1
|
Tiang MF, Hanipa MAF, Mahmod SS, Zainuddin MT, Lutfi AAI, Jahim JM, Takriff MS, Reungsang A, Wu SY, Abdul PM. Impact of light spectra on photo-fermentative biohydrogen production by Rhodobacter sphaeroides KKU-PS1. BIORESOURCE TECHNOLOGY 2024; 394:130222. [PMID: 38109981 DOI: 10.1016/j.biortech.2023.130222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Purple non-sulphur bacteria can only capture up to 10 % light spectra and only 1-5 % of light is converted efficiently for biohydrogen production. To enhance light capture and conversion efficiencies, it is necessary to understand the impact of various light spectra on light harvesting pigments. During photo-fermentation, Rhodobacter sphaeroides KKU-PS1 cultivated at 30 °C and 150 rpm under different light spectra has been investigated. Results revealed that red light is more beneficial for biomass accumulation, whereas green light showed the greatest impact on photo-fermentative biohydrogen production. Light conversion efficiency by green light is 2-folds of that under control white light, hence photo-hydrogen productivity is ranked as green > red > orange > violet > blue > yellow. These experimental data demonstrated that green and red lights are essential for photo-hydrogen and biomass productions of R. sphaeroides and a clearer understanding that possibly pave the way for further photosynthetic enhancement research.
Collapse
Affiliation(s)
- Ming Foong Tiang
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Muhammad Alif Fitri Hanipa
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Safa Senan Mahmod
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, UniMAP, 02600 Arau, Perlis, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, UniMAP, 02600 Arau, Perlis, Malaysia
| | - Muhammad Tarmidzi Zainuddin
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Abdullah Amru Indera Lutfi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Selangor Darul Ehsan, Malaysia
| | - Jamaliah Md Jahim
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Selangor Darul Ehsan, Malaysia
| | - Mohd Sobri Takriff
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Selangor Darul Ehsan, Malaysia; Department of Mechanical and Nuclear Engineering, College of Engineering, University of Sharjah, United Arab Emirates
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Shu-Yii Wu
- Department of Chemical Engineering, Feng Chia University, Taichung 40724, Taiwan; Green Energy Development Center, Feng Chia University, Taichung 40724, Taiwan
| | - Peer Mohamed Abdul
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, UniMAP, 02600 Arau, Perlis, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
2
|
Zhang Y, Meng W, He Y, Chen Y, Shao M, Yuan J. Multidimensional optimization for accelerating light-powered biocatalysis in Rhodopseudomonas palustris. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:160. [PMID: 37891652 PMCID: PMC10612212 DOI: 10.1186/s13068-023-02410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Whole-cell biocatalysis has been exploited to convert a variety of substrates into high-value bulk or chiral fine chemicals. However, the traditional whole-cell biocatalysis typically utilizes the heterotrophic microbes as the biocatalyst, which requires carbohydrates to power the cofactor (ATP, NAD (P)H) regeneration. RESULTS In this study, we sought to harness purple non-sulfur photosynthetic bacterium (PNSB) as the biocatalyst to achieve light-driven cofactor regeneration for cascade biocatalysis. We substantially improved the performance of Rhodopseudomonas palustris-based biocatalysis using a highly active and conditional expression system, blocking the side-reactions, controlling the feeding strategy, and attenuating the light shading effect. Under light-anaerobic conditions, we found that 50 mM ferulic acid could be completely converted to vanillyl alcohol using the recombinant strain with 100% efficiency, and > 99.9% conversion of 50 mM p-coumaric acid to p-hydroxybenzyl alcohol was similarly achieved. Moreover, we examined the isoprenol utilization pathway for pinene synthesis and 92% conversion of 30 mM isoprenol to pinene was obtained. CONCLUSIONS Taken together, these results suggested that R. palustris could be a promising host for light-powered biotransformation, which offers an efficient approach for synthesizing value-added chemicals in a green and sustainable manner.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Wenchang Meng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Yuting He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Yuhui Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Mingyu Shao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China.
| |
Collapse
|
3
|
Thulasidharan D, Arumugam A, Uppuluri KB. Research and economic perspectives on an integrated biorefinery approach for the simultaneous production of polyhydroxyalkanoates and biohydrogen. Int J Biol Macromol 2021; 193:1937-1951. [PMID: 34752795 DOI: 10.1016/j.ijbiomac.2021.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
Alarming environmental impacts have been resulted across the globe due to the recovery and consumption of fossil fuels. The elevated global carbon footprint has paved the way to an alternative to combat the prevalent pollution. On the other hand, the fossil-based plastics produced from the byproducts of petroleum remain intact in the environment leading to pollution. Fossil abated bioproducts are in high demand due to the increase in pollution. This call to utilize feedstock for simultaneous production of biologically useful products through carbon capture utilisation where the leftover carbon-rich substrate is converted into usable chemicals like bioplastics, methanol, urea and various other industrially essential components. The present review extensively focuses on the research and economic perspectives of an integrated biorefinery and addresses technical breaches, bottlenecks, and efficient strategies for the simultaneous production of biohydrogen and polyhydroxyalkanoates.
