1
|
Cancellieri MC, Nobbio C, Gatti FG, Brenna E, Parmeggiani F. Applications of biocatalytic CC bond reductions in the synthesis of flavours and fragrances. J Biotechnol 2024; 390:13-27. [PMID: 38761886 DOI: 10.1016/j.jbiotec.2024.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Industrial biotechnology and biocatalysis can provide very effective synthetic tools to increase the sustainability of the production of fine chemicals, especially flavour and fragrance (F&F) ingredients, the market demand of which has been constantly increasing in the last years. One of the most important transformations in F&F chemistry is the reduction of CC bonds, typically carried out with metal-catalysed hydrogenations or hydride-based reagents. Its biocatalytic counterpart is a competitive alternative, showcasing a range of advantages such as excellent chemo-, regio- and stereoselectivity, ease of implementation, mild reaction conditions and modest environmental impact. In the present review, the application of biocatalysed alkene reductions (from microbial fermentations with wild-type strains to engineered isolated ene-reductase enzymes) to synthetic processes useful for the F&F industry will be described, highlighting not only the exquisite stereoselectivity achieved, but also the overall improvement when chirality is not involved. Multi-enzymatic cascades involving CC bioreductions are also examined, which allow much greater chemical complexity to be built in one-pot biocatalytic systems.
Collapse
Affiliation(s)
- Maria C Cancellieri
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Celeste Nobbio
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Francesco G Gatti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Elisabetta Brenna
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| | - Fabio Parmeggiani
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| |
Collapse
|
2
|
dos Santos RAM, Reis AV, Pilau EJ, Porto C, Gonçalves JE, de Oliveira AJB, Gonçalves RAC. The headspace-GC/MS: Alternative methodology employed in the bioreduction of (4S)-(+)-carvone mediated by human skin fungus. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1743692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Rogério Aparecido Minini dos Santos
- Department of Pharmacy, University Center of Maringá – Unicesumar, Maringá, Brazil
- Department of Pharmacy, Graduate Program in Pharmaceutical Science, State University of Maringá – UEM, Maringá, Brazil
| | - Adriano Valim Reis
- Department of Pharmacy, Graduate Program in Pharmaceutical Science, State University of Maringá – UEM, Maringá, Brazil
| | | | - Carla Porto
- Program of Master in Science, Technology and Food Safety and Cesumar Institute of Science, Technology and Innovation – ICETI, Maringá, Brazil
| | - José Eduardo Gonçalves
- Program of Master in Science, Technology and Food Safety and Cesumar Institute of Science, Technology and Innovation – ICETI, Maringá, Brazil
- Program of Master in Clean Technology, University Center of Maringá – Unicesumar, Maringá, Brazil
| | - Arildo José Braz de Oliveira
- Department of Pharmacy, Graduate Program in Pharmaceutical Science, State University of Maringá – UEM, Maringá, Brazil
| | | |
Collapse
|
3
|
Abstract
Thirteen Non-Conventional Yeasts (NCYs) have been investigated for their ability to reduce activated C=C bonds of chalcones to obtain the corresponding dihydrochalcones. A possible correlation between bioreducing capacity of the NCYs and the substrate structure was estimated. Generally, whole-cells of the NCYs were able to hydrogenate the C=C double bond occurring in (E)-1,3-diphenylprop-2-en-1-one, while worthy bioconversion yields were obtained when the substrate exhibited the presence of a deactivating electron-withdrawing Cl substituent on the B-ring. On the contrary, no conversion was generally found, with a few exceptions, in the presence of an activating electron-donating substituent OH. The bioreduction aptitude of the NCYs was apparently correlated to the logP value: Compounds characterized by a higher logP exhibited a superior aptitude to be reduced by the NCYs than compounds with a lower logP value.
