsorption, and membrane pervaporation, with the separation costs of $0.38/L, $2.25/L, and $0.45/L, respectively. The evaluations have shown that production of cellulosic butanol using combined LMAA pretreatment and in situ stripping or with dual extraction recorded among the lowest butanol production cost. However, dual extraction model has a total solvent productivity of approximately 6% higher than those of in situ stripping model.
Collapse
|
11
|
Zhu H, Liu G, Yuan J, Chen T, Xin F, Jiang M, Fan Y, Jin W. In-situ recovery of bio-butanol from glycerol fermentation using PDMS/ceramic composite membrane. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115811] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Zheng PY, Zhang WH, Li C, Wang NX, Li J, Qin ZP, An QF. Efficient bio-ethanol recovery by non-contact vapor permeation process using membranes with tailored pore size and hydrophobicity. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.06.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Hou D, Jassby D, Nerenberg R, Ren ZJ. Hydrophobic Gas Transfer Membranes for Wastewater Treatment and Resource Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11618-11635. [PMID: 31512850 DOI: 10.1021/acs.est.9b00902] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gaseous compounds, such as CH4, H2, and O2, are commonly produced or consumed during wastewater treatment. Traditionally, these gases need to be removed or delivered using gas sparging or liquid heating, which can be energy intensive with low efficiency. Hydrophobic membranes are being increasingly investigated in wastewater treatment and resource recovery. This is because these semipermeable barriers repel water and create a three-phase interface that enhances mass transfer and chemical conversions. This Critical Review provides a first comprehensive analysis of different hydrophobic membranes and processes, and identifies the challenges and potential for future system development. The discussions and analyses were grouped based on mechanisms and applications, including membrane gas extraction, membrane gas delivery, and hybrid processes. Major challenges, such as membrane fouling, wetting, and limited selectivity and functionality, are identified, and potential solutions articulated. New opportunities, such as electrochemical coating, integrated membrane electrodes, and membrane functionalization, are also discussed to provide insights for further development of more efficient and low-cost membranes and processes.
Collapse
Affiliation(s)
- Dianxun Hou
- Department of Civil, Environmental, and Architectural Engineering , University of Colorado Boulder , Boulder , Colorado 80303 , United States
- WaterNova, Inc. , Lakewood , Colorado 80227 , United States
| | - David Jassby
- Department of Civil and Environmental Engineering , University of California , Los Angeles , California 90095 , United States
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Zhiyong Jason Ren
- Department of Civil, Environmental, and Architectural Engineering , University of Colorado Boulder , Boulder , Colorado 80303 , United States
- Department of Civil and Environmental Engineering , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
14
|
Chen T, Xu F, Zhang W, Zhou J, Dong W, Jiang Y, Lu J, Fang Y, Jiang M, Xin F. High butanol production from glycerol by using Clostridium sp. strain CT7 integrated with membrane assisted pervaporation. BIORESOURCE TECHNOLOGY 2019; 288:121530. [PMID: 31130345 DOI: 10.1016/j.biortech.2019.121530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
In this study, a unique butanol-ethanol fermentation process from glycerol integrated with pervaporation by using Clostridium sp. strain CT7 was investigated. 20.4 g/L of butanol and 0.3 g/L of ethanol were produced from 51.3 g/L of glycerol in the PV coupled batch fermentation process with butanol productivity of 0.15 g/L/h and yield of 0.40 g/g due to the reduced butanol inhibition by butanol removal. Subsequently, 41.9 g/L of butanol and 0.4 g/L of ethanol were obtained from 103.3 g/L of glycerol, with butanol productivity of 0.21 g/L/h and yield of 0.41 g/g in the PV coupled fed-batch fermentation process. The high butanol production could be attributed to the thin PDMS layer and negligible transportation resistance of the support. These results indicated the PV coupled fermentation process from glycerol using PDMS/ceramic composite membrane by Clostridium sp. strain CT7 might show a great potential for sustainable biobutanol production from low-cost carbon sources.