Collapse
Affiliation(s)
- D Thulasidharan
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - A Arumugam
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India.
| | - Kiran Babu Uppuluri
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India.
| |
Collapse
|
4
|
Zhang Q, Zhu S, Zhang Z, Zhang H, Xia C. Enhancement strategies for photo-fermentative biohydrogen production: A review. BIORESOURCE TECHNOLOGY 2021; 340:125601. [PMID: 34330005 DOI: 10.1016/j.biortech.2021.125601] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Biohydrogen production by photo fermentation is an attractive clean energy production approach with less environmental pollution and higher substrate conversion. In recent years, various measures have been used to improve biohydrogen production performance, but there is a lack of systematic and comprehensive summary and analysis. Hence, the recent literatures on enhancing biohydrogen production by photo fermentation were summarized, and the functional mechanisms of enhancement strategies were explained. In this work, these measures were divided into four categories according to their roles in photo fermentation, including substrate pretreatment, bacterial modification and immobilization, additive addition, reactor design optimization. It can be concluded that the optimal enhancement conditions of each strategy were affected by substrate type, strain and process parameters. According to the results of this work, it was expected to give readers a clear understanding and provide a scientific reference of the research of photosynthetic biohydrogen production.
Collapse
Affiliation(s)
- Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S&T University, Zhengzhou 450006, China
| | - Shengnan Zhu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China.
| | - Chenxi Xia
- Institute of Agricultural Engineering, Huanghe S&T University, Zhengzhou 450006, China
| |
Collapse
|
5
|
Rodríguez A, Hernández-Herreros N, García JL, Auxiliadora Prieto M. Enhancement of biohydrogen production rate in Rhodospirillum rubrum by a dynamic CO-feeding strategy using dark fermentation. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:168. [PMID: 34362414 PMCID: PMC8343937 DOI: 10.1186/s13068-021-02017-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Rhodospirillum rubrum is a purple non-sulphur bacterium that produces H2 by photofermentation of several organic compounds or by water gas-shift reaction during CO fermentation. Successful strategies for both processes have been developed in light-dependent systems. This work explores a dark fermentation bioprocess for H2 production from water using CO as the electron donor. RESULTS The study of the influence of the stirring and the initial CO partial pressure (pCO) demonstrated that the process was inhibited at pCO of 1.00 atm. Optimal pCO value was established in 0.60 atm. CO dose adaptation to bacterial growth in fed-batch fermentations increased the global rate of H2 production, yielding 27.2 mmol H2 l-1 h-1 and reduced by 50% the operation time. A kinetic model was proposed to describe the evolution of the molecular species involved in gas and liquid phases in a wide range of pCO conditions from 0.10 to 1.00 atm. CONCLUSIONS Dark fermentation in R. rubrum expands the ways to produce biohydrogen from CO. This work optimizes this bioprocess at lab-bioreactor scale studying the influence of the stirring speed, the initial CO partial pressure and the operation in batch and fed-batch regimes. Dynamic CO supply adapted to the biomass growth enhances the productivity reached in darkness by other strategies described in the literature, being similar to that obtained under light continuous syngas fermentations. The kinetic model proposed describes all the conditions tested.
Collapse
Affiliation(s)
- Alberto Rodríguez
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐of the Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
- Polymer Biotechnology Group, Department of Plant and Microbial Biotechnology, Biological Research Center, Margarita Salas”-CSIC, 28040 Madrid, Spain
| | - Natalia Hernández-Herreros
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐of the Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
- Polymer Biotechnology Group, Department of Plant and Microbial Biotechnology, Biological Research Center, Margarita Salas”-CSIC, 28040 Madrid, Spain
| | - José L. García
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐of the Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
- Environmental Biotechnology Group, Department of Plant and Microbial Biotechnology, Biological Research Center, Margarita Salas”-CSIC 28040, Madrid, Spain
| | - M. Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐of the Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
- Polymer Biotechnology Group, Department of Plant and Microbial Biotechnology, Biological Research Center, Margarita Salas”-CSIC, 28040 Madrid, Spain
| |
Collapse
|
6
|
Kumar S, Sharma S, Thakur S, Mishra T, Negi P, Mishra S, Hesham AEL, Rastegari AA, Yadav N, Yadav AN. Bioprospecting of Microbes for Biohydrogen Production: Current Status and Future Challenges. BIOPROCESSING FOR BIOMOLECULES PRODUCTION 2019:443-471. [DOI: 10.1002/9781119434436.ch22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
| | | | | | | | | | | | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture; Assiut University; Assiut Egypt
| | - Ali A. Rastegari
- Department of Molecular and Cell Biochemistry, Falavarjan Branch; Islamic Azad University; Isfahan Iran
| | - Neelam Yadav
- Gopi Nath P.G. College; Veer Bahadur Singh Purvanchal University; India
| | | |
Collapse
|
7
|
Stephen AJ, Archer SA, Orozco RL, Macaskie LE. Advances and bottlenecks in microbial hydrogen production. Microb Biotechnol 2017; 10:1120-1127. [PMID: 28834420 PMCID: PMC5609275 DOI: 10.1111/1751-7915.12790] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 11/28/2022] Open
Abstract
Biological production of hydrogen is poised to become a significant player in the future energy mix. This review highlights recent advances and bottlenecks in various approaches to biohydrogen processes, often in concert with management of organic wastes or waste CO2. Some key bottlenecks are highlighted in terms of the overall energy balance of the process and highlighting the need for economic and environmental life cycle analyses with regard also to socio‐economic and geographical issues.
