1
|
Jurys A, Pedersen CM. A New Platform Molecule from Gluconolactone? Access to Furanics, Rare Sugars, β-Ketoamides and Amino Furanones. Chemistry 2025; 31:e202403453. [PMID: 39465603 DOI: 10.1002/chem.202403453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Gluconolactone serves as a readily available and inexpensive starting material for synthesizing the potential platform chemical (Z)-3-deoxy-1,2 : 5,6-di-O-isopropylidene-D-erythro-hex-3-enolactone in two steps. In this work, the selective elimination of triacetone gluconolactone was optimized. The resulting product is a versatile molecule, capable of being transformed into various compound classes in one or a few steps, i. e. potentially a new biomass-based platform chemical. This study demonstrates how it can be transformed into furanics, rare sugars, β-ketoamides, and amino furanones.
Collapse
Affiliation(s)
- Arminas Jurys
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen O, Denmark
| | - Christian Marcus Pedersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen O, Denmark
| |
Collapse
|
2
|
Tian Y, Zhang F, Wang J, Cao L, Han Q. A review on solid acid catalysis for sustainable production of levulinic acid and levulinate esters from biomass derivatives. BIORESOURCE TECHNOLOGY 2021; 342:125977. [PMID: 34852443 DOI: 10.1016/j.biortech.2021.125977] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Biomass is a kind of renewable and abundant resource that can be seen as an important candidate to solve the energy crisis. Levulinic acid (LA) and levulinate esters (LEs) have been widely researched as biomass-based platform compounds. In recent years, efficient, green, and environment-friendly solid acid catalysts have been developed for the fast production and resolution of the problems, such as low yield, high equipmental requirements, and difficulty in product separation, in the preparation of LA and LE from biomass. In this paper, the preparation routes of LA and LEs from various raw materials are introduced, and the solid acid catalysts involved in their production are emphatically reviewed. The challenges and prospects in LA and LE production from biomass are proposed to achieve a more economical and energy efficient process with the concept of sustainable development in the future.
Collapse
Affiliation(s)
- Yijun Tian
- School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China; Miami College, Henan University, Kaifeng 475004, PR China
| | - Fangfang Zhang
- School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China; Miami College, Henan University, Kaifeng 475004, PR China
| | - Jieni Wang
- School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China
| | - Leichang Cao
- Miami College, Henan University, Kaifeng 475004, PR China.
| | - Qiuxia Han
- School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China; Miami College, Henan University, Kaifeng 475004, PR China
| |
Collapse
|
3
|
Zhang M, Wang N, Liu J, Wang C, Xu Y, Ma L. A review on biomass-derived levulinic acid for application in drug synthesis. Crit Rev Biotechnol 2021; 42:220-253. [DOI: 10.1080/07388551.2021.1939261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mingyue Zhang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Nan Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- School of Environmental Science and Engineering, Tianjin University, Tianjin, PR China
| | - Jianguo Liu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Chenguang Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Ying Xu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Longlong Ma
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
4
|
Torres-Olea B, García-Sancho C, Cecilia J, Oregui-Bengoechea M, Arias P, Moreno-Tost R, Maireles-Torres P. Influence of Lewis acidity and CaCl2 on the direct transformation of glucose to 5-hydroxymethylfurfural. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Liu LJ, Wang ZM, Fu S, Si ZB, Huang Z, Liu TH, Yang HQ, Hu CW. Catalytic mechanism for the isomerization of glucose into fructose over an aluminium-MCM-41 framework. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01984d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Al-Containing MCM-41 catalysts exhibit good catalytic activity toward glucose-to-fructose isomerization.
Collapse
Affiliation(s)
- Li-Juan Liu
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Zhao-Meng Wang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Shuai Fu
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Zhen-Bing Si
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Zhou Huang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Ting-Hao Liu
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Hua-Qing Yang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Chang-Wei Hu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| |
Collapse
|
6
|
Rajesh RO, Godan TK, Sindhu R, Pandey A, Binod P. Bioengineering advancements, innovations and challenges on green synthesis of 2, 5-furan dicarboxylic acid. Bioengineered 2020; 11:19-38. [PMID: 31880190 PMCID: PMC6961589 DOI: 10.1080/21655979.2019.1700093] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
The major drawback of chemical transformations for the production of 2, 5-furan dicarboxylic acid (FDCA) implies the usage of hazardous chemicals, high temperature and high pressure from nonrenewable resources. Alternate to chemical methods, biological methods are promising. Microbial FDCA production is improved through engineering approaches of media conditions, homologous and heterologous expression of genes, genetic and metabolic engineering, etc. The highest FDCA production of 41.29 g/L is observed by an engineered Raultella ornitholytica BF 60 from 35 g/L HMF in sodium phosphate buffer with a 95.14% yield in 72 h. Also, an enzyme cascade system of recombinant and wild enzymes like periplasmic aldehyde oxidase ABC, galactose oxidase M3-5, HRP and catalase have transformed 6.3 g/L HMF to 7.81 g/L FDCA in phosphate buffer with 100% yield in 6 h. Still, these processes are emerging for fulfilling the industrial needs due to the challenges in 'green FDCA production'.