Collapse
Affiliation(s)
- Tianpeng Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Fanli Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jiasheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yan Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
15
|
Li S, Li P, Si Z, Li G, Qin P, Tan T. An efficient method allowing for continuous preparation of PDMS/PVDF composite membrane. AIChE J 2019. [DOI: 10.1002/aic.16710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Shufeng Li
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing China
| | - Pei Li
- College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing China
| | - Zhihao Si
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing China
| | - Guozhen Li
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing China
| | - Peiyong Qin
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing China
| | - Tianwei Tan
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing China
| |
Collapse
|
16
|
The potential of pervaporation for biofuel recovery from fermentation: An energy consumption point of view. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.09.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Engineering Clostridium for improved solvent production: recent progress and perspective. Appl Microbiol Biotechnol 2019; 103:5549-5566. [DOI: 10.1007/s00253-019-09916-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023]
|
18
|
The pervaporative membrane with vertically aligned carbon nanotube nanochannel for enhancing butanol recovery. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
|
20
|
Chen C, Cai D, Qin P, Chen B, Wang Z, Tan T. Bio-plasticizer production by hybrid acetone-butanol-ethanol fermentation with full cell catalysis of Candida sp. 99-125. BIORESOURCE TECHNOLOGY 2018; 257:217-222. [PMID: 29505980 DOI: 10.1016/j.biortech.2018.02.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
Hybrid process that integrated fermentation, pervaporation and esterification was established aiming to improve the economic feasibility of the conventional acetone-butanol-ethanol (ABE) fermentation process. Candida sp 99-125 cells were used as full-cell catalyst. The feasibility of batch and fed-batch esterification using the ABE permeate of pervaporation (ranging from 286.9 g/L to 402.9 g/L) as substrate were compared. Valuable butyl oleate was produced along with ethyl oleate. For the batch esterification, due to severe inhibition of substrate to lipase, the yield of butyl oleate and ethyl oleate were only 24.9% and 3.3%, respectively. In contrast, 75% and 11.8% of butyl oleate and ethyl oleate were obtained, respectively, at the end of the fed-batch esterification. The novel integration process provides a promising strategy for in situ upgrading ABE products.
Collapse
Affiliation(s)
- Changjing Chen
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Biqiang Chen
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Zheng Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
21
|
Zhu C, Chen L, Xue C, Bai F. A novel close-circulating vapor stripping-vapor permeation technique for boosting biobutanol production and recovery. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:128. [PMID: 29755587 PMCID: PMC5934881 DOI: 10.1186/s13068-018-1129-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/23/2018] [Indexed: 05/31/2023]
Abstract
BACKGROUND Butanol derived from renewable resources by microbial fermentation is considered as one of not only valuable platform chemicals but alternative advanced biofuels. However, due to low butanol concentration in fermentation broth, butanol production is restricted by high energy consumption for product recovery. For in situ butanol recovery techniques, such as gas stripping and pervaporation, the common problem is their low efficiency in harvesting and concentrating butanol. Therefore, there is a necessity to develop an advanced butanol recovery technique for cost-effective biobutanol production. RESULTS A close-circulating vapor stripping-vapor permeation (VSVP) process was developed with temperature-difference control for single-stage butanol recovery. In the best scenario, the highest butanol separation factor of 142.7 reported to date could be achieved with commonly used polydimethylsiloxane membrane, when temperatures of feed solution and membrane surroundings were 70 and 0 °C, respectively. Additionally, more ABE (31.2 vs. 17.7 g/L) were produced in the integrated VSVP process, with a higher butanol yield (0.21 vs. 0.17 g/g) due to the mitigation of butanol inhibition. The integrated VSVP process generated a highly concentrated permeate containing 212.7 g/L butanol (339.3 g/L ABE), with the reduced energy consumption of 19.6 kJ/g-butanol. CONCLUSIONS Therefore, the present study demonstrated a well-designed energy-efficient technique named by vapor stripping-vapor permeation for single-stage butanol removal. The butanol separation factor was multiplied by the temperature-difference control strategy which could double butanol recovery performance. This advanced VSVP process can completely eliminate membrane fouling risk for fermentative butanol separation, which is superior to other techniques.
