1
|
Yuan M, Chen G, Xiao Y, Qu Y, Ren Y. The mechanisms of yeast extracellular metabolites in stimulating microbial degradation of trichloroethylene: Physiological characteristics and omics analysis. ENVIRONMENTAL RESEARCH 2024; 255:119193. [PMID: 38777296 DOI: 10.1016/j.envres.2024.119193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
The biodegradation of Trichloroethylene (TCE) is limited by low microbial metabolic capacity but can be enhanced through biostimulation strategies. This study explored the physiological effects and potential molecular mechanisms of the yeast Yarrowia lipolytica extracellular metabolites (YEMs) on the degradation of TCE by Acinetobacter LT1. Results indicated that YEMs stimulated the efficiency of strain LT1 by 50.28%. At the physiological level, YEMs exhibited protective effects on cell morphology, reduced oxidative stress, lessened membrane damage, and enhanced energy production and conversion. Analysis of omics results revealed that the regulation of various metabolic pathways by YEMs improved the degradation of TCE. Furthermore, RT-qPCR showed that the genes encoding YhhW protein in TCE stress and YEMs stimulation groups were 1.72 and 3.22 times the control group, respectively. Molecular docking results showed that the conformation of YhhW after binding to TCE changed into a more active form, which enhanced enzyme activity. Therefore, it is speculated that YhhW is the primary degradative enzyme involved in the process of YEMs stimulating strain LT1 to degrade TCE. These results reveal how YEMs induce strain LT1 to enhance TCE degradation.
Collapse
Affiliation(s)
- Meng Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Guotao Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yibo Xiao
- Protoga Biotechnology Co., Ltd., Shenzhen 518000, China; Microalgae Biosynthesis R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Yujiao Qu
- Protoga Biotechnology Co., Ltd., Shenzhen 518000, China; Microalgae Biosynthesis R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, China.
| |
Collapse
|
2
|
Nguyen PY, Carvalho G, Reis MAM, Oehmen A. A review of the biotransformations of priority pharmaceuticals in biological wastewater treatment processes. WATER RESEARCH 2021; 188:116446. [PMID: 33038717 DOI: 10.1016/j.watres.2020.116446] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 05/18/2023]
Abstract
Wastewater effluent discharges have been considered as one of the main sources of synthetic chemicals entering into the aquatic environment. Even though they occur at low concentrations, pharmaceutically active compounds (PhACs) can have an impact on ecological toxicity that affects aquatic organisms. Moreover, new regulations in development toward preserving water quality reinforces the increasing need to monitor and abate some PhACs in wastewater treatment plants (WWTPs), where they are typically only partially eliminated. Unlike most previous reviews, we have focussed on how the main biological and chemical molecular factors impact the biotransformations of key PhACs in biological WWTP processes. Biotransformations have been found to be an important contributor towards the removal of PhACs from WWTP effluents. This review paper critically assesses these aspects and the recent advances that have been achieved in wastewater treatment processes for biodegradation of 7 PhACs; namely the non-steroidal anti-inflammatory drug (NSAID) diclofenac (DCF); the macrolide antibiotics azithromycin (AZM), erythromycin (ERY) and clarithromycin (CLR); the two natural estrogens estrone (E1) and 17β-estradiol (E2), and the synthetic estrogen 17α-ethinylesradiol (EE2). These represent the micropollutants of the EU Watch list in Decision 2015/495/EU that are most relevant to WWTPs due to their frequent detection. The metabolic pathways, transformation products and impact of relevant factors to biological WWTP processes is addressed in this review. The biokinetics of PhAC biodegradation in different engineered bioprocesses is also discussed. Promising technologies and operational strategies that are likely to have a high impact on controlling PhAC releases are highlighted and future research needs are also proposed.