Collapse
|
4
|
Forti L, Di Mauro S, Cramarossa MR, Filippucci S, Turchetti B, Buzzini P. Non-Conventional Yeasts Whole Cells as Efficient Biocatalysts for the Production of Flavors and Fragrances. Molecules 2015; 20:10377-98. [PMID: 26053491 PMCID: PMC6272320 DOI: 10.3390/molecules200610377] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 12/25/2022] Open
Abstract
The rising consumer requests for natural flavors and fragrances have generated great interest in the aroma industry to seek new methods to obtain fragrance and flavor compounds naturally. An alternative and attractive route for these compounds is based on bio-transformations. In this review, the application of biocatalysis by Non Conventional Yeasts (NCYs) whole cells for the production of flavor and fragrances is illustrated by a discussion of the production of different class of compounds, namely Aldehydes, Ketones and related compounds, Alcohols, Lactones, Terpenes and Terpenoids, Alkenes, and Phenols.
Collapse
Affiliation(s)
- Luca Forti
- Department of Life Sciences, University of Modena & Reggio Emilia, via G. Campi 103, Modena 41125, Italy.
| | - Simone Di Mauro
- Department of Agricultural, Environmental and Food Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy.
| | - Maria Rita Cramarossa
- Department of Life Sciences, University of Modena & Reggio Emilia, via G. Campi 103, Modena 41125, Italy.
| | - Sara Filippucci
- Department of Agricultural, Environmental and Food Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy.
| | - Benedetta Turchetti
- Department of Agricultural, Environmental and Food Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy.
| | - Pietro Buzzini
- Department of Agricultural, Environmental and Food Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy.
| |
Collapse
|
5
|
Optimization of high-pressure ultrasonic-assisted simultaneous extraction of six major constituents from Ligusticum chuanxiong rhizome using response surface methodology. Molecules 2014; 19:1887-911. [PMID: 24518807 PMCID: PMC6271119 DOI: 10.3390/molecules19021887] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/24/2014] [Accepted: 02/03/2014] [Indexed: 11/17/2022] Open
Abstract
High-pressure ultrasound-assisted extraction technology was applied to extract ferulic acid, senkyunolide I, senkyunolide H, senkyunolide A, ligustilide and levistolide A from Ligusticum chuanxiong rhizomes. Seven independent variables, including solvent type, pressure, particle size, liquid-to-solid ratio, extraction temperature, ultrasound power, and extraction time were examined. Response Surface Methodology (RSM) using a Central Composite Design (CCD) was employed to optimize the experimental conditions (extraction temperature, ultrasonic power, and extraction time) on the basis of the results of single factor tests for the extraction of these six major components in L. chuanxiong rhizomes. The experimental data were fitted to a second-order polynomial equation using multiple regression analysis and were also examined using appropriate statistical methods. The best extraction conditions were as follows: extraction solvent: 40% ethanol; pressure: 10 MPa; particle size: 80 mesh; liquid-to-solid ratio: 100:1; extraction temperature: 70 °C; ultrasonic power, 180 W; and extraction time, 74 min.