Collapse
Affiliation(s)
- Chao Zhu
- School of Life Science and Biotechnology, Dalian University of Technology, No 2 Linggong Road, Dalian, 116024 China
| | - Lijie Chen
- School of Life Science and Biotechnology, Dalian University of Technology, No 2 Linggong Road, Dalian, 116024 China
| | - Chuang Xue
- School of Life Science and Biotechnology, Dalian University of Technology, No 2 Linggong Road, Dalian, 116024 China
| | - Fengwu Bai
- School of Life Science and Biotechnology, Dalian University of Technology, No 2 Linggong Road, Dalian, 116024 China
| |
Collapse
|
22
|
Performance of commercial composite hydrophobic membranes applied for pervaporative reclamation of acetone, butanol, and ethanol from aqueous solutions: Binary mixtures. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.07.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
High-flux POMS organophilic pervaporation for ABE recovery applied in fed-batch and continuous set-ups. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.06.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Jiménez-Bonilla P, Wang Y. In situ biobutanol recovery from clostridial fermentations: a critical review. Crit Rev Biotechnol 2017; 38:469-482. [PMID: 28920460 DOI: 10.1080/07388551.2017.1376308] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Butanol is a precursor of many industrial chemicals, and a fuel that is more energetic, safer and easier to handle than ethanol. Fermentative biobutanol can be produced using renewable carbon sources such as agro-industrial residues and lignocellulosic biomass. Solventogenic clostridia are known as the most preeminent biobutanol producers. However, until now, solvent production through the fermentative routes is still not economically competitive compared to the petrochemical approaches, because the butanol is toxic to their own producer bacteria, and thus, the production capability is limited by the butanol tolerance of producing cells. In order to relieve butanol toxicity to the cells and improve the butanol production, many recovery strategies (either in situ or downstream of the fermentation) have been attempted by many researchers and varied success has been achieved. In this article, we summarize in situ recovery techniques that have been applied to butanol production through Clostridium fermentation, including liquid-liquid extraction, perstraction, reactive extraction, adsorption, pervaporation, vacuum fermentation, flash fermentation and gas stripping. We offer a prospective and an opinion about the past, present and the future of these techniques, such as the application of advanced membrane technology and use of recent extractants, including polymer solutions and ionic liquids, as well as the application of these techniques to assist the in situ synthesis of butanol derivatives.
Collapse
Affiliation(s)
- Pablo Jiménez-Bonilla
- a Department of Biosystems Engineering , Auburn University , Auburn , AL , USA.,b Laboratory of Natural Products and Biological Assays (LAPRONEB), Chemistry Department , National University (UNA) , Heredia , Costa Rica
| | - Yi Wang
- a Department of Biosystems Engineering , Auburn University , Auburn , AL , USA.,c Center for Bioenergy and Bioproducts , Auburn University , Auburn , AL , USA
| |
Collapse
|
25
|
Outram V, Lalander CA, Lee JGM, Davies ET, Harvey AP. Applied in situ product recovery in ABE fermentation. Biotechnol Prog 2017; 33:563-579. [PMID: 28188696 PMCID: PMC5485034 DOI: 10.1002/btpr.2446] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 01/31/2017] [Indexed: 12/12/2022]
Abstract
The production of biobutanol is hindered by the product's toxicity to the bacteria, which limits the productivity of the process. In situ product recovery of butanol can improve the productivity by removing the source of inhibition. This paper reviews in situ product recovery techniques applied to the acetone butanol ethanol fermentation in a stirred tank reactor. Methods of in situ recovery include gas stripping, vacuum fermentation, pervaporation, liquid–liquid extraction, perstraction, and adsorption, all of which have been investigated for the acetone, butanol, and ethanol fermentation. All techniques have shown an improvement in substrate utilization, yield, productivity or both. Different fermentation modes favored different techniques. For batch processing gas stripping and pervaporation were most favorable, but in fed‐batch fermentations gas stripping and adsorption were most promising. During continuous processing perstraction appeared to offer the best improvement. The use of hybrid techniques can increase the final product concentration beyond that of single‐stage techniques. Therefore, the selection of an in situ product recovery technique would require comparable information on the energy demand and economics of the process. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:563–579, 2017
Collapse
Affiliation(s)
- Victoria Outram
- School of Chemical Engineering and Advanced Material, Newcastle University, Newcastle-upon-Tyne, U.K.,Green Biologics Ltd, 45A Western Avenue, Milton Park, Abingdon, Oxfordshire, U.K
| | - Carl-Axel Lalander
- Green Biologics Ltd, 45A Western Avenue, Milton Park, Abingdon, Oxfordshire, U.K
| | - Jonathan G M Lee
- School of Chemical Engineering and Advanced Material, Newcastle University, Newcastle-upon-Tyne, U.K
| | - E Timothy Davies
- Green Biologics Ltd, 45A Western Avenue, Milton Park, Abingdon, Oxfordshire, U.K