Collapse
Affiliation(s)
- Rajendran Omana Rajesh
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - Tharangattumana Krishnan Godan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| |
Collapse
|
7
|
Wei J, Wang T, Tang P, Tang X, Sun Y, Zeng X, Lin L. Chemoselective Hydrogenation of Biomass-derived 5-hydroxymethylfurfural into Furanyl Diols. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190802095801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lignocellulosic biomass can be converted to significant platform molecule 5-
hydroxymethylfurfural (HMF), from which one can envision a number of biofuels and
chemicals through either chemical or biological conversions. Chemoselective hydrogenation
is one of the important pathways for the upgrading of HMF into furanyl diols consisting
of 2,5-bis(hydroxymethyl)furan (BHMF) and 2,5-bis(hydroxymethyl)tetrahydrofuran
(BHMTHF). BHMF and BHMTHF are all-purpose intermediates for the manufacture of
chemicals, fuels, and functional materials. In this context, we comprehensively summarized
the studies on the chemoselective hydrogenation of HMF into furanyl diols in terms
of different H-donors, including molecular H2, alcohols, formic acid, and other alternative
H-donors. Through the systematic survey of the previous works, a feasible research direction
is discussed for the production of furanyl diols.
Collapse
Affiliation(s)
- Junnan Wei
- Xiamen Key Laboratory of Clean and High-valued Applications of Biomass, College of Energy, Xiamen University, Xiamen 361102, China
| | - Ting Wang
- Xiamen Key Laboratory of Clean and High-valued Applications of Biomass, College of Energy, Xiamen University, Xiamen 361102, China
| | - Peifeng Tang
- CMC Department, Elpiscience (Suzhou) Biopharma, Ltd. 218 Sangtian St, Jiangsu 215123, China
| | - Xing Tang
- Xiamen Key Laboratory of Clean and High-valued Applications of Biomass, College of Energy, Xiamen University, Xiamen 361102, China
| | - Yong Sun
- Xiamen Key Laboratory of Clean and High-valued Applications of Biomass, College of Energy, Xiamen University, Xiamen 361102, China
| | - Xianhai Zeng
- Xiamen Key Laboratory of Clean and High-valued Applications of Biomass, College of Energy, Xiamen University, Xiamen 361102, China
| | - Lu Lin
- Xiamen Key Laboratory of Clean and High-valued Applications of Biomass, College of Energy, Xiamen University, Xiamen 361102, China
| |
Collapse
|
8
|
|
9
|
Sarmah B, Srivastava R. Selective two-step synthesis of 2,5-diformylfuran from monosaccharide, disaccharide, and polysaccharide using H-Beta and octahedral MnO2 molecular sieves. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2018.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Cao L, Yu IKM, Chen SS, Tsang DCW, Wang L, Xiong X, Zhang S, Ok YS, Kwon EE, Song H, Poon CS. Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar. BIORESOURCE TECHNOLOGY 2018; 252:76-82. [PMID: 29306134 DOI: 10.1016/j.biortech.2017.12.098] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Sulfonated biochar derived from forestry wood waste was employed for the catalytic conversion of starch-rich food waste (e.g., bread) into 5-hydroxymethylfurfural (HMF). Chemical and physical properties of catalyst were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area, and elemental analysis. The conversion of HMF was investigated via controlling the reaction parameters such as catalyst loading, temperature, and reaction time. Under the optimum reaction conditions the HMF yield of 30.4 Cmol% (i.e., 22 wt% of bread waste) was achieved in the mixture of dimethylsulfoxide (DMSO)/deionized-water (DIW) at 180 °C in 20 min. The effectiveness of sulfonated biochar catalyst was positively correlated to the density of strong/weak Brønsted acidity (SO3H, COOH, and OH groups) and inversely correlated to humins content on the surface. With regeneration process, sulfonated biochar catalyst displayed excellent recyclability for comparable HMF yield from bread waste over five cycles.