Collapse
Affiliation(s)
- Alan J Stephen
- School ofChemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sophie A Archer
- School ofChemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Rafael L Orozco
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Lynne E Macaskie
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
8
|
A New Hydrogen-Producing Strain and Its Characterization of Hydrogen Production. Appl Biochem Biotechnol 2015; 177:1676-89. [DOI: 10.1007/s12010-015-1845-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
|
9
|
Weber J, Krujatz F, Hilpmann G, Grützner S, Herrmann J, Thierfelder S, Bienert G, Illing R, Helbig K, Hurtado A, Cuniberti G, Mertig M, Lange R, Günther E, Opitz J, Lippmann W, Bley T, Haufe N. Biotechnological hydrogen production by photosynthesis. Eng Life Sci 2014. [DOI: 10.1002/elsc.201400056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jost Weber
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Dresden Germany
| | - Felix Krujatz
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Dresden Germany
| | - Gerd Hilpmann
- Chair of Chemical Engineering and Process Plants; Technische Universität Dresden; Dresden Germany
| | - Sara Grützner
- Institute of Power Engineering; Chair of Hydrogen and Nuclear Energy, Technische Universität Dresden; Dresden Germany
| | - Jana Herrmann
- Chair of Environmental Management and Accounting; Technische Universität Dresden; Dresden Germany
| | - Simone Thierfelder
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Dresden Germany
| | - Georg Bienert
- Chair of Environmental Management and Accounting; Technische Universität Dresden; Dresden Germany
| | - Rico Illing
- Chair of Materials Science and Nanotechnology; Technische Universität Dresden; Dresden Germany
| | - Karsten Helbig
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Dresden Germany
| | - Antonio Hurtado
- Institute of Power Engineering; Chair of Hydrogen and Nuclear Energy, Technische Universität Dresden; Dresden Germany
| | - Gianaurelio Cuniberti
- Chair of Materials Science and Nanotechnology; Technische Universität Dresden; Dresden Germany
- Institute for Material Science and Max Bergmann Center of Biomaterials; Technische Universität Dresden; Dresden Germany
- Center for Advancing Electronics; Technische Universität Dresden; Dresden Germany
| | - Michael Mertig
- Institute of Physical Chemistry; Technische Universität Dresden; Dresden Germany
- Kurt Schwabe Institute; Meinsberg Germany
| | - Rüdiger Lange
- Chair of Chemical Engineering and Process Plants; Technische Universität Dresden; Dresden Germany
| | - Edeltraud Günther
- Chair of Environmental Management and Accounting; Technische Universität Dresden; Dresden Germany
| | - Jörg Opitz
- Institute for Material Science and Max Bergmann Center of Biomaterials; Technische Universität Dresden; Dresden Germany
- Fraunhofer Institute for Ceramic Technologies and Systems; Material Diagnostics, IKTS-MD Dresden; Dresden Germany
- Electronics Packaging Lab; Technische Universität Dresden; Dresden Germany
| | - Wolfgang Lippmann
- Institute of Power Engineering; Chair of Hydrogen and Nuclear Energy, Technische Universität Dresden; Dresden Germany
| | - Thomas Bley
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Dresden Germany
| | - Nora Haufe
- Institute for Material Science and Max Bergmann Center of Biomaterials; Technische Universität Dresden; Dresden Germany
| |
Collapse
|
10
|
Cai J, Wang G. Screening and hydrogen-producing characters of a highly efficient H₂-producing mutant of Rhodovulum sulfidophilum P5. BIORESOURCE TECHNOLOGY 2013; 142:18-25. [PMID: 23732918 DOI: 10.1016/j.biortech.2013.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/01/2013] [Accepted: 05/04/2013] [Indexed: 06/02/2023]
Abstract
In this study, transposon mutagenesis technology was utilized to enhance the hydrogen production capability of a wild marine photosynthetic bacterium Rhodovulum sulfidophilum P5. A mutant strain TH-253 that exhibited high hydrogen yield and weaker light absorption ability was screened. Under strong light conditions, the mutant produced more hydrogen than that of the WT. Under optimum light intensity (120 μmol photons/m(2)s), the mutant achieved its highest hydrogen yield (1,436 ± 44 mL H2/L, about 3.21 ± 0.10 mol H2/mol acetate), which was 40.37% higher that of the WT. In continuous operation mode, the hydrogen yield (3.59 ± 0.11 mol H2/mol acetate) and average hydrogen production rate (16.91 ± 0.46 mL H2/Lh) of the mutant were 43.40% and 45.07% higher than those of the WT, respectively. The mutant strain TH-253 may be used as an appropriate starting strain for future photosynthesis-based large scale hydrogen production.
Collapse
Affiliation(s)
- Jinling Cai
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | | |
Collapse
|