| | - Adam P Harvey
- School of Chemical Engineering and Advanced Material, Newcastle University, Newcastle-upon-Tyne, U.K
| |
Collapse
|
26
|
Xue C, Zhao J, Chen L, Yang ST, Bai F. Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum. Biotechnol Adv 2017; 35:310-322. [DOI: 10.1016/j.biotechadv.2017.01.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/06/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
|
27
|
Novel hybrid process for bio-butanol recovery: Thermopervaporation with porous condenser assisted by phase separation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Cai D, Hu S, Miao Q, Chen C, Chen H, Zhang C, Li P, Qin P, Tan T. Two-stage pervaporation process for effective in situ removal acetone-butanol-ethanol from fermentation broth. BIORESOURCE TECHNOLOGY 2017; 224:380-388. [PMID: 27839857 DOI: 10.1016/j.biortech.2016.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
Two-stage pervaporation for ABE recovery from fermentation broth was studied to reduce the energy cost. The permeate after the first stage in situ pervaporation system was further used as the feedstock in the second stage of pervaporation unit using the same PDMS/PVDF membrane. A total 782.5g/L of ABE (304.56g/L of acetone, 451.98g/L of butanol and 25.97g/L of ethanol) was achieved in the second stage permeate, while the overall acetone, butanol and ethanol separation factors were: 70.7-89.73, 70.48-84.74 and 9.05-13.58, respectively. Furthermore, the theoretical evaporation energy requirement for ABE separation in the consolidate fermentation, which containing two-stage pervaporation and the following distillation process, was estimated less than ∼13.2MJ/kg-butanol. The required evaporation energy was only 36.7% of the energy content of butanol. The novel two-stage pervaporation process was effective in increasing ABE production and reducing energy consumption of the solvents separation system.
Collapse
Affiliation(s)
- Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Song Hu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qi Miao
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changjing Chen
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Huidong Chen
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; Center for Process Simulation & Optimization, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changwei Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ping Li
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
29
|
Cai D, Hu S, Chen C, Wang Y, Zhang C, Miao Q, Qin P, Tan T. Immobilized ethanol fermentation coupled to pervaporation with silicalite-1/polydimethylsiloxane/polyvinylidene fluoride composite membrane. BIORESOURCE TECHNOLOGY 2016; 220:124-131. [PMID: 27569576 DOI: 10.1016/j.biortech.2016.08.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
A novel silicalite-1/polydimethylsiloxane/polyvinylidene fluoride hybrid membrane was used in ethanol fermentation-pervaporation integration process. The sweet sorghum bagasse was used as the immobilized carrier. Compared with the conventional suspend cells system, the immobilized fermentation system could provide higher ethanol productivity when coupled with pervaporation. In the long-term of operations, the ethanol productivity, separation factor, total flux and permeate ethanol concentration in the fed-batch fermentation-pervaporation integration scenario were 1.6g/Lh, 8.2-9.9, 319-416g/m(2)h and 426.9-597.2g/L, respectively. Correspondingly, 1.6g/Lh, 7.8-9.8, 227.8-395g/m(2)h and 410.9-608.1g/L were achieved in the continuous fermentation-pervaporation integration scenario, respectively. The results indicated that the integration process could greatly improve the ethanol production and separation performances.
Collapse
Affiliation(s)
- Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Song Hu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changjing Chen
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yong Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changwei Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qi Miao
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
30
|
Outram V, Lalander CA, Lee JGM, Davis ET, Harvey AP. A comparison of the energy use of in situ product recovery techniques for the Acetone Butanol Ethanol fermentation. BIORESOURCE TECHNOLOGY 2016; 220:590-600. [PMID: 27619710 DOI: 10.1016/j.biortech.2016.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
The productivity of the Acetone Butanol Ethanol (ABE) fermentation can be significantly increased by application of various in situ product recovery (ISPR) techniques. There are numerous technically viable processes, but it is not clear which is the most economically viable in practice. There is little available information about the energy requirements and economics of ISPR for the ABE fermentation. This work compares various ISPR techniques based on UniSim process simulations of the ABE fermentation. The simulations provide information on the process energy and separation efficiency, which is fed into an economic assessment. Perstraction was the only technique to reduce the energy demand below that of a batch process, by approximately 5%. Perstraction also had the highest profit increase over a batch process, by 175%. However, perstraction is an immature technology, so would need significant development before being integrated to an industrial process.