Collapse
Affiliation(s)
- P Y Nguyen
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Gilda Carvalho
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Maria A M Reis
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
3
|
Oanh NT, Duc HD, Ngoc DTH, Thuy NTD, Hiep NH, Van Hung N. Biodegradation of propanil by Acinetobacter baumannii DT in a biofilm-batch reactor and effects of butachlor on the degradation process. FEMS Microbiol Lett 2020; 367:5698327. [PMID: 31913459 DOI: 10.1093/femsle/fnaa005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
The herbicide, propanil, has been extensively applied in weed control, which causes serious environmental pollution. Acinetobacter baumannii DT isolated from soil has been used to determine the degradation rates of propanil and 3,4-dichloroaniline by freely suspended and biofilm cells. The results showed that the bacterial isolate could utilize both compounds as sole carbon and nitrogen sources. Edwards's model could be fitted well to the degradation kinetics of propanil, with the maximum degradation of 0.027 ± 0.003 mM h-1. The investigation of the degradation pathway showed that A. baumannii DT transformed propanil to 3,4-dichloroaniline before being completely degraded via the ortho-cleavage pathway. In addition, A. baumannii DT showed high tolerance to butachlor, a herbicide usually mixed with propanil to enhance weed control. The presence of propanil and butachlor in the liquid media increased the cell surface hydrophobicity and biofilm formation. Moreover, the biofilm reactor showed increased degradation rates of propanil and butachlor and high tolerance of bacteria to these chemicals. The obtained results showed that A. baumannii DT has a high potential in the degradation of propanil.
Collapse
Affiliation(s)
- Nguyen Thi Oanh
- Center of chemical analysis, Dong Thap University, 783 Pham Huu Lau, Cao Lanh city, Dong Thap Province, 870000, Vietnam
| | - Ha Danh Duc
- Center of chemical analysis, Dong Thap University, 783 Pham Huu Lau, Cao Lanh city, Dong Thap Province, 870000, Vietnam
| | - Dau Thi Hong Ngoc
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Ha Noi City, 100000, Vietnam
| | - Nguyen Thi Dieu Thuy
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Ha Noi City, 100000, Vietnam
| | - Nguyen Huu Hiep
- Institute of Biotechnology, Vietnam Academy of Science and Technology Campus II, 3/2 Street, Xuan Khanh, Nink Kieu, Can Tho City, 90000, Vietnam
| | - Nguyen Van Hung
- Center of chemical analysis, Dong Thap University, 783 Pham Huu Lau, Cao Lanh city, Dong Thap Province, 870000, Vietnam
| |
Collapse
|
4
|
Nguyen PY, Carvalho G, Reis AC, Nunes OC, Reis MAM, Oehmen A. Impact of biogenic substrates on sulfamethoxazole biodegradation kinetics by Achromobacter denitrificans strain PR1. Biodegradation 2017; 28:205-217. [DOI: 10.1007/s10532-017-9789-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
|
5
|
Conditions for supplemental biogenic substrates to enhance activated sludge degradation of xenobiotic. Appl Microbiol Biotechnol 2015; 99:8247-57. [DOI: 10.1007/s00253-015-6709-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
|
6
|
Chong NM. Model development with defined biological mechanisms for xenobiotic treatment activated sludge at steady state. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:8567-8575. [PMID: 25561268 DOI: 10.1007/s11356-014-4042-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
Activated sludge treatment of a xenobiotic organic compound, much different from treatment of biogenic organics, must be modeled with interactions involving a two-part biomass of degrader and nondegrader, which selectively or competitively grow on a two-part substrate of input xenobiotic and its biogenic metabolites. A xenobiotic treatment model was developed which incorporates kinetics of the growth of degrader and nondegrader, the line dividing metabolites into xenobiotic and biogenic, yields of degrader and nondegrader from utilization of their parts of substrates, and kinetics of degrader reversion to nondegrader due to instability of the degradative element degraders carry. Experimental activated sludge operated for treatment of a xenobiotic generated data for calibration of the model. With the input of influent xenobiotic concentration, mean cell and hydraulic residence times, and calibrated parameters, the model readily outputs concentrations of degrader, nondegrader, and effluent biogenic residue that closely match the results obtained from experiments.