Collapse
|
6
|
Silva VD, Carletto JS, Carasek E, Stambuk BU, Nascimento MDG. Asymmetric reduction of (4S)-(+)-carvone catalyzed by baker's yeast: A green method for monitoring the conversion based on liquid–liquid–liquid microextraction with polypropylene hollow fiber membranes. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Goretti M, Turchetti B, Cramarossa MR, Forti L, Buzzini P. Production of flavours and fragrances via bioreduction of (4R)-(-)-carvone and (1R)-(-)-myrtenal by non-conventional yeast whole-cells. Molecules 2013; 18:5736-48. [PMID: 23681058 PMCID: PMC6270020 DOI: 10.3390/molecules18055736] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/29/2013] [Accepted: 05/10/2013] [Indexed: 11/16/2022] Open
Abstract
As part of a program aiming at the selection of yeast strains which might be of interest as sources of natural flavours and fragrances, the bioreduction of (4R)-(-)-carvone and (1R)-(-)-myrtenal by whole-cells of non-conventional yeasts (NCYs) belonging to the genera Candida, Cryptococcus, Debaryomyces, Hanseniaspora, Kazachstania, Kluyveromyces, Lindnera, Nakaseomyces, Vanderwaltozyma and Wickerhamomyces was studied. Volatiles produced were sampled by means of headspace solid-phase microextraction (SPME) and the compounds were analysed and identified by gas chromatography-mass spectroscopy (GC-MS). Yields (expressed as % of biotransformation) varied in dependence of the strain. The reduction of both (4R)-(-)-carvone and (1R)-(-)-myrtenal were catalyzed by some ene-reductases (ERs) and/or carbonyl reductases (CRs), which determined the formation of (1R,4R)-dihydrocarvone and (1R)-myrtenol respectively, as main flavouring products. The potential of NCYs as novel whole-cell biocatalysts for selective biotransformation of electron-poor alkenes for producing flavours and fragrances of industrial interest is discussed.
Collapse
Affiliation(s)
- Marta Goretti
- Department of Agricultural, Environmental and Food Sciences & Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy; E-Mails: (M.G.); (B.T.)
| | - Benedetta Turchetti
- Department of Agricultural, Environmental and Food Sciences & Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy; E-Mails: (M.G.); (B.T.)
| | - Maria Rita Cramarossa
- Department of Life Sciences, University of Modena & Reggio Emilia, via G. Campi 183, Modena 41125, Italy; E-Mail:
| | - Luca Forti
- Department of Life Sciences, University of Modena & Reggio Emilia, via G. Campi 183, Modena 41125, Italy; E-Mail:
- Authors to whom correspondence should be addressed: E-Mails: (L.F.); (P.B.); Tel.: +39-059-2055110 (L.F.); Fax: +39-059-373543 (L.F.); Tel.: +39-075-5856455 (P.B.); Fax: +39-075-5856470 (P.B.)
| | - Pietro Buzzini
- Department of Agricultural, Environmental and Food Sciences & Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy; E-Mails: (M.G.); (B.T.)
- Authors to whom correspondence should be addressed: E-Mails: (L.F.); (P.B.); Tel.: +39-059-2055110 (L.F.); Fax: +39-059-373543 (L.F.); Tel.: +39-075-5856455 (P.B.); Fax: +39-075-5856470 (P.B.)
| |
Collapse
|
8
|
Purchartová K, Engels L, Marhol P, Sulc M, Kuzma M, Slámová K, Elling L, Křen V. Enzymatic preparation of silybin phase II metabolites: sulfation using aryl sulfotransferase from rat liver. Appl Microbiol Biotechnol 2013; 97:10391-8. [PMID: 23494622 DOI: 10.1007/s00253-013-4794-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 01/10/2023]
Abstract
Aryl sulfotransferase IV (AstIV) from rat liver was overexpressed in Escherichia coli and purified to homogeneity. Using the produced mammalian liver enzyme, sulfation-the Phase II conjugation reaction-of optically pure silybin diastereoisomers (silybin A and B) was tested. As a result, silybin B was sulfated yielding 20-O-silybin B sulfate, whereas silybin A was completely resistant to the sulfation reaction. Milligram-scale sulfation of silybin B was optimized employing resting E. coli cells producing AstIV, thus avoiding the use of expensive 3'-phosphoadenosine-5'-phosphate cofactor and laborious enzyme purification. Using this approach, we were able to reach 48 % conversion of silybin B into its 20-sulfate within 24 h. The sulfated product was isolated by solid phase extraction and its structure was characterized by HRMS and NMR. Sulfation reaction of silybin appeared strictly stereoselective; only silybin B was sulfated by AstIV.
Collapse
Affiliation(s)
- Kateřina Purchartová
- Institute of Microbiology, Laboratory of Biotransformation, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|