Collapse
Affiliation(s)
- Victoria Outram
- School of Chemical Engineering and Advanced Material, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; Green Biologics Ltd., 45A Western Avenue, Milton Park, Abingdon, Oxfordshire, UK.
| | - Carl-Axel Lalander
- Green Biologics Ltd., 45A Western Avenue, Milton Park, Abingdon, Oxfordshire, UK
| | - Jonathan G M Lee
- School of Chemical Engineering and Advanced Material, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - E Timothy Davis
- Green Biologics Ltd., 45A Western Avenue, Milton Park, Abingdon, Oxfordshire, UK
| | - Adam P Harvey
- School of Chemical Engineering and Advanced Material, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| |
Collapse
|
31
|
Schievano A, Pepé Sciarria T, Vanbroekhoven K, De Wever H, Puig S, Andersen SJ, Rabaey K, Pant D. Electro-Fermentation – Merging Electrochemistry with Fermentation in Industrial Applications. Trends Biotechnol 2016; 34:866-878. [DOI: 10.1016/j.tibtech.2016.04.007] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 11/17/2022]
|
32
|
Lee SH, Yun EJ, Kim J, Lee SJ, Um Y, Kim KH. Biomass, strain engineering, and fermentation processes for butanol production by solventogenic clostridia. Appl Microbiol Biotechnol 2016; 100:8255-71. [PMID: 27531513 DOI: 10.1007/s00253-016-7760-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 12/14/2022]
Abstract
Butanol is considered an attractive biofuel and a commercially important bulk chemical. However, economical production of butanol by solventogenic clostridia, e.g., via fermentative production of acetone-butanol-ethanol (ABE), is hampered by low fermentation performance, mainly as a result of toxicity of butanol to microorganisms and high substrate costs. Recently, sugars from marine macroalgae and syngas were recognized as potent carbon sources in biomass feedstocks that are abundant and do not compete for arable land with edible crops. With the aid of systems metabolic engineering, many researchers have developed clostridial strains with improved performance on fermentation of these substrates. Alternatively, fermentation strategies integrated with butanol recovery processes such as adsorption, gas stripping, liquid-liquid extraction, and pervaporation have been designed to increase the overall titer of butanol and volumetric productivity. Nevertheless, for economically feasible production of butanol, innovative strategies based on recent research should be implemented. This review describes and discusses recent advances in the development of biomass feedstocks, microbial strains, and fermentation processes for butanol production.
Collapse
Affiliation(s)
- Sang-Hyun Lee
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Eun Ju Yun
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Jungyeon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Sang Jun Lee
- Biosystems and Bioengineering Program, University of Science and Technology and Microbiomics and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
33
|
Wang X, Chen J, Fang M, Wang T, Yu L, Li J. ZIF-7/PDMS mixed matrix membranes for pervaporation recovery of butanol from aqueous solution. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.02.040] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Chang Z, Cai D, Wang Y, Chen C, Fu C, Wang G, Qin P, Wang Z, Tan T. Effective multiple stages continuous acetone-butanol-ethanol fermentation by immobilized bioreactors: Making full use of fresh corn stalk. BIORESOURCE TECHNOLOGY 2016; 205:82-89. [PMID: 26812141 DOI: 10.1016/j.biortech.2016.01.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
In order to make full use of the fresh corn stalk, the sugar containing juice was used as the sole substrate for acetone-butanol-ethanol production without any nutrients supplement, and the bagasse after squeezing the juice was used as the immobilized carrier. A total 21.34g/L of ABE was produced in batch cells immobilization system with ABE yield of 0.35g/g. A continuous fermentation containing three stages with immobilized cells was conducted and the effect of dilution rate on fermentation was investigated. As a result, the productivity and ABE solvents concentration reached 0.80g/Lh and 19.93g/L, respectively, when the dilution rate in each stage was 0.12/h (corresponding to a dilution rate of 0.04/h in the whole system). And the long-term operation indicated the continuous multiple stages ABE fermentation process had good stability and showed the great potential in future industrial applications.
Collapse
Affiliation(s)
- Zhen Chang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China; Beijing Tiantian Biological Products Corporation Limited, Beijing 100176, PR China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yong Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changjing Chen
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chaohui Fu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Guoqing Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Zheng Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
35
|
Fu C, Cai D, Hu S, Miao Q, Wang Y, Qin P, Wang Z, Tan T. Ethanol fermentation integrated with PDMS composite membrane: An effective process. BIORESOURCE TECHNOLOGY 2016; 200:648-657. [PMID: 26551653 DOI: 10.1016/j.biortech.2015.09.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
The polydimethylsiloxane (PDMS) membrane, prepared in water phase, was investigated in separation ethanol from model ethanol/water mixture and fermentation-pervaporation integrated process. Results showed that the PDMS membrane could effectively separate ethanol from model solution. When integrated with batch ethanol fermentation, the ethanol productivity was enhanced compared with conventional process. Fed-batch and continuous ethanol fermentation with pervaporation were also performed and studied. 396.2-663.7g/m(2)h and 332.4-548.1g/m(2)h of total flux with separation factor of 8.6-11.7 and 8-11.6, were generated in the fed-batch and continuous fermentation with pervaporation scenario, respectively. At the same time, high titre ethanol production of ∼417.2g/L and ∼446.3g/L were also achieved on the permeate side of membrane in the two scenarios, respectively. The integrated process was environmental friendly and energy saving, and has a promising perspective in long-terms operation.