Collapse
Affiliation(s)
- Nyuk-Min Chong
- Department of Environmental Engineering, DaYeh University, No. 168, University Road, Dacun, Changhua, Taiwan, 51591, Republic of China,
| |
Collapse
|
7
|
Marques R, Oehmen A, Carvalho G, Reis MAM. Modelling the biodegradation kinetics of the herbicide propanil and its metabolite 3,4-dichloroaniline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:6687-6695. [PMID: 25422118 DOI: 10.1007/s11356-014-3870-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/16/2014] [Indexed: 06/04/2023]
Abstract
This study models the biodegradation kinetics of two toxic xenobiotic compounds in enriched mixed cultures: a commonly applied herbicide (3,4-dichloropropionanilide or propanil) and its metabolite (3,4-dichloroaniline or DCA). The dependence of the metabolite degradation kinetics on the presence of the parent compound was investigated, as well as the influence of the feeding operation strategy. Model equations were proposed incorporating substrate inhibition of the parent compound and the metabolite during dump feed operation of a sequencing batch reactor (SBR). The kinetic parameters of the biomass were compared to step feed degradation of the SBR. The relationship between propanil and DCA degradation rates with the concentration of each compound was studied. A statistical comparison was carried out between the model predictions and experimental results. Substrate inhibition by both propanil and DCA was prominent during dump feed operation but insignificant during step feed. With both feeding strategies, the metabolite degradation was found to be dependent on the concentration of both the parent compound and the metabolite, suggesting that the DCA degrading enzymatic activity was independent of the detachment of the propionate moiety from the propanil molecule. After incorporating this finding into the model equations, the model was able to describe well the propanil and DCA degradation profiles, with an r (2) correlation >0.95 for each case. A kinetic model was developed for the degradation of the herbicide propanil and its metabolite DCA. An exponential inhibition term was incorporated to describe the substrate inhibition during dump feeding. The kinetics of metabolite degradation was dependent of the sum of the concentrations of metabolite and parent compound, which could also be of relevance to future xenobiotic modelling applications from wastewater.
Collapse
Affiliation(s)
- Ricardo Marques
- REQUIMTE-CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | | | | | | |
Collapse
|
8
|
Tamis J, Marang L, Jiang Y, van Loosdrecht MC, Kleerebezem R. Modeling PHA-producing microbial enrichment cultures—towards a generalized model with predictive power. N Biotechnol 2014; 31:324-34. [DOI: 10.1016/j.nbt.2013.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 10/25/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
|
9
|
Almeida B, Oehmen A, Marques R, Brito D, Carvalho G, Crespo MTB. Modelling the biodegradation of non-steroidal anti-inflammatory drugs (NSAIDs) by activated sludge and a pure culture. BIORESOURCE TECHNOLOGY 2013; 133:31-37. [PMID: 23422300 DOI: 10.1016/j.biortech.2013.01.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 06/01/2023]
Abstract
A model describing ibuprofen and ketoprofen biodegradation by activated sludge from three different wastewater treatment plants (WWTP) was developed in this study. This model successfully described the biodegradation profiles observed at two different initial concentrations of each compound, where a lag-phase was observed prior to the biodegradation of each compound. Twelve ibuprofen and ketoprofen degrading isolates were identified in this study from the WWTP sludge showing the best removal performance. One of these isolates was characterised via another model, where biodegradation was dependent on biomass growth rate as well as the ibuprofen concentration. The fact that different models were needed to describe the biodegradation by activated sludge and a pure culture suggests that the biodegradation of non-steroidal anti-inflammatory drugs (NSAIDs) depends on the microbial community, thus pharmaceutical biodegradation models may require adaptation depending upon the system. This study provides an advance towards modelling pharmaceutical biodegradation in WWTPs.
Collapse
Affiliation(s)
- B Almeida
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|