Collapse
Affiliation(s)
- Leichang Cao
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Iris K M Yu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Season S Chen
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Lei Wang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xinni Xiong
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yong Sik Ok
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Chi Sun Poon
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
11
|
Hu L, Xu J, Zhou S, He A, Tang X, Lin L, Xu J, Zhao Y. Catalytic Advances in the Production and Application of Biomass-Derived 2,5-Dihydroxymethylfuran. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03530] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lei Hu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Shouyong Zhou
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Xing Tang
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Lu Lin
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Jiming Xu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Yijiang Zhao
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| |
Collapse
|
12
|
Mika LT, Cséfalvay E, Németh Á. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chem Rev 2017; 118:505-613. [DOI: 10.1021/acs.chemrev.7b00395] [Citation(s) in RCA: 662] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- László T. Mika
- Department
of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest 1111, Hungary
| | - Edit Cséfalvay
- Department
of Energy Engineering, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Áron Németh
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest 1111, Hungary
| |
Collapse
|
13
|
Synergy of Lewis and Brønsted acids on catalytic hydrothermal decomposition of carbohydrates and corncob acid hydrolysis residues to 5-hydroxymethylfurfural. Sci Rep 2017; 7:40908. [PMID: 28084456 PMCID: PMC5234025 DOI: 10.1038/srep40908] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/12/2016] [Indexed: 01/19/2023] Open
Abstract
5-hydroxymethylfurfural (HMF) is an important platform molecule in the synthesis of various chemicals and materials. Herein, we reported a simple and effective dehydration of glucose-based carbohydrates to HMF in a biphasic system containing cyclopentyl methyl ether as the organic phase and AlCl3 with minute amounts of HCl as co-catalysts. The results showed that the mixed catalysts had a positive synergistic catalytic effect on glucose conversion to HMF compared with single AlCl3 or HCl catalyst. For glucose, the highest HMF yield of 54.5% was achieved at 175 °C for 20 min. More importantly, the optimal catalytic system was so efficient that it achieved one of the highest reported yields of HMF (30.5%) directly from corncob acid hydrolysis residues. Thus, the catalytic system can become a promising route for effective utilization of biomass in future biorefineries.
Collapse
|
14
|
Roy Goswami S, Dumont MJ, Raghavan V. Microwave Assisted Synthesis of 5-Hydroxymethylfurfural from Starch in AlCl3·6H2O/DMSO/[BMIM]Cl System. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00201] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shrestha Roy Goswami
- Department
of Bioresource
Engineering, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec H9X3V9, Canada
| | - Marie-Josée Dumont
- Department
of Bioresource
Engineering, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec H9X3V9, Canada
| | - Vijaya Raghavan
- Department
of Bioresource
Engineering, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec H9X3V9, Canada
| |
Collapse
|
15
|
Catalytic conversion of raw Dioscorea composita biomass to 5-hydroxymethylfurfural using a combination of metal chlorides in N,N-dimethylacetamide solvent containing lithium chloride. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2496-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Zhou P, Zhang Z. One-pot catalytic conversion of carbohydrates into furfural and 5-hydroxymethylfurfural. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00384b] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, there has been growing interest in the transformation of renewable biomass into value-added chemicals and biofuels.
Collapse
Affiliation(s)
- Peng Zhou
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education
- South-Central University for Nationalities
- Wuhan
- PR China
| | - Zehui Zhang
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education
- South-Central University for Nationalities
- Wuhan
- PR China
| |
Collapse
|
17
|
Affiliation(s)
- Shrestha Roy Goswami
- Department of Bioresource Engineering; McGill University, Sainte-Anne de Bellevue; Quebec Canada
| | - Marie-Josée Dumont
- Department of Bioresource Engineering; McGill University, Sainte-Anne de Bellevue; Quebec Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering; McGill University, Sainte-Anne de Bellevue; Quebec Canada
| |
Collapse
|
18
|
Teimouri A, Mazaheri M, Chermahini AN, Salavati H, Momenbeik F, Fazel-Najafabadi M. Catalytic conversion of glucose to 5-hydroxymethylfurfural (HMF) using nano-POM/nano-ZrO2/nano-γ-Al2O3. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2014.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Oh SJ, Park J, Na JG, Oh YK, Chang YK. Production of 5-hydroxymethylfurfural from agarose by using a solid acid catalyst in dimethyl sulfoxide. RSC Adv 2015. [DOI: 10.1039/c5ra02911b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, an effective method for 5-HMF production from agarose, a biomass material derived from red-algae, is proposed.