Collapse
Affiliation(s)
- Chaohui Fu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Song Hu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qi Miao
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yong Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Zheng Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
36
|
Kong X, He A, Zhao J, Wu H, Ma J, Wei C, Jin W, Jiang M. Efficient acetone–butanol–ethanol (ABE) production by a butanol-tolerant mutant of Clostridium beijerinckii in a fermentation–pervaporation coupled process. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
37
|
Van Hecke W, Vandezande P, Dubreuil M, Uyttebroek M, Beckers H, De Wever H. Biobutanol production from C5/C6 carbohydrates integrated with pervaporation: experimental results and conceptual plant design. ACTA ACUST UNITED AC 2016; 43:25-36. [DOI: 10.1007/s10295-015-1717-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/29/2015] [Indexed: 01/06/2023]
Abstract
Abstract
In this study, a simulated lignocellulosic hydrolyzate was used in a continuous two-stage fermentor setup for production of acetone, butanol and ethanol. An organophilic pervaporation unit was coupled to the second fermentor. The dilution rate in the first fermentor was kept constant at 0.109 h−1, while the dilution rate in the second fermentor was gradually decreased from 0.056 to 0.020 h−1. Glucose was completely consumed, while 61 % of the xylose was consumed at the lowest dilution rate, leading to an overall solvent productivity of 0.65 g L−1 h−1 and a high concentration of 185 g kg−1 solvents in the permeate in the last fermentation zone during 192 h. Based on the experimental results, a process integrated with organophilic pervaporation was conceptually designed and compared with a base-case. Chemcad simulations indicate an energy reduction of ~50 % when organophilic pervaporation is used. This study also demonstrates significant reductions in process flows and energy consumption by the use of organophilic pervaporation as in situ product recovery technology.
Collapse
Affiliation(s)
- Wouter Van Hecke
- grid.6717.7 0000000120341548 Flemish Institute for Technological Research (VITO) Business Unit Separation and Conversion Technology Boeretang 200 2400 Mol Belgium
| | - Pieter Vandezande
- grid.6717.7 0000000120341548 Flemish Institute for Technological Research (VITO) Business Unit Separation and Conversion Technology Boeretang 200 2400 Mol Belgium
| | - Marjorie Dubreuil
- grid.6717.7 0000000120341548 Flemish Institute for Technological Research (VITO) Business Unit Separation and Conversion Technology Boeretang 200 2400 Mol Belgium
| | - Maarten Uyttebroek
- grid.6717.7 0000000120341548 Flemish Institute for Technological Research (VITO) Business Unit Separation and Conversion Technology Boeretang 200 2400 Mol Belgium
| | - Herman Beckers
- grid.6717.7 0000000120341548 Flemish Institute for Technological Research (VITO) Business Unit Separation and Conversion Technology Boeretang 200 2400 Mol Belgium
| | - Heleen De Wever
- grid.6717.7 0000000120341548 Flemish Institute for Technological Research (VITO) Business Unit Separation and Conversion Technology Boeretang 200 2400 Mol Belgium
| |
Collapse
|
38
|
Staggs KW, Nielsen DR. Improving n-butanol production in batch and semi-continuous processes through integrated product recovery. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
39
|
Elbeshbishy E, Dhar BR, Hafez H, Lee HS. Acetone-butanol-ethanol production in a novel continuous flow system. BIORESOURCE TECHNOLOGY 2015; 190:315-320. [PMID: 25965257 DOI: 10.1016/j.biortech.2015.04.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 06/04/2023]
Abstract
This study investigates the potential of using a novel integrated biohydrogen reactor clarifier system (IBRCS) for acetone-butanol-ethanol (ABE) production using a mixed culture at different organic loading rates (OLRs). The results of this study showed that using a setting tank after the fermenter and recycle the settled biomass to the fermenter is a practical option to achieve high biomass concentration in the fermenter and thus sustainable ABE fermentation in continuous mode. The average ABE concentrations of 2.3, 7.0, and 14.6gABE/L which were corresponding to ABE production rates of 0.4, 1.4, and 2.8gABE/Lreactorh were achieved at OLRs of 21, 64, and 128gCOD/Lreactord, respectively. The main volatile fatty acids components in the effluent were acetic, propionic, and butyric acids. Acetic acid was the predominant component in the OLR-1, while butyric acid was the predominant acid in OLRs 2 and 3.
Collapse
Affiliation(s)
| | | | - Hisham Hafez
- GreenField Ethanol Inc., Chatham, Ontario N7M 5J4, Canada
| | - Hyung-Sool Lee
- University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
40
|
A novel method for furfural recovery via gas stripping assisted vapor permeation by a polydimethylsiloxane membrane. Sci Rep 2015; 5:9428. [PMID: 25819091 PMCID: PMC4377579 DOI: 10.1038/srep09428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/03/2015] [Indexed: 12/03/2022] Open
Abstract
Furfural is an important platform chemical with a wide range of applications. However, due to the low concentration of furfural in the hydrolysate, the conventional methods for furfural recovery are energy-intensive and environmentally unfriendly. Considering the disadvantages of pervaporation (PV) and distillation in furfural separation, a novel energy-efficient ‘green technique’, gas stripping assisted vapor permeation (GSVP), was introduced in this work. In this process, the polydimethylsiloxane (PDMS) membrane was prepared by employing water as solvent. Coking in pipe and membrane fouling was virtually non-existent in this new process. In addition, GSVP was found to achieve the highest pervaporation separation index of 216200 (permeate concentration of 71.1 wt% and furfural flux of 4.09 kgm−2h−1) so far, which was approximately 2.5 times higher than that found in pervaporation at 95°C for recovering 6.0 wt% furfural from water. Moreover, the evaporation energy required for GSVP decreased by 35% to 44% relative to that of PV process. Finally, GSVP also displayed more promising potential in industrial application than PV, especially when coupled with the hydrolysis process or fermentation in biorefinery industry.
Collapse
|
41
|
|
42
|
Köhler KAK, Rühl J, Blank LM, Schmid A. Integration of biocatalyst and process engineering for sustainable and efficientn-butanol production. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - Jana Rühl
- Laboratory of Chemical Biotechnology; TU Dortmund University; Dortmund Germany
| | - Lars M. Blank
- Institute of Applied Microbiology (iAMB); Aachen Biology and Biotechnology (ABBt); RWTH Aachen University; Aachen Germany
| | - Andreas Schmid
- Department Solar Materials; Helmholtz Centre for Environmental Research (UFZ); Leipzig Germany
| |
Collapse
|
43
|
|
44
|
Guan Y, Hu S, Wang Y, Qin P, Karim MN, Tan T. Separating isopropanol from its diluted solutions via a process of integrating gas stripping and vapor permeation. RSC Adv 2015. [DOI: 10.1039/c5ra00879d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The novel process, integrated gas stripping and vapor permeation, is environmental, energy-efficient and highly selective for isopropanol recovery.
Collapse
Affiliation(s)
- Yu Guan
- National energy R&D center for biorefinery
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Song Hu
- National energy R&D center for biorefinery
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Ying Wang
- National energy R&D center for biorefinery
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Peiyong Qin
- National energy R&D center for biorefinery
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - M. Nazmul Karim
- Artie McFerrin Department of Chemical Engineering
- Texas A&M University
- College Station
- USA
| | - Tianwei Tan
- National energy R&D center for biorefinery
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
45
|
Xue C, Yang D, Du G, Chen L, Ren J, Bai F. Evaluation of hydrophobic micro-zeolite-mixed matrix membrane and integrated with acetone-butanol-ethanol fermentation for enhanced butanol production. BIOTECHNOLOGY FOR BIOFUELS 2015. [PMID: 26213571 PMCID: PMC4513751 DOI: 10.1186/s13068-015-0288-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Butanol is regarded as an advanced biofuel that can be derived from renewable biomass. However, the main challenge for microbial butanol production is low butanol titer, yield and productivity, leading to intensive energy consumption in product recovery. Various alternative separation technologies such as extraction, adsorption and gas stripping, etc., could be integrated with acetone-butanol-ethanol (ABE) fermentation with improving butanol productivity, but their butanol selectivities are not satisfactory. The membrane-based pervaporation technology is recently attracting increasing attention since it has potentially desirable butanol selectivity. RESULTS The performance of the zeolite-mixed polydimethylsiloxane (PDMS) membranes were evaluated to recover butanol from butanol/water binary solution as well as fermentation broth in the integrated ABE fermentation system. The separation factor and butanol titer in permeate of the zeolite-mixed PDMS membrane were up to 33.0 and 334.6 g/L at 80°C, respectively, which increased with increasing zeolite loading weight in the membrane as well as feed temperature. The enhanced butanol separation factor was attributed to the hydrophobic zeolites with large pore size providing selective routes preferable for butanol permeation. In fed-batch fermentation incorporated with pervaporation, 54.9 g/L ABE (34.5 g/L butanol, 17.0 g/L acetone and 3.4 g/L ethanol) were produced from 172.3 g/L glucose. The overall butanol productivity and yield increased by 16.0 and 11.1%, respectively, which was attributed to the alleviated butanol inhibition by pervaporation and reassimilation of acids for ABE production. The zeolite-mixed membrane produced a highly concentrated condensate containing 169.6 g/L butanol or 253.3 g/L ABE, which after phase separation easily gave the final product containing >600 g/L butanol. CONCLUSIONS Zeolite loading in the PDMS matrix was attributed to improving the pervaporative performance of the membrane, showing great potential to recover butanol with high purity. Therefore, this zeolite-mixed PDMS membrane had the potential to improve biobutanol production when integrating with ABE fermentation.