Collapse
Affiliation(s)
- Sang Jin Oh
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology
- Daejeon
- Korea
| | - Juyi Park
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology
- Daejeon
- Korea
| | - Jeong Geol Na
- Korea Institute of Energy Research
- Daejeon 305-343
- Korea
| | - You Kwan Oh
- Korea Institute of Energy Research
- Daejeon 305-343
- Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology
- Daejeon
- Korea
| |
Collapse
|
20
|
He MF, Fu HQ, Su BF, Yang HQ, Tang JQ, Hu CW. Theoretical Insight into the Coordination of Cyclic β-d-Glucose to [Al(OH)(aq)]2+ and [Al(OH)2(aq)]1+ Ions. J Phys Chem B 2014; 118:13890-902. [DOI: 10.1021/jp5060099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Meng-Fu He
- Key Laboratory
of Green Chemistry and Technology, Ministry of Education, College
of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Hong-Quan Fu
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Ben-Fang Su
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Hua-Qing Yang
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Jin-Qiang Tang
- Key Laboratory
of Green Chemistry and Technology, Ministry of Education, College
of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Chang-Wei Hu
- Key Laboratory
of Green Chemistry and Technology, Ministry of Education, College
of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
21
|
Shen Y, Sun J, Yi Y, Wang B, Xu F, Sun R. 5-Hydroxymethylfurfural and levulinic acid derived from monosaccharides dehydration promoted by InCl 3 in aqueous medium. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcata.2014.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Agirrezabal-Telleria I, Gandarias I, Arias P. Heterogeneous acid-catalysts for the production of furan-derived compounds (furfural and hydroxymethylfurfural) from renewable carbohydrates: A review. Catal Today 2014. [DOI: 10.1016/j.cattod.2013.11.027] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Shen Y, Xu Y, Sun J, Wang B, Xu F, Sun R. Efficient conversion of monosaccharides into 5-hydroxymethylfurfural and levulinic acid in InCl3–H2O medium. CATAL COMMUN 2014. [DOI: 10.1016/j.catcom.2014.02.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Javier Pérez-Maqueda, Irene Arenas-Ligioiz, López Ó, Fernández-Bolaños JG. Eco-friendly preparation of 5-hydroxymethylfurfural from sucrose using ion-exchange resins. Chem Eng Sci 2014. [DOI: 10.1016/j.ces.2014.01.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
|
26
|
Su K, Liu X, Ding M, Yuan Q, Li Z, Cheng B. Effective conversion sucrose into 5-hydroxymethylfurfural by tyrosine in [Emim]Br. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcata.2013.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Hu X, Wu L, Wang Y, Song Y, Mourant D, Gunawan R, Gholizadeh M, Li CZ. Acid-catalyzed conversion of mono- and poly-sugars into platform chemicals: effects of molecular structure of sugar substrate. BIORESOURCE TECHNOLOGY 2013; 133:469-74. [PMID: 23454803 DOI: 10.1016/j.biortech.2013.01.080] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 05/09/2023]
Abstract
Hydrolysis/pyrolysis of lignocellulosic biomass always produces a mixture of sugars with distinct structures as intermediates or products. This study tried to elucidate the effects of molecular structure of sugars on their acid-catalyzed conversions in ethanol/water. Location of carbonyl group in sugars (fructose versus glucose) and steric configuration of hydroxyl groups (glucose versus galactose) significantly affected yields of levulinic acid/ester (fructose>glucose>galactose). The dehydration of fructose to 5-(hydroxymethyl)furfural produces much less soluble polymer than that from glucose and galactose, which results in high yields of levulinic acid/ester from fructose. Anhydrate sugar such as levoglucosan tends to undergo the undesirable decomposition to form less levulinic acid/ester. Catalytic behaviors of the poly-sugars (sucrose, maltose, raffinose, β-cyclodextrins) were determined much by their basic units. However, their big molecular sizes create the steric hindrance that significantly affects their followed conversion over solid acid catalyst.
Collapse
Affiliation(s)
- Xun Hu
- Fuels and Energy Technology Institute, Curtin University of Technology, Perth, WA 6845, Australia
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang F, Wu HZ, Liu CL, Yang RZ, Dong WS. Catalytic dehydration of fructose to 5-hydroxymethylfurfural over Nb2O5 catalyst in organic solvent. Carbohydr Res 2013; 368:78-83. [DOI: 10.1016/j.carres.2012.12.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 11/17/2022]
|
29
|
van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG. Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chem Rev 2013; 113:1499-597. [DOI: 10.1021/cr300182k] [Citation(s) in RCA: 2009] [Impact Index Per Article: 167.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Robert-Jan van Putten
- Avantium Chemicals, Zekeringstraat 29, 1014 BV Amsterdam, the Netherlands
- Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | | | - Ed de Jong
- Avantium Chemicals, Zekeringstraat 29, 1014 BV Amsterdam, the Netherlands
| | - Carolus B. Rasrendra
- Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
- Department of Chemical Engineering, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
| | - Hero J. Heeres
- Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Johannes G. de Vries
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
- DSM Innovative Synthesis BV, P.O. Box 18, 6160 MD Geleen, the Netherlands
| |
Collapse
|