Collapse
Affiliation(s)
- Chuang Xue
- />School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian, 116024 China
| | - Decai Yang
- />School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian, 116024 China
| | - Guangqing Du
- />School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian, 116024 China
| | - Lijie Chen
- />School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian, 116024 China
| | - Jiangang Ren
- />School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian, 116024 China
| | - Fengwu Bai
- />School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian, 116024 China
- />School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
46
|
Van Hecke W, Kaur G, De Wever H. Advances in in-situ product recovery (ISPR) in whole cell biotechnology during the last decade. Biotechnol Adv 2014; 32:1245-1255. [DOI: 10.1016/j.biotechadv.2014.07.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/07/2014] [Accepted: 07/18/2014] [Indexed: 12/27/2022]
|
47
|
Li J, Chen X, Qi B, Luo J, Zhang Y, Su Y, Wan Y. Efficient production of acetone-butanol-ethanol (ABE) from cassava by a fermentation-pervaporation coupled process. BIORESOURCE TECHNOLOGY 2014; 169:251-257. [PMID: 25058301 DOI: 10.1016/j.biortech.2014.06.102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 06/03/2023]
Abstract
Production of acetone-butanol-ethanol (ABE) from cassava was investigated with a fermentation-pervaporation (PV) coupled process. ABE products were in situ removed from fermentation broth to alleviate the toxicity of solvent to the Clostridium acetobutylicum DP217. Compared to the batch fermentation without PV, glucose consumption rate and solvent productivity increased by 15% and 21%, respectively, in batch fermentation-PV coupled process, while in continuous fermentation-PV coupled process running for 304 h, the substrate consumption rate, solvent productivity and yield increased by 58%, 81% and 15%, reaching 2.02 g/Lh, 0.76 g/Lh and 0.38 g/g, respectively. Silicalite-1 filled polydimethylsiloxane (PDMS)/polyacrylonitrile (PAN) membrane modules ensured media recycle without significant fouling, steadily generating a highly concentrated ABE solution containing 201.8 g/L ABE with 122.4 g/L butanol. After phase separation, a final product containing 574.3g/L ABE with 501.1g/L butanol was obtained. Therefore, the fermentation-PV coupled process has the potential to decrease the cost in ABE production.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; College of Biology Science & Engineering, Hebei University of Economics & Business, Shijiazhuang 050061, PR China
| | - Xiangrong Chen
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Benkun Qi
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianquan Luo
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuming Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yi Su
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yinhua Wan
- University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
48
|
Xue C, Du GQ, Chen LJ, Ren JG, Bai FW. Evaluation of asymmetric polydimethylsiloxane-polyvinylidene fluoride composite membrane and incorporated with acetone-butanol-ethanol fermentation for butanol recovery. J Biotechnol 2014; 188:158-65. [DOI: 10.1016/j.jbiotec.2014.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 11/28/2022]
|
49
|
|
50
|
Olmo ÁD, Blanco CA, Palacio L, Prádanos P, Hernández A. Pervaporation methodology for improving alcohol-free beer quality through aroma recovery. J FOOD ENG 2014. [DOI: 10.1016/j.jfoodeng.2014.